
RmdnCache: Dual-Space Prefetching Neural Network for
Large-Scale Volume Visualization

Jianxin Sun , Xinyan Xie , and Hongfeng Yu

Abstract— Volume visualization plays a significant role in revealing important intrinsic patterns of 3D scientific datasets. However,
these datasets are often large, making it challenging for interactive visualization systems to deliver a seamless user experience because
of high input latency that arises from I/O bottlenecks and limited fast memory resources with high miss rates. To address this issue,
we have proposed a deep learning-based prefetching method called RmdnCache, which optimizes the data flow across the memory
hierarchy to reduce the input latency of large-scale volume visualization. Our approach accurately prefetches the content of the next
view to fast memory using learning-based prediction while rendering the current view. The proposed deep learning architecture consists
of two networks, RNN and MDN in respective spaces, which work together to predict both the location and likelihood distribution of the
next view for defining an optimal prefetching range. Our method outperforms existing state-of-the-art prefetching algorithms in reducing
overall input latency for visualizing real-world large-scale volumetric datasets.

Index Terms—Large-scale data, volume visualization, deep learning, prefetching

1 INTRODUCTION

Interactive 3D visualization techniques help researchers across various
domains, from scientific research to medical practices, effectively dis-
cover informative patterns and extract valuable insights from datasets.
However, with the exponential growth in the size of 3D datasets, partic-
ularly those generated from high granularity simulations or extensive
sensing techniques in scientific research, it has become increasingly
difficult to visualize such large-scale datasets on hardware systems with
comparably limited memory resources and I/O bandwidths. In addi-
tion, to ensure a seamless user experience, interactive 3D visualization
systems require an upper bound on the input latency to update the 3D
scene in response to a user’s new point of view (POV).

Those issues are addressed by several main approaches such as
caching [15], multithreading [29, 36, 51], prefetching [40], data com-
pression [3,33,52], and multi-resolution modeling [23,24,26]. However,
most existing studies aim to either provide a unified solution for a gen-
eral memory system to improve memory latency or optimize a specific
situation that may not be directly applicable to an interactive 3D visu-
alization system with a complex architecture and multiple constraints.
Jointly optimizing different system components to efficiently and effec-
tively manage the data movement across a memory hierarchy becomes
the key to realizing a responsive, interactive 3D visualization system
for large-scale datasets.

Many research efforts have been made to improve the performance
of an interactive visualization system. For example, application-aware
data replacement policies are proposed to use a client-server architec-
ture to efficiently move data from back-end to front-end by prefetching
data ahead of user current exploration [5,41]. Those methods deal with
diverse types of datasets using predefined learning models or heuristic
methods that mainly rely on a priori knowledge. As a result, the pre-
diction may not be accurate enough to prevent suboptimal prefetching
decisions for a specific dataset. Although many traditional predictive
models [17, 18, 30, 64] adopt the nature of user visual exploration pat-
terns, such as locality of exploration and correlation among neighboring
POVs, it still needs cumbersome manual parameter tuning to yield an
optimal result for each type of dataset. Data-centric methods, espe-
cially deep learning, have emerged with great momentum in recent
years. Artificial neural network (ANN) shows its efficacy as a universal
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Fig. 1: Overview of the RmdnCache.

approximator driven by the extensive collection of training datasets,
which helps overcome its weakness of over-fitting as a unified learning
model. Deep learning methods are used to investigate memory access
patterns to improve the accuracy and efficiency of memory prefetch-
ing [10, 25]. However, the insights from those investigations are not
significantly beneficial to a complex interactive 3D visualization system
across multiple hardware and software stack layers. Although a deep
learning-based method [28] is proposed to visualize 3D flow fields, the
dynamics of user interaction in 3D space are missing.

To tackle these challenges, we present RmdnCache, a deep learning-
based prefetching neural network for interactive volume rendering of
large-scale volume datasets using a multi-resolution framework. The
core idea is to improve the performance of large-scale volume visualiza-
tion applications by prefetching based on users’ exploratory behaviors.
The principal component of the algorithm is a novel deep neural net-
work that predicts, during the prefetching phase, both the location of
the next POV in a 3D Cartesian space and its prefetching range derived
from an isocontour in a 2D spherical space. Both the predicted location
and range will jointly determine a dynamic prefetching content with a
lower miss rate for the next POV compared to other existing prefetching
algorithms for multi-resolution frameworks. Fig. 1 shows an overview
of the RmdnCache prefetching pipeline with its input (POVs sequence)
and two outputs (prefetching location and range) for determining the
data to prefetch. The training and testing datasets are POV trajectories
collected from professional users for effective learning of user explo-
ration patterns. Our solution can achieve a shorter caching time, the
main contributor to the input latency, thereby improving the respon-
siveness of the interactive volume visualization system. To the best of
our knowledge, this is the first work utilizing a deep learning predictive
model to solve prefetching in a multi-resolution framework. The main
contributions of this work include:
• A deep learning based prefetching algorithm to more accurately

predict and prefetch the content of interest with a low cache miss rate
and improved input latency, thereby enhancing the responsiveness of
interactive visualization of large-scale datasets.
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• Analysis of how the hyperparameters of the network and the system
configurations affect the overall performance.

• A training dataset of POV sequences collected from human users for
training predictive models.

Even though our implementation of RmdnCache is tailored towards
large-scale volume rendering, we anticipate that its fundamental princi-
ples and design philosophy can also be expanded to other 3D visualiza-
tion applications.

2 RELATED WORK

2.1 Out-of-core Methods
Out-of-core algorithms are extensively used in large-scale scientific
data visualization, such as I/O-efficient volume rendering, isosurface
computation, and streamline computation [4, 7, 38, 48]. By taking into
account the distance between the camera view and each data segment
in the current view, multi-resolution techniques [47, 53, 54] selectively
load data segments with varying levels of detail [61], resulting in a
smaller amount of data being loaded for rendering while still main-
taining the similar level of rendering quality. Recent work utilizes
neural networks [22, 57] to approximate complex shapes with vari-
ous levels of detail. Utilizing an efficient disk data layout [42] or a
pre-computed lookup table [11] can help efficiently access raw data
in real-time visualization like progressive slicing and particle traces.
Cox and Ellsworth [16] propose a framework for out-of-core scien-
tific visualization systems by modifying the I/O subsystem based on
application-controlled demand paging. The method utilizes the fact that
many important visualization tasks only need to touch a small portion
of large datasets at a time. Ueng et al. [46], Leutenegger and Ma [32]
use a similar approach to perform on-demand loading of necessary
data for visualization tasks by modifying the organization of actual
data on disk by using octree or R-tree partition to handle structured
and unstructured data. Researchers develop various out-of-core algo-
rithms in isosurface generation and volume rendering from large-scale
datasets. Chiang and Silva [13, 63] propose a solution for the stabbing
problem or interval search problem. Sulatycke and Ghose [50] adapt
the in-core data structure to an out-of-core setting with a multithreaded
implementation. Bajaj et al. [2] propose a method using the extension
of the seed-based technique for efficient isosurface extraction [1]. Sut-
ton and Hansen [56] propose the T-BON (Temporal Branch-On-Need
Octree) technique for fast extraction of isosurfaces of time-varying
datasets. Farias and Silva [20] present a memory-insensitive approach
and ZSWEEP algorithm [19] for the direct volume rendering of arbi-
trarily large unstructured grids on machines with limited memory. Our
rendering framework utilizes an out-of-core method to dynamically
load regions of interest, effectively managing large-scale datasets.

2.2 Prefetching
Prediction-based speculative prefetching [14, 21] can dramatically de-
crease the cache miss rate for interactive visualization applications,
thereby reducing the overall input latency. Prefetching adds an extra
layer of optimization on cache for the next POV, so out-of-core render-
ing methods that utilize both caching and prefetching generally give
a lower miss rate than methods that only utilize caching [31]. The
prefetching can also operate in parallel with rendering under modern
multi-core systems to eliminate its overhead for faster overall rendering
time. Battle et al. [5] present a prefetching method named ForeCache
for interactive visualization. ForeCache uses the Markov model to
predict future data requests, and its prediction accuracy becomes the
bottleneck for improving the effectiveness of prefetching. Yu et al. [64]
propose an application-aware algorithm (APPA) that makes predictions
according to the importance of the data. However, domain knowledge
is needed for a specific dataset to calculate the importance of the data
block for constructing the lookup table. A data-driven model, such
as deep neural network, is an emerging method of constructing a pre-
dictive model from data. However, there are sporadic research works
targeting prefetching using deep learning methods for large-scale vol-
ume visualization [60]. Hong et al. [28] propose a prefetching method
using Long Short-Term Memory, LSTM, to model data access patterns

(a) (b) (c)

Fig. 2: Interactive 3D visualization mechanism. (a), (b) and (c) demon-
strate three sequential view-dependent operations by a user. The blue
cube is the volume dataset for visualization. Green volume is the visible
content to render for the current POV. Each red vector connects contigu-
ous POVs. All red vectors are connected in order to form a 3D trajectory
of data exploration of the user.

for particle tracing in flow field visualization. The model is designed
only for exploring the flow field for the training data are sampled path-
lines in its domain, so it does not apply to general 3D volumetric data
visualization. The primary contribution of our work is the introduction
of a more effective prefetching method that leverages deep learning to
account for users’ exploratory behaviors.

2.3 Implicit Neural Representation
Deep learning-based rendering synthesis [6, 35] has emerged in recent
years to improve the performance of rendering volumetric datasets
across spatial and temporal domains. The implicit neural represen-
tation [45, 49] is trained as a more efficient and effective model to
leverage the GPU acceleration during inference. However, rendering
synthesis methods need to first create comprehensive input and label
pairs as training datasets considering extensive combinations between
view and data-dependent operations. For large-scale data, preparing
such training datasets itself takes a considerable amount of computa-
tional resources. Moreover, the training time is also generally long
to achieve an accurate inferencing result. The memory footprint of
rendering synthesis is normally large to generate the resulting image in
on shot. Compressing methods leveraging neural representation [37,58]
are proposed to decrease the network size and optimize I/O intensive
operations. Although random access is supported to query value or gra-
dient directly from the neural representation without decompression, its
training time is also inevitably long using powerful GPU when handling
complex large-scale scientific datasets. The rendering frameworks we
aim to optimize are traditional multi-resolution-based renderers, where
the compression is applied only to data partitions without extensive
training or modeling toward the entire dataset.

3 METHODS

3.1 Problem Formulation
Interactive large-scale volume rendering is a real-time 3D rendering
process on selected data retrieved according to queries made by user op-
erations. User operations can be classified into two main groups, which
are data-dependent operations (e.g., applying mapping or transfer func-
tion on data) and view-dependent operations (e.g., applying camera
movement). In this work, we focus on optimizing the main view-
dependent operations, specifically the zooming, rotating, and panning
operations. Fig. 2 demonstrates a typical interactive 3D visualization as
a user triggers view-dependent operations in sequence, where Pn indi-
cates a POV and n represents the sequential index of the POV as the user
explores the 3D volume. This work investigates prefetching algorithms
under a commonly used GPU-accelerated multi-resolution framework
for interactive 3D volume rendering of large-scale volumetric data,
where units of data moving across memory hierarchy are partitioned
data blocks, or microblocks, compressed with various levels of detail.
Lower resolution content is used at further regions from the camera to
decrease the overall data size for caching and rendering, the spatial size
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Fig. 3: Various views of a multi-resolution volume rendering on the Flame
dataset. The global view on microblocks (first row) shows visible mi-
croblocks of 4 resolution levels covered by the current POV. The white
prism indicates the location and orientation of the current POV. Larger
blocks (further from the POV) represent microblocks with lower resolu-
tions, while smaller blocks (closer to the POV) represent microblocks
with higher resolutions. Red blocks and green blocks represent miss
and hit microblocks in the cache for the current POV. Global view on
volume (second row) shows the spatial relationship between POV and
the volume-rendered data. The camera view (third row) shows the final
volume rendering result for the specific POV.

of the unit block scales based on the distance between the POV and the
centroid of the block for an appropriate level of detail [24, 44]. Fig. 3
demonstrates an example of multi-resolution rendering of three POVs
on a Flame dataset.

Fig. 4 outlines the structure of a typical GPU-accelerated multi-
resolution volume rendering pipeline with prefetching. Please refer to
the appendix for the detailed algorithm. First, visible blocks from the
current POV are retrieved based on the spatial relationship between the
camera and microblocks of all resolution levels. Second, the system
cache is updated by loading those visible blocks and following certain
cache replacement policies. Least Recently Used (LRU) algorithm is
utilized in this work for generalization. Third, the visible microblocks
will be copied to GPU memory for rendering specific visualization
results. Since the size of the data copied to GPU for rendering using the
multi-resolution method is much smaller compared to the raw data size,
according to our measurement, the memory copying time from RAM
and VRAM is negligible compared to the time used on other procedures.
Detailed measurements will be given in Sec. 4.6.2. Finally, prefetching
predicts the visible microblocks for the next POV and updates the cache
in parallel with rendering. In order to minimize the overall input latency,
prefetching must stop, even if it is not finished, at the moment when the
rendering is done. For the POV of sequence n, the sum of caching time
(TCn) and rendering time (T Rn) determines the total input latency, the
total time that elapses from the user action to the finish of rendering.
The rendering time is determined by the complexity of the rendering
algorithm and the capability of rendering hardware, which is out of
the scope of this paper. Our objective is to optimize the prefetching
at the current POV to decrease the miss rate of caching at the next
POV. A lower miss rate results in less total I/O overhead with less data

Fig. 4: Interactive 3D visualization pipeline with continuous view-
dependent operations. Pn is the nth POV. TCn, T Pn, and T Rn are the
times used for caching, prefetching, and rendering of the nth POV, re-
spectively.

movement and reduces the caching time for better responsiveness of the
system. For a current POV (Pn), the objective function of our method
is to minimize the miss rate at the next POV (Pn+1). The miss rate can
be expressed as:

Rmiss(Pn+1) =
|Bcached(Pn+1)∩Bvisible(Pn+1)|

|Bvisible(Pn+1)|
(1)

where

Bcached(Pn+1) =C
(

C
(
Bcached(Pn), Bvisible(Pn)

)
, Bpre f etch(Pn)

)
(2)

B denotes a set of microblocks. Function Bvisible(Pn) retrieves a set of
visible microblocks requested for a specific POV. Bpre f etch(Pn) predicts
a set of visible microblocks for the next POV Pn+1 given the current
POV Pn. Bcache(Pn) represents currently cached microblocks of a POV.
The function C(cache, new blocks to cache) carries out caching by
inserting missing new microblocks into the cache through replacement
and then returning all the microblocks in the cache. The operator | · |
returns the cardinality of a set. The function Rmiss(Pn) computes the
miss rate, which is the ratio between the number of missing microblocks
and the total number of visible microblocks. The goal is to design the
function of Bpre f etch(Pn) that can accurately and efficiently predict
visible blocks as close as Bvisible(Pn+1). This prediction is computed
on every view-dependent operation from a user in real time.

3.2 Proposed Solution
3.2.1 Rationale
If we can accurately predict the location of Pn+1 from previous m POVs,
{Pn−m+1, Pn−m+2, · · · , Pn}, we can simply construct the prediction
function for prefetching as:

Bpre f etch(Pn+1) = Bvisible
(
H (Pn−m+1, Pn−m+2, · · · , Pn)

)
(3)

where H (Pn−m+1, Pn−m+2, · · · , Pn) is a trajectory prediction function
that predicts a POV (P̂n+1) having the shortest Euclidean distance to the
next POV (Pn+1). We call this type of prefetching as point prefetching.
Intuitively, the point prediction can be simply addressed using a typical
seq2seq [55] recurrent neural network (RNN) [34] model, such as the
long short-term memory (LSTM) model [27], to implement the function
H .

Nonetheless, when dealing with new user input, there will always
be a discrepancy between the prediction and the ground truth. Using
Eq. (3) for point prefetching based on the predicted POV position will
likely fail to encompass all visible microblocks in the subsequent POV,
as shown in Fig. 5a. One solution is to use the range prefetching to
cover a broader range of microblocks, as shown in Fig. 5b. However,
the size of the prefetching range has to be justified carefully: If too
small, it fails to cover targeting microblocks; if too large, it will prefetch
too many microblocks with weak locality, and as a result, the cached
microblocks will be flushed out by uncorrelated microblocks, which
will inevitably increase the miss rate of subsequent caching.

Based on this observation, we propose a new algorithm for predicting
visible microblocks for the next POV. The algorithm still starts from a
POV location prediction but then adds a range determination on top of
it. The location provides a center point with the highest probability for
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Fig. 5: (a) and (b) show point prefetching and range prefetching, respec-
tively. P̂n+1 is the predicted POV location while Pn+1 is the ground truth.
The green region is the visible region of Pn+1. Red regions in (a) and (b)
represent the visible region by point prefetching and range prefetching of
P̂n+1, respectively. (c) shows how to simplify mixture density prediction Ω

in 3D Cartesian space as L in 2D spherical space.

successful prefetching, while the range provides a statistically sound
evaluation of how far the prefetching should extend to mitigate the
prediction error.

3.2.2 Prefetching Location Prediction
We apply a data-driven method using deep learning models to predict
prefetching location by learning features from exploration data col-
lected from real users. We implement an interactive visualization tool
to collect training data from human users. The software uses traditional
3D volume rendering, allows users to explore a dataset through view-
dependent operation interactively, and meanwhile collects the sequence
of POVs of the user’s explorations, where the 3D location (x,y,z) of
each POV in the Cartesian coordinate is recorded. We use these se-
quences to train an LSTM model as RNN to predict the location of
the next POV from unseen trajectories in the inferencing phase. Long
Short-Term Memory (LSTM) [65] is a type of recurrent neural network
(RNN) architecture that has proven effective in modeling sequential
data. Unlike traditional RNNs, LSTM networks are designed to mit-
igate the vanishing gradient problem, allowing them to maintain and
propagate information over extended sequences. LSTMs are widely
used in various fields, including natural language processing, speech
recognition, time series forecasting, and more.

3.2.3 Prefetching Range Determination
Although RNN can predict the next POV location from previous POVs,
it does not provide rigorous statistical confidence in the prediction.
Therefore, we utilize the idea of a mixture density network (MDN) [8]
to determine an appropriate prefetching range for each predicted POV
from LSTM. A Mixture Density Network (MDN) is a neural network
architecture used for modeling complex probability distributions. Un-
like traditional neural networks that output deterministic values, an
MDN generates a mixture of multiple probability distributions with
respective weights for importance. This allows MDNs to capture multi-
modal distributions and handle uncertainty in predictions. MDN can
predict a distribution rather than a single result by learning from the
data. In this work, we select multivariate Gaussian distribution as the
component of the mixture distribution for its capability of modeling
arbitrary probability density functions.

When training an MDN model, the input of the MDN network is
the output of the RNN network, and the label of the MDN network is
the ground truth of a specific POV location. The trained MDN model
can predict a 3D region Ω with a certain likelihood surrounding its
predicted mean, which can be seen as a predicted POV P̂n, as illustrated
as the green region in Fig. 5c. Thus, the predicted prefetching range is
similar to a conical frustum F enclosing Ω. The visible microblocks
can be calculated by projecting F on the data volume, as shown in the
red region in Fig. 5c. It is computationally expensive to predict Ω in 3D
using MDN. This will greatly decrease the prefetching efficiency and
result in higher input latency due to slow inferencing. Assuming that

Fig. 6: Example of an isocontour from a bivariate Gaussian distribution
with parameters that define its shape and orientation.

P̂n is located on a spherical surface S, we can see that the intersection
of F and S is a 2D contour L, which is all it needed to retrieve the
prefetching range. Based on this observation, we manage to reduce the
computational cost of MDN by predicting a bivariate Gaussian mixture
in 2D rather than a trivariate Gaussian mixture in 3D. We first convert
the RNN output, in a 3D Cartesian coordinate (x,y,z), to a spherical
coordinate (r,θ ,ϕ). The prefetching range, in spherical coordinates,
can be retrieved by referencing the joint distribution of the polar angle
(θ ) and the azimuthal angle (ϕ). This joint distribution can be directly
learned and predicted by a bivariate Gaussian mixture density network
on the sphere surface S with the corresponding radius r.

We train the MDN model by fitting bivariate Gaussian functions
across θ and ϕ , and directly reuse r from the output of RNN. The
prefetching range can be extracted by solving an isocontour generation
problem on the mixture density. The isocontours are lines or curves that
connect points of equal value on the surface of the Gaussian mixture
probability density function. It is nontrivial to solve this problem,
especially when we have a large number of Gaussian components for
the mixture and their weights are close to a uniform distribution. By
analyzing the prediction of the trained MDN model on the validation
dataset, we observed that, among a given group of predicted Gaussian
components, there is always a dominant component with a much larger
weight compared to the rest of the components most of the time. The
details of the observation will be discussed in Sec. 4.5. Therefore,
we can approximate the mixture distribution using the single Gaussian
component with the highest weight. In this way, we can once again save
a considerable amount of processing time for extracting the prefetching
range by only examining a single bivariate Gaussian distribution. The
prefetching range is the isocontour or the level set of the dominant
bivariate Gaussian distribution, and its shape is an ellipse. For a given
covariance matrix of the bivariate Gaussian distribution on θ and ϕ:

X(θ ,ϕ) =

[
σ2

θ
ρ ·σθ ·σϕ

ρ ·σθ ·σϕ σ2
ϕ

]
(4)

where σθ and σϕ are the standard deviation of θ and ϕ respectively,
while ρ is the correlation coefficient of θ and ϕ . The parameters
that define the isocontour for θ ∈ [µθ −σθ ,µθ +σθ ] and ϕ ∈ [µϕ −
σϕ ,µϕ +σϕ ] as shown in Fig. 6 can be calculated as:

r1 =
σ2

θ
+σ2

ϕ

2
+

√
(

σ2
θ
−σ2

ϕ

2
)2 +(ρ ·σθ ·σϕ )2 (5)

r2 =
σ2

θ
+σ2

ϕ

2
+

√
(

σ2
θ
−σ2

ϕ

2
)2 − (ρ ·σθ ·σϕ )2 (6)

α =


0 if ρ = 0 and σ2

θ
≥ σ2

ϕ
π

2 if ρ = 0 and σ2
θ
< σ2

ϕ

arctan( ρ·σθ ·σϕ

r1−σ 2
θ

) else
(7)

The parametric equation of the isocontour in spherical space using
the independent variable ω can be expressed as:

θ(ω) =
√

r1 · cos(α) · cos(ω)−√
r2 · sin(α) · sin(ω)+µθ

ϕ(ω) =
√

r1 · sin(α) · cos(ω)+
√

r2 · cos(α) · sin(ω)+µϕ

(8)



Fig. 7: Network architecture of the proposed RmdnCache. The RNN operates in Cartesian space, while the MDN operates in Spherical space.

The parametric equation of the isocontour, the prefetching range, in the
Cartesian space can be transformed as:

x(ω) = r · sin[θ(ω)] · cos[ϕ(ω)]

y(ω) = r · sin[θ(ω)] · sin[ϕ(ω)]

z(ω) = r · cos[θ(ω)]

(9)

where r is the magnitude of the POV in spherical space after converting
the predicted result by RNN in Cartesian space.

3.3 Proposed Network Architecture
We propose RmdnCache–a recursive mixture density network for
prefetching–that consists of two deep learning networks, RNN and
MDN, operating in the Cartesian space and the spherical space, re-
spectively, as shown in Fig. 7. The LSTM is selected as the RNN
model and designed with adequate features in hidden layers for better
performance. For the current POV (Pn), the LSTM network takes the
previous m POVs as the input sequence. Each element of the sequence
is a three-dimensional vector, {x, y, z}, in the Cartesian space. Only
the last output from the final LSTM cell in the network is used as the
prediction for the next POV (P̂n+1). Since LSTM is solving a regression
problem, the mean square error (MSE) is used as the loss function:

LossMSE =
∑

N
n=1 L2Norm(Pn, P̂n)

2

N
(10)

where L2Norm() is the function to calculate the L2-norm between
the predicted POV (P̂n) and the ground truth POV (Pn). N is the total
number of input sequences.

Once the LSTM network is trained, we fix its parameters and train
the MDN network on top of it in a transfer-learning fashion. This
predicted location will be transformed into the spherical space for the
MDN network by using the following equations:

r =
√

x2 + y2 + z2; θ = arctan

√
x2 + y2

z
; ϕ = arctan(

y
x
) (11)

where

r ≥ 0; 0° ≥ θ ≥ 180°; 0° ≥ ϕ ≥ 360°.

The MDN model only takes θ and ϕ as input and outputs a set of param-
eters that define the predicted bivariate Gaussian mixture distribution.
We denote this parameter set as ŷ:

ŷ = {
K⋃

k=1

π
k,

K⋃
k=1

µ
k,

K⋃
k=1

σ
k,

K⋃
k=1

ρ
k} (12)

where K is the number of Gaussian components used for the mixture.
πk represents the weight for the kth component. µk, σ k, and ρk are

the mean, the standard deviation, and the correlation coefficient for kth
bivariate Gaussian component, respectively. The output logits of MDN
need to be consistent with the range of valid weights (sum of weights
is 1.0), standard deviations (greater than 0), and correlation coefficients
(between -1 to 1). This can be satisfied using the following functions:

π
k = So f tmax(πlogits),σ

k = exp(σlogits),ρ
k = tanh(ρlogits) (13)

The probability density function of K Gaussian mixture is:

P(θ ,ϕ) =
K

∑
k=1

π
k ·G(θ ,ϕ | µ

k, σ
k, ρ

k) (14)

where G is a bivariate Gaussian distribution on θ and ϕ:

G(θ ,ϕ | µ
k, σ

k, ρ
k) =

1

2πσθ σϕ

√
1−ρ2

exp[− z
2(1−ρ2)

]

z =
(θ −µθ )

2

σ2
θ

−
2ρ(θ −µθ )(ϕ −µϕ )

σθ σϕ

+
(ϕ −µϕ )

2

σ2
ϕ

(15)

The goal of the MDN network is to maximize the weighted sum of
likelihood from each component for a given input, equivalently, to
minimize negative log operation on top of it. The loss function of MDN
can be written as:

Loss =
N

∑
n=1

−log[
K

∑
k=1

π
k
n ·G(θn,ϕn | µ

k
n , σ

k
n , ρ

k
n)] (16)

The proposed predictive model through deep learning tries to leverage
users’ exploratory behaviors to improve the effectiveness of prefetch-
ing. Once the model is trained, we can use the method mentioned in
Sec. 3.2.3 to retrieve a prefetching range for each predicted POV.

3.4 Visible Blocks Retrieval
The visible blocks need to be retrieved based on the prefetching range
given by the network. In theory, the ideal visible microblocks need to
fill in the region covered by the prefetching range with a single ellipse
shape as shown in the red region of Fig. 8a. However, it is computa-
tionally expensive to exactly compute range coverage for an ellipse
with a high degree of rotation and radius freedom of the major and the
minor axes. We propose a solution to approximate such range coverage
using the union of multiple point coverages as shown in Fig. 8b. We
compute each point coverage starting from points (p0, p1, ...) uniformly
distributed on the edge of the elliptic prefetching contour by calculating
the microblocks in the intersection between the dataset and the standard
cone shape regions projected from those points. We call those sampled
points child POVs (cPOVs). The final bag of visible blocks is the union
of all the point coverage from those cPOVs and the center point of the



(a) (b)

Fig. 8: Visible block retrieval. (a) is the ideal method using range cover-
age but with high computational complexity. (b) is the proposed faster
method by aggregating multiple point coverages. The four red sampled
points on the blue prefetching contour are cPOVs.

contour. The finer sampled cPOVs used, the closer the block union is to
the real range coverage of the prefetching contour. It is easy to compute
the point coverage of a cPOV by itself or leverage a lookup table to
decrease the retrieval time further. Although more cPOVs make the
union of point coverages from those cPOVs closer to the original range
coverage, the longer visible microblocks searching time during the
union operation is detrimental to prefetching efficiency. The sampling
density of cPOV can be tuned by trading off the prefetching accuracy
and efficiency.

4 EXPERIMENTS AND EVALUATION

In order to extensively examine the prefetching performance of an
interactive visualization system on large-scale datasets, we implement
a general multithreaded volume renderer utilizing a multi-resolution
framework with GPU acceleration by following the pipeline of Fig. 4.
The framework we implemented is general enough to capture common
procedures of a typical GPU-accelerated multi-resolution 3D visual-
ization system. This framework is also used in collecting training data
from users. The details of the renderer can be found in section 2 of the
appendix.

4.1 Considered Prefetching Algorithms
To evaluate the performance of our RmdnCache, we examine three other
previous works of prefetching methods, APPA [64], ForeCache [5] and
LSTM [28], that we find applicable to multi-resolution visualization
systems for handling large-scale datasets. APPA derives a parent POV
(pPOV), which is a new POV further from the volume object by in-
creasing the distance between the current POV and the centroid of the
3D volume, hoping that the larger range of visible microblocks covered
by the pPOV derived from current POV will also cover most visible
microblocks of the next POV. APPA actually realizes a range cover-
age retrieval through the point coverage of the pPOV. Both ForeCache
and LSTM predict the next POV from a sequence of previous POVs
using the Markov model and the deep learning RNN, respectively. The
LSTM method we use here is similar to the LSTM used in Hong et
al. [28] except replacing the input from particle trajectories of the flow
field data to user trajectories for prediction of the next POV. Our Rmd-
nCache utilizes both RNN and MDN to predict not only the next POV
but also a series of cPOVs describing the accurate prefetching range.
We evaluate RmdnCache against these existing algorithms with the key
system-level metrics that determines the overall performance of the
visualization system, including caching miss rate (MR), caching time
(TC), rendering time (T R), and prefetching time (T P), which are main
contributors to the overall input latency.

4.2 Datasets
Methods in the automatic selection of representative views and explo-
ration paths [9, 59] can provide POVs based on the data-dependent
evaluations for visualization systems without user interaction. Because
our contribution is to improve the visualization systems with heavy
user interaction, POVs from real human users need to be collected. The
training trajectory datasets are collected from real users when exploring
the volume dataset on our interactive 3D visualization framework. The
format of the training dataset collected is trajectories of POVs in the
Cartesian space. Multiple volume datasets with distinct spatial features

and transfer functions are used for collecting comprehensive training
datasets of trajectories. The users are scientists or researchers in com-
puter science, including professors and graduate students. In order
to improve the representativeness of the collected data, the users we
selected either have previous experience in research in visualization or
have an interest in large-scale volume visualization. All participants
are required to sign the consent document beforehand. The visualiza-
tion task involves exploring regions of interest for each user through
a series of view-dependent operations. There are no restrictions on
the user’s exploratory behaviors or the time taken to complete the task.
The initial point is randomly selected for each user. Collected train-
ing trajectories are cleaned by removing POV outliers due to users’
misoperations to improve uniformity. The distribution of the training
trajectories is balanced as they span the whole domain containing the
volume rather than only focusing on a small region of interest. Exam-
ples of training trajectories can be found in the appendix. The datasets
used to train the model are sequence and label pairs cut from the 50
training trajectories (340 POVs per trajectory) by applying a sliding
window. The training and validation datasets are split from all training
pairs with a ratio of 5 : 1. For evaluation, we test the performance of
our model on unseen user trajectories exploring 4 unseen large-scale
volume datasets with distinct spatial features and transfer functions.
The large-scale volumetric datasets for testing are 1) Flame (6.45GB),
2) Truss (6.45GB), 3) Chameleon (4.23GB), and 4) Rayleigh-Taylor
(4.01GB). Each testing dataset has a corresponding exploratory test-
ing trajectory containing 400 POVs. Four resolution levels are used
in the experiments by following the octree partition strategy to con-
struct microblocks for multi-resolution visualization. Three evenly
distributed distance thresholds from a POV are used to differentiate the
microblocks of 4 levels of resolutions. The final volume rendering im-
age resolution is 1024×1024. Please refer to the appendix for detailed
information on the datasets and their microblock partitions.

4.3 Experimental Setup
A two-level memory hierarchy model, from storage to RAM, is used in
the experiment for generalization. However, the benefit of prefetching
can be easily scaled to multi-level memory hierarchies. The cache
memory size is fixed as 200 microblocks for the multi-resolution ren-
dering pipeline. Although the number of microblocks in the cache is
fixed, the actual cache size is determined by the microblock size result-
ing from the partition of a specific dataset. We use a slow 4TB hard
disk drive (HDD) with 5400 RPM on SATA interface as the storage
to better evaluate the effectiveness of all the considered prefetching
algorithms under such a worst-case scenario where high data movement
latency between storage and RAM becomes the main bottleneck of the
responsiveness. We also test the same experiments on a solid-state drive
(SSD) with the SATA interface for its popularity nowadays. In addition,
we use a lower-end NVIDIA GTX 1050 Ti GPU with a VRAM of
only 4GB, which is insufficient for loading the entire volume of data
to generate the interactive visualization. The hardware platform is a
desktop with Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz with 8GB
DDR4 DRAM 3200MHz. Our approach ensures a small memory foot-
print by dynamically fetching the required microblocks into memory
based on user explorations. The operating system on the desktop is
Ubuntu 20.04.4 LTS. We disable the system cache of the operating
system so that our measurements of caching performance, dedicated
to the interactive visualization task, are more faithful for an accurate
evaluation.

4.4 Network Configuration and Training
The RNN network is an LSTM [27] designed with one hidden layer
with 100 features. As LSTM operates on a sequence of Cartesian space
coordinates, both the input and output dimensions consist of three
components (x, y, z). The standard multi-layered unidirectional LSTM
architecture is used. The stochastic gradient descent (SGD) optimizer
is used with a learning rate set as 0.1. The raw dataset is formatted into
sequence-to-sequence pairs for training the LSTM. The MDN network
is basically built from fully connected MLP [43] and designed using
one hidden layer with 20 features. The input consists of θ and ϕ in the



Fig. 9: Index of Gaussian components with the maximum weight across
the first 50 POVs of a user’s trajectory of the validation dataset from
the prediction of MDN model with 7 Gaussian components. The red
cross denotes transition POV (tPOV), where the maximum weight of
the mixture shifts from one Gaussian component to another. The blue
dots represent the POVs where there is a single dominant Gaussian
component on weight without weight shift.

2D spherical space, while the output dimension is six times the number
of Gaussian components for the mixture, where six is the total number
of parameters for defining a Gaussian component (π , µθ , µϕ , σθ , σϕ ,
ρ). Adam optimizer is used with a dynamically adjusted learning rate.
Once the LSTM network is trained, we freeze its parameters and use
the practice of transfer learning to train the MDN network on top of
LSTM. The rectified linear unit (ReLU) activation function is used in
both LSTM and MDN networks.

The proposed deep learning networks are trained using the PyTorch
software stack to accelerate the training and inferencing performance
on a single NVIDIA GTX 1080Ti GPU. A validation dataset is selected
to detect the overfitting on the training dataset and freeze the network
parameters from updating through the early stop mechanism. The
training of LSTM and MDN stop at around the 3000th and 150th epoch,
respectively, before overfitting happens. The training time is around 90
minutes for LSTM and 20 minutes for MDN.

4.5 Hyperparameter Tuning
In order to optimize the network architecture for more accurate predic-
tion to improve the prefetching efficacy, we evaluate and optimize the
key parameters of the network through hyperparameter tuning. Detailed
results of error using different hyperparameters of RNN window size
and MDN mixture components number can be found in the appendix.

RNN Window Size We evaluate the RNN network performance
by adjusting the input sequence length from 1 to 10 and find optimal
window size of 3 gives the lowest MSE loss on the validation dataset,
and thus it will be used as the optimal parameter for the LSTM part of
our proposed network. After partitioning the training trajectories with
a window size of 3, there are in total 16850 sequences and label pairs
for training.

MDN Mixture Components Number We also evaluate the number
of bivariate Gaussian components used for the MDN network. We
observe the fact that increasing the number of components does not nec-
essarily result in better performance. However, using more components
will linearly improve the number of features in the logits layer, which
enlarges the network’s parameter space and consequentially increases
the inferencing latency. Moreover, more labeled data are needed to
train a more complex model properly to prevent the network from
overfitting; otherwise, the generalization ability of the network will be
diminished. Based on our evaluation, we pick 5 as the optimal number
of components in our developed MDN network.

Dominant Gaussian Component Selection We also observe that,
among all predicted Gaussian components, for most of the time, there
is only one dominant Gaussian component that has the highest weight
compared to other components. This can be proved by counting the
frequency of the POV whose maximum weighted component changes
to a different one compared to its previous POV, and we call such POV
as transition POV (tPOV). A maximum weight transition only happens
when more than one components have relatively close magnitudes of
their weights, which means all those components with similar weight
need to be considered to construct the final Gaussian mixture for an
accurate prefetching range prediction. As shown in Fig. 9 from our
experiment, as the current POV moves along the trajectory of all POVs,
the tPOVs only appear with a very low frequency. We measure the

Table 1: Percentage of the tPOVs in all POVs of the trajectory under
MDN models with different numbers of Gaussian components.

Components
Number 2 3 4 5 6 7 8 9 10

Percentage 0% 4.5% 5.5% 0% 8.1% 8.6% 6.8% 5.6% 0%

frequency of tPOV among all POVs on our validation dataset under
MDN models with a different number of Gaussian components as
shown in Tab. 1. The results indicate that the tPOV frequency is below
9% for most MDN models, regardless of the number of Gaussian
components used. Consequently, at least 91% of the time, we can
select the single dominant Gaussian component with the highest weight
for the final bivariate likelihood prediction, instead of aggregating all
components. This approach speeds up MDN inference time with only a
marginal loss in accuracy. For our RmdnCache model using 5 Gaussian
components based on the hyperparameter tuning, there is no tPOV at all,
which means there is no transition between components for maximum
weight. This is because, for the distribution of validation datasets, the
MDN using 5 Gaussian components can always catch the maximum
likelihood of the underlying distribution to the same components. In
summary, picking a Gaussian component number in the middle range
is suitable for balancing the accuracy and performance. This means
RmdnCache sacrifices even less accuracy from such optimization.

4.6 Results
We train our proposed RmdnCache network with optimal hyperparam-
eters on our training dataset and infer the pre-trained model in real
time to retrieve potentially visible microblocks for the next POV. We
run experiments on the interactive multi-resolution volume rendering
framework using various prefetching algorithms on 4 unseen user tra-
jectories exploring 4 unseen large-scale volumes. Fig. 10 shows the 4
testing volumes and their user exploratory trajectories, together with
the detailed color and opacity transfer functions used for rendering. We
also run the experiment without prefetching as a baseline where only
LRU caching is utilized. The proposed RmdnCache uses the predicted
next POV and 4 sampled cPOVs on its prefetching range to retrieve the
visible microblocks. We measure the cache miss rate of each POV and
its average during caching to evaluate the accuracy of predicting visible
microblocks using different prefetching algorithms. The input latency
of each POV and its average is measured to evaluate the responsiveness
of the interactive visualization system using different prefetching algo-
rithms. The final measurement is the average of a total of 10 repeated
measurements with the same setting.

Fig. 11 demonstrates the spatial comparison between the ground
truth user trajectory and the predicted trajectory from RmdnCache. It
can be observed that the predicted trajectory aligns with the ground truth
for most of the time except for some POVs deviating from the trajectory.
However, the error in prefetching caused by such deviated POVs can be
compensated by the prefetching range. This can be seen in the zoom-in
views in both Cartesian and Spherical spaces as shown in Fig. 12 and
Fig. 13. For each predicted POV, its ellipse-shaped prefetching range
tries to cover the ground truth POV, so that the final prefetching region
determined by RmdnCache, as mentioned in Sec. 3.2.3 and Sec. 3.4,
will also cover most of the prefetching region derived from the ground
truth POV. This is the main reason why RmdnCache performs better
than other prefetching algorithms predicting a single POV.

4.6.1 Miss Rate
Fig. 14 shows the measured miss rate of the first 101 POVs on testing
dataset 1 using the four considered prefetching algorithms and the LRU
without prefetching. The detailed miss rate of all POVs for each testing
dataset can be found in the appendix. In general, the miss rate of the
first POV is always 1.0 because the cache is empty at this moment, and
all visible microblocks needed to render this POV are missing. As a
user explores the dataset through POV movement, new microblocks
are needed for rendering the view of the current POV, and the cache
is updated accordingly by loading the missing microblocks. Fig. 15
shows the cache is getting filled with new microblocks as the user



(a) Flame (b) Truss (c) Chameleon (d) Rayleigh-Taylor

Fig. 10: Four large-scale testing volumetric datasets and their user exploratory trajectories.

(a) Flame (b) Truss (c) Chameleon (d) Rayleigh-Taylor

Fig. 11: Comparison between the ground truth testing trajectories and predicted trajectories using RmdnCache in Cartesian space.

Fig. 12: Zoom-in view in Cartesian space of the testing dataset 1.

starts the exploration. Once the cache reaches its maximum size (200
microblocks), existing cached microblocks will be replaced with the
new incoming microblocks using LRU. The spikes are the moments
where the POV dramatically changes, and the temporal locality of the
cache is disrupted because all visible microblocks of such POVs have
minimal or no overlap with the previous POVs. All algorithms perform
poorly on those POVs.

To gain a more detailed examination of their performance, Tab. 2
shows the average miss rate (AMR) using different algorithms on all
4 testing datasets. It can be observed that all prefetching algorithms
give lower miss rates than LRU where no prefetching is utilized. Our
RmdnCache gives the lowest average miss rate among the prefetching
algorithms for all testing datasets, showing the RmdnCache outper-
forms other prefetching algorithms in the accuracy of predicting visible
microblocks of the next POV. In our volume rendering visualization
task, the visualization configurations (transfer function, ray casting
sampling distance, rendering image resolution, and so on) for all the
prefetching algorithms are the same, and thus, they share the same ren-
dering time that is only determined by the visualization configuration.

Fig. 13: Zoom-in view in Spherical space of the testing dataset 1.

Since the prefetching procedure only executes in parallel during the
rendering procedure and gets stopped when the rendering is done, this
means for the same POV of a particular dataset, each algorithm was as-
signed the same time interval to perform prefetching. The lowest miss
rate of RmdnCache reveals its efficiency in prefetching more reusable
microblocks for the future.

The dynamic of an exploratory trajectory determines the amount of
dramatic changes in the POVs. As a result, the miss rates of all the
algorithms increase from less dynamic trajectories (tests 1 and 2) to
more dynamic trajectories (tests 3 and 4). For a statically sound evalua-
tion, we also measure the 95th percentile of the miss rates of all POVs
in Tab. 2. Our RmdnCache has the lowest 95th percentile meaning its
prediction accuracy is not only higher but also more stable. We can also
observe that deep learning methods, LSTM and RmdnCache, performs
better in prefetching accuracy than a traditional predictive model, like
the Markov model, and prove their potential to capture user exploration
pattern better. RmdnCache performs the best because it not only pre-
dicts the next POV as LSTM does, but also has an effective range for
prefetching. Although a large prefetching pool will load a broader
range of microblocks for each POV with better temporal locality, it



Fig. 14: Miss rate of the first 101 POVs using LRU and different prefetch-
ing algorithms on testing dataset 1.

Fig. 15: Number of microblocks in cache of the first 17 POVs using LRU
and different prefetching algorithms on testing dataset 1.

needs a longer time to load such a wide range of microblocks during
prefetching. This will result in unfinished prefetching due to early stops
and the limited loaded microblocks might not be the ones that will be
reused for the next POV. On the other hand, a small prefetching pool
will not have an unfinished prefetching issue, but it will not update
the cache with enough microblocks of the next POV due to its limited
pool of predicted microblocks. This is one of the main issues of APPA
where its prefetching range is predefined without the knowledge of
user exploration patterns. Fig. 16 shows how many microblocks get
prefetched during the rendering stage using different algorithms for
each POV (the first 101 POVs are shown here, and the full record can
be found in the appendix). LRU is constant zero as there is no prefetch-
ing. Predictive model Forecache, LSTM, and RmdnCache will not
do any prefetching until a window size of POVs is available. We can
observe that APPA tries to prefetch the most microblocks compared
with other algorithms. RmdnCache addresses this problem by using
user data to learn a suitable range, and its anticipated prefetching range
adjusts to the input, making it a more effective solution. The miss
rate result on SSD is shown in Tab. 3. The miss rate performance of
APPA, LSTM, and RmdnCache get improved due to the faster I/O time
between storage and system memory, which results in more prefetched
block before the deadline, thereby enhancing the subsequent caching hit
rate. The miss rate of LRU does not benefit from the faster I/O because
no prefetching is used. Miss rate performance of ForeCache does not
change much due to its relatively large prediction error. RmdnCache
still performs the best in miss rate using SSD.

4.6.2 Input Latency

We also measure the input latency of each algorithm on the testing
datasets to evaluate the responsiveness for interactive visualization.
Fig. 17 is an example plot of the input latency of the first 101 POVs
on testing dataset 1 using LRU and different prefetching algorithms.
The detailed input latency of all POVs for each testing dataset can be
found in the appendix. As expected, we observed a similar distribution
of spikes as the miss rate in Fig. 14, because the miss rate is the main
factor in determining the input latency. The first POV gives the longest
input latency due to the 100% miss rate. All the algorithms share the
same cache copy time from RAM to VRAM. Since the upper limit of
the cache is only 200 microblocks, the average memory copy time is
around 0.003 seconds which is much smaller compared to other steps
like caching and rendering.

Tab. 4 provides a closer comparison by showing the average input
latency with different algorithms on all 4 testing datasets. Similar
to the miss rate, all prefetching algorithms give shorter input latency
than LRU. Our RmdnCache gives the lowest input latency among all

Fig. 16: Prefetched number of microblocks of the first 100 POVs using
LRU and different prefetching algorithms on testing dataset 1.

Fig. 17: Input latency of the first 101 POVs using LRU and different
prefetching algorithms on testing dataset 1.

prefetching algorithms for all testing datasets, showing RmdnCache
can further improve the responsiveness of the interactive visualization
system. We also measure the 95th percentile for each algorithm and find
our RmdnCache gives the lowest value, meaning its improvement in the
input latency is not only the highest but also consistent throughout the
POV trajectories. The input latency result on SSD is shown in Tab. 5.
All algorithms benefit from the faster I/O time that greatly improves
the caching performance. RmdnCache still performs the best in input
latency using SSD.

During the prefetching procedure, two consecutive steps are carried
out: 1) Retrieving microblocks to prefetch for next POV; 2) Performing
prefetching for those microblocks on Cache. The total time budget
allowed for those two steps together is determined by the rendering time.
When rendering of a particular POV is done, the second prefetching step
has to be preempted, even if it is incomplete. In order to save time for
step 2) to get more microblocks prefetched, step 1) has to be optimized
to use as minimal time as possible. There are two sub-steps for step
1: i) Making a prediction for prefetching; ii) Find visible microblocks
from the prediction. The pre-trained RmdnCache model is loaded as
torch script and conducts inferencing in real-time through LibTorch
under a C++ environment. Due to the compact size of our traced model
using optimized hyperparameters, which is 199KB in total for RNN and
MDN networks together with around 42,000 parameters, the first sub-
step of making inferencing can be performed efficiently on CPU with a
negligible overhead, which is around 0.5 ms. As a result, the inferencing
time using our RmdnCache model only takes approximately 1.5%
(3%) of the required input latency for a typical responsive, interactive
visualization system with 30 (60) FPS. In addition, we make use of a
lookup table to optimize the search process in sub-step 2 of the multi-
resolution volume rendering framework. As a result, the latency of setp
1) is reduced from an average of 0.02 seconds to 0.003 seconds for all
testing datasets running on our hardware.

A visualization of the user’s exploration of the Flame dataset using
multi-resolution volume rendering can be found in the appendix, where
three randomly selected POVs are checked for miss rate and input
latency.

4.6.3 Prefetching Time Budget

The prefetching time budget is the time allocated for prefetching, which
equals the rendering time on the GPU. If the rendering quality is not un-
der constraint, a renderer can push its frame rate by adjusting rendering
time on GPU through control parameters. However, the upper bound of
the frame rate is mainly determined by the caching time when dealing
with large-scale datasets. The rendering time is mainly determined by
three factors: the time complexity of the chosen visualization algorithm,



Table 2: Average miss rate (AMR) and its 95th percentile using LRU and
four prefetching algorithms on testing datasets stored on HDD.

Testing LRU ForeCache APPA LSTM RmdnCache
Dataset AMR ↓ 95th P ↓ AMR ↓ 95th P ↓ AMR ↓ 95th P ↓ AMR ↓ 95th P ↓ AMR ↓ 95th P ↓

Flame 9.357% 20.173% 8.361% 19.007% 5.846% 18.842% 4.464% 14.307% 3.566% 12.393%

Truss 10.481% 26.264% 9.952% 23.937% 5.924% 20.212% 5.444% 21.624% 4.677% 18.829%

Chameleon 26.451% 54.865% 24.895% 51.322% 21.482% 51.518% 19.228% 51.622% 18.653% 50.507%

Rayleigh-Taylor 16.526% 41.143% 15.427% 38.262% 11.545% 36.337% 9.791% 35.102% 8.917% 34.696%

Table 3: Average miss rate (AMR) and its 95th percentile using LRU and
four prefetching algorithms on testing datasets stored on SSD.

Testing LRU ForeCache APPA LSTM RmdnCache
Dataset AMR ↓ 95th P ↓ AMR ↓ 95th P ↓ AMR ↓ 95th P ↓ AMR ↓ 95th P ↓ AMR ↓ 95th P ↓

Flame 9.357% 20.173% 8.765% 20.238% 3.139% 13.295% 3.051% 8.425% 2.193% 7.143%

Truss 10.481% 26.264% 10.770% 26.244% 3.339% 15.972% 3.855% 16.289% 2.915% 12.512%

Chameleon 26.451% 54.865% 24.817% 50.514% 18.408% 51.581% 12.741% 50.027% 11.362% 48.388%

Rayleigh-Taylor 16.526% 41.143% 16.086% 40.828% 7.694% 37.753% 6.848% 37.662% 5.657% 34.782%

the resolution of the resulting image, and the capability of the GPU.
In order to investigate how the prefetching algorithms perform under
different prefetching time budgets, we select the sample distance on the
ray of the ray-casting based direct volume rendering (DVR) as the inde-
pendent parameter to control the time complexity of the visualization
algorithm while keeping the other two factors the same.

Less prefetching time budget results in more insufficient prefetching
as there is no enough time allowed to wait for the finish of prefetching
predicted microblocks, instead, the process gets preempted by an early
stop. We record such events of all prefetching algorithms by counting
the occurrence of early stops among all the POVs, as shown in Fig. 18a.
As the prefetching time budget decreases, an increasing number of
POVs suffer from insufficient prefetching caused by early stops. For
a prefetching algorithm, its early stop count is determined by the size
of the predicted prefetching pool and the accuracy of the prediction.
A larger prefetching pool requires more time to load its microblocks
and results in a higher chance of an early stop. A more accurate
prediction will encounter less misses when updating the cache during
prefetching, leading to less data movement with lower chance of an
early stop. APPA is most affected due to its relatively larger size of
the prefetching pool for each POV through range coverage and its
lower prediction accuracy. Because both ForeCache and LSTM retrieve
prefetched microblocks candidates through a single-point coverage,
they have smaller prefetching pools and are not affected as negatively
as APPA. ForeCache experiences a higher number of misses than LSTM
when updating the cache, which is due to its lower prediction accuracy
compared to LSTM. This leads to a higher amount of data movement
and a greater count of early stops for ForeCache. Despite RmdnCache
having a larger prefetching pool than ForeCache and LSTM, thanks
to its ability to cover multiple points, it stops earlier less frequently
than ForeCache because it makes more precise predictions. It should
be noted that a greater number of early stops does not always indicate
poor prefetching performance. Nevertheless, an effective prefetching
algorithm must make the most of the allocated prefetching time budget.
Our RmdnCache experiences a higher number of early stops than LSTM
as it prefetches more microblocks to make full use of the time budget.

Fig. 18b shows the average miss rates as prefetching time budget
increases. LRU gives the same highest average miss rate for it does
not have the prefetching step. Our RmdnCache always gives the lowest
average miss rate compared to other prefetching algorithms. Fig. 18c
shows the changes in the average caching time, which is the main
contributor to the overall input latency. LRU gives the highest average
caching time due to the lack of prefetching, while RmdnCache gives
the lowest. Since the caching time is determined by the miss rate, the
measured average caching time results are compliant with the average
miss rate results in Fig. 18b. The input latency is close to the sum of
the caching time and the rendering time, which is also the prefetching
time budget. As shown in Fig. 18d, our RmdnCache also always gives
the lowest average input latency among all prefetching algorithms. As
prefetching time budget gets smaller, all prefetching algorithms will
converge to the performance of the LRU on both average miss rate
and input latency, which means the benefit of doing prefetching is di-

Table 4: Average input latency (AIL) in seconds and 95th percentile using
LRU and four prefetching algorithms on testing datasets stored on HDD.

Testing LRU ForeCache APPA LSTM RmdnCache
Dataset AIL ↓ 95th P ↓ AIL ↓ 95th P ↓ AIL ↓ 95th P ↓ AIL ↓ 95th P ↓ AIL ↓ 95th P ↓

Flame 0.538 0.832 0.447 0.717 0.419 0.698 0.387 0.648 0.360 0.577

Truss 0.588 0.965 0.560 0.938 0.491 0.788 0.478 0.759 0.468 0.745

Chameleon 1.027 1.713 0.958 1.577 0.909 1.584 0.834 1.552 0.833 1.492

Rayleigh-Taylor 0.461 1.439 0.443 1.376 0.39 1.192 0.36 1.137 0.354 1.089

Table 5: Average input latency (AIL) in seconds and 95th percentile using
LRU and four prefetching algorithms on testing datasets stored on SSD.

Testing LRU ForeCache APPA LSTM RmdnCache
Dataset AIL ↓ 95th P ↓ AIL ↓ 95th P ↓ AIL ↓ 95th P ↓ AIL ↓ 95th P ↓ AIL ↓ 95th P ↓

Flame 0.224 0.329 0.206 0.328 0.207 0.313 0.196 0.299 0.184 0.271

Truss 0.304 0.397 0.296 0.403 0.295 0.391 0.300 0.408 0.274 0.363

Chameleon 0.215 0.299 0.206 0.319 0.206 0.324 0.195 0.302 0.189 0.277

Rayleigh-Taylor 0.188 0.257 0.188 0.257 0.184 0.250 0.181 0.243 0.167 0.240

minished in such an extreme case. However, a typical visualization on
large-scale datasets normally requires a reasonable amount of render-
ing time for a high-quality rendering result, our proposed prefetching
algorithm can help improve the responsiveness of such a visualization
system.

4.6.4 Sampling Density of cPOVs
We also investigate how the number of cPOVs, sampled on the prefetch-
ing range contour, would impact the overall performance of Rmd-
nCache. We increase the number of cPOVs from 0, where no cPOV
are sampled, to 120 and measure the average miss rate and the average
input latency of RmdnCache, as shown in Fig. 19. When no cPOVs are
sampled, RmdnCache shows suboptimal performance in terms of both
average miss rate and average input latency. In this case, RmdnCache
operates similarly to the LSTM method, where only one predicted POV
is used to derive a single-point coverage of microblocks, resulting in
insufficient prefetching. RmdnCache delivers better results when more
sampled cPOVs are included, allowing it to retrieve more prefetching
microblocks through multiple point coverages. However, as the number
of cPOVs increases, RmdnCache’s performance becomes suboptimal
again due to the overhead of combining too many point coverages.
This overhead grows proportionally with the number of cPOVs and
consumes a considerable amount of precious prefetching time budget
as too many cPOVs are included. This also causes insufficient prefetch-
ing due to the limited time available for prefetching operations. It is
hard to select one single number of cPOVs for different datasets. And
the guideline is to find the local minima of the miss rate from the U
shape relationship between the average miss rate/input latency and the
number of cPOVs.

5 DISCUSSION

From the results, we observed that the trained RmdnCache model
performs well on exploratory trajectories, including ones from new
users on unseen volumes. We try to explain such an observation here.
The shape of an exploratory trajectory is related to several factors: 1)
A volumetric dataset itself will affect trajectories for exploration as
different volumes will have distinct spatial features. 2) Data-dependent
operations, such as transfer functions or query-based visualization, will
likewise change the final visualization, leading to subsequent alterations
in a user’s points of interest. 3) Users with diverse backgrounds and
learning preferences will also shape the manner in which they interact
with a dataset. We utilize two popular 3D trajectory metrics in robotic
path planing [12,39,62], length and smoothness, to measure the distance
between trajectory in feature space. Please refer to the appendix for
their detailed definitions. Fig. 20 shows the 4 testing trajectories and
all training trajectories used to derive the training data. We can observe
that all trajectories globally are distinct from each other. As a result, it
is infeasible to train from and predict global trajectories directly.

However, how our model works is to predict the next POV from a
brief sequence of preceding POVs locally, rather than considering the
whole trajectory globally. The optimal size of such sequence is as small
as 3, which is also the window size of the input sequence of the LSTM



(a) (b)

(c) (d)

Fig. 18: Examine the differences between LRU and different prefetching
algorithms regarding early stop counts (a), average miss rate (b), average
caching time (c), and average input latency (d), as prefetching time
budget (rendering time) increases.

(a) (b)

Fig. 19: Miss rate and input latency performance of RmdnCache using a
different number of sampled cPOVs on testing dataset 1.

model followed by the MDN model as discussed in Sec. 4.5. As a result,
our predictive model is working on a very short local segment of the en-
tire trajectory. While different volumes, users, and data operations will
inevitably influence an exploratory trajectory, the local dynamics within
a short sequence of POVs still adhere to the spatial variations captured
by the trained parameters of the predictive model. This is because only
three view-dependent operations (rotating, zooming, and panning) are
involved in generating the local sequences. Another reason is that the
user’s exploration time series exhibits correlation within the spatial
domain without random jumps in space. For instance, the location of a
given POV within a trajectory tends to be correlated with its preceding
POVs in terms of both distance and direction. As a result, the position
of the POV is not far from its preceding POV, and its angle aligns with
the directional trend observed in the preceding POV sequence. This
assumption can be proved from Fig. 21a to Fig. 21d where sequences
generated from each testing trajectory are closer to each other, and they
form a distribution with a maximum likelihood (distribution mode) in
the feature space. Fig. 21e contains all the training sequences derived
from our training trajectories together with the mode of the four testing
sequence distributions. From the figure, we can observe that the testing
sequences are comparable with the training sequences, so the features
of testing sequences can be learned from training sequences. We can
conclude that even though the training sequences come from the tra-
jectories of different users exploring different volumetric datasets, the
RmdnCache can still effectively learn the parameters to predict the
sequences for new users exploring unseen volumetric datasets.

6 CONCLUSION

We present RmdnCache, a prefetching neural network that improves the
efficiency of microblock prefetching in interactive large-scale volume
visualization using a multi-resolution visualization framework. We have
developed a deep learning network model that more accurately predicts

Fig. 20: Distribution of testing and training trajectories in feature space.

(a) Sequences of testing trajectory 1 (b) Sequences of testing trajectory 2

(c) Sequences of testing trajectory 3 (d) Sequences of testing trajectory 4

(e) All training sequences and modes of each testing sequence distribution

Fig. 21: Distribution of testing and training sequences in feature space.

the location of the next POV and its prefetching range by training
it on representative datasets that record users’ exploration patterns.
We have optimized the network’s key hyperparameters to enhance its
performance. To demonstrate the effectiveness of our approach, we
compared it to existing state-of-the-art prefetching algorithms relevant
to our problem. RmdnCache achieved the lowest cache miss rate
and overall input latency, resulting in a responsive and interactive
visualization experience for large-scale volumetric datasets. We view
this work as an effort to enhance data visualization performance on
edge devices with limited computational capabilities through efficient
deep learning-based prefetching. In the future, we aim to explore other
seq2seq models like the bidirectional LSTM and Transformer with
self-attention layers, to identify the network architecture that performs
best in 3D visualization use cases. Additionally, we plan to redesign the
network for end-to-end training to streamline the training and inference
process. We also intend to conduct a more detailed study on the global
and local behaviors of user explorations and their impacts on predictive
model designs and performance.
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