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Abstract—Approximate Nearest Neighbor (ANN) search has
become a fundamental operation in numerous applications,
including recommendation systems, computer vision, and natural
language processing. The advent of Large Language Models
(LLMs) arouses new interest in developing more efficient ANN al-
gorithms, which will be the core functionality of vector databases
as long-term memory of LLM. Multiple types of index structures,
such as hashing-based, tree-based, and quantization-based, have
been developed for ANN, and recently, graph-based algorithms
have become the SOTA paradigm with the best trade-off between
recall rate and query latency. However, almost all the existing
graph-based index structures can only be hosted in memory due
to the otherwise frequent I/O operations during searching if
the graph-based index is stored on disk. The problem follows
that for extremely large datasets, it is infeasible to accommodate
the whole graph-based index in memory, and furthermore, it is
difficult to build the whole index in memory at once. Thus, it is
favorable if the graph-based index can be stored purely on disk
and loaded into memory on demand during searching on the
graph. There are existing efforts, such as DiskANN, which try to
store graph-based index structure on disk while still keeping a
compressed version of the dataset in memory to reduce disk I/O
and speed up distance calculation. In this paper, we introduce
LM-DiskANN, a novel dynamic graph-based ANN index that
is designed specifically to be hosted on disk while keeping a
low memory footprint by storing complete routing information
in each node. By conducting extensive experiments on multiple
benchmark datasets, we demonstrate that LM-DiskANN achieves
a similar recall-latency curve while consuming much less memory
compared with SOTA graph-based ANN indexes. Furthermore,
its scalability and adaptability make it a promising solution for
future big data applications.

Index Terms—Approximate Nearest Neighbor, Graph Index,
Memory Footprint

I. INTRODUCTION

The nearest neighbor search problem is centered around
developing an efficient index structure and affiliated algorithms
that can swiftly pinpoint the k nearest neighbors (KNN) to
any given query point within a specific dataset. This chal-
lenge is a cornerstone in the field of algorithm research and
finds its utility in various domains, such as computer vision,
document retrieval, and recommendation systems. In these
contexts, items like images, documents, or user profiles can
be mapped into a high-dimensional embedding space, and
their similarities can be represented as the distances between
their respective embeddings. Recent advancements in Large
Language Models (LLMs) demonstrate powerful reasoning

capabilities while still presenting problems such as hallucina-
tion; that is, LLMs can generate fake answers that may look
plausible. To solve this problem, it is natural to connect LLMs
with external vector databases [1] storing the embeddings of
“facts”. In this setting, LLMs will act as “brain” and vector
databases will be long-term memory for LLM to search on.
For instance, imagine we need to build a Q&A system for
research papers. The system can first store the embedding of
each paper on a vector database. To answer questions such
as “List recent papers on k nearest neighbor search together
with the link of each paper”, instead of generating fake papers
or links, the system can map the query into the same vector
space of stored papers and search k nearest neighbors of
the query among the paper embeddings. The corresponding
texts of the k nearest neighbors will be potentially appropriate
answers to the question. Recently, application scenarios as
above have aroused new interest in developing more efficient
KNN algorithms, which will be the core component of vector
databases.

However, the rapid growth of dataset sizes and the “curse
of dimensionality” often make it infeasible to locate the exact
nearest neighbors without performing a comprehensive scan of
the data, prompting the adoption of approximate nearest neigh-
bor (ANN) algorithms, which aim to significantly improve
efficiency while slightly relaxing accuracy constraints. These
algorithms aim to optimize recall k-recall@k (the proportion
of actual k nearest neighbors that are successfully retrieved)
while reducing the time taken to search, thereby making a
trade-off between recall and latency. Existing ANN algorithms
can be categorized into four types: hashing-based (such as
Locality Sensitive Hashing [2], [3]), tree-based (such as k-
d trees [4]), quantization-based [5], [6], and graph-based [7],
[8], each with unique index construction techniques and trade-
offs. Recently, graph-based algorithms have become a highly
effective solution for ANN due to their exceptional ability
to express neighboring relationships, which allows them to
evaluate fewer points in the dataset to achieve more accurate
results.

Graph-based ANN algorithms construct a graph index on
the original dataset, where vertices in the graph correspond to
points in the dataset, and neighboring vertices are connected by
an edge. Given this graph index and a query point, ANN aims
to find a set of vertices close to the query. The process involves
selecting a (random or predefined) seed vertex as the starting
point(s) and keeping a set of points as the search front. Then,



the algorithm iteratively updates the search front by replacing
closer neighbors until a termination condition is met. The final
set of points is the nearest neighbors to the query. Compared
to other indexing structures, graph-based algorithms offer a
superior trade-off between accuracy and efficiency, which is
why they are widely adopted by various vector databases or
ANN frameworks.

One problem with current graph-based ANN index struc-
tures is their memory footprint is so large that it is prohibitive
to build and store an in-memory graph index for large datasets
such as those containing more than 1 billion data points.
Though there are existing methods that cluster or divide the
whole dataset into several chunks, build index separately for
each chunk, and host each index structure on a separate node,
the scalability of these methods is usually not as expected,
not to mention the complicated synchronization issue between
memory and disk when the graph index keeps updated due to
data insertion or deletion. Thus, it would be favorable if the
index can be stored purely on disk. There are existing methods,
such as DiskANN [9], which try to store graph-based index
on disk at the expense of still keeping a compressed version
of the dataset (for example, by using the PQ-based product
quantization) in memory to reduce disk I/O and speed up
distance calculation. Nevertheless, the compressed version of
the dataset still incurs a large memory footprint.

The key problem with existing graph-based ANN algorithms
is that each graph node contains incomplete information for
making routing decisions and the vectors of all its neighbors
need to be loaded into memory, which incurs a huge amount
of I/Os during searching. This motivates us to introduce LM-
DiskANN, in which each node keeps complete information
about all its neighbors. That is, for each node, we store a
copy of the PQ-compressed [5] version of all its neighbors,
immediately following the original vector of the node itself.
During searching, the distance between the query point and
all the neighbors can be estimated by calculating the distances
between the PQ-compressed query vector and the neighbors.
Since the PQ-compressed vectors of neighbors can be loaded
into memory at the same time as the vector of the node, we
avoid conducting several random disk accesses. The contribu-
tions of this paper can be summarized as follows:

• We propose LM-DiskANN: an innovative disk-native graph-
based ANN index in which each node stores complete
neighboring information for routing. Total I/O times during
searching will be similar to DiskANN [9] but with a much
lower memory footprint.

• LM-DiskANN incrementally builds graph index and sup-
ports insertion and deletion dynamically.

• Extensive experiments are conducted to demonstrate that
LM-DiskANN outperforms SOTA graph-based ANN in-
dexes in terms of memory footprint while keeping a similar
recall-latency curve.

The rest of the paper is organized as follows: Section
II surveys existing work relevant to our research. Section
III introduces basic notations and exiting work which our

method is based on. Section IV presents the main idea of
our methodology. In Section V, we provide the thorough
experimental results demonstrating the comparison between
our method and other existing methods. Finally, in Section
VI, we conclude the paper by discussing the contributions and
suggesting future directions.

II. RELATED WORK

A. Approximate Nearest Neighbor Search

The problem of Approximate Nearest Neighbor (ANN)
search is fundamental in various domains, including computer
vision, machine learning, and computational geometry. The
goal of ANN search is to find data points in a dataset
that are close to a query point without necessarily finding
the exact nearest neighbor. Over the years, several methods
and techniques have been proposed to address this problem
efficiently.

1) Tree-based Methods: Tree-based structures, such as R-
trees [10], KD-trees [11], M-Tree [12] and Ball trees [13],
have been among the earliest techniques for ANN search.
While KD-trees are efficient for low-dimensional data, their
performance degrades in higher dimensions. Ball trees, on the
other hand, partition data into hyper-spherical regions and can
handle higher dimensions more gracefully.

2) Hashing Techniques: Locality-sensitive hashing
(LSH) [14] is a popular hashing technique for ANN search,
where LSH involves hashing input items in a way that
increases the likelihood of similar items being mapped to
the same buckets. Variants of LSH, including multi-probe
LSH [15] and cross-polytope LSH [16], have been proposed
to improve search efficiency and accuracy. A comprehensive
study [17] revisited various hashing algorithms for ANNS.
Surprisingly, the study found that the random-projection-based
LSH outperformed other state-of-the-art hashing methods,
contrary to claims made in many papers.

3) Quantization Methods: Quantization-based methods,
such as Product Quantization [5] and Optimized Product
Quantization [18], aim to compress the data vectors into
compact codes. These methods allow for efficient storage
and fast distance computation between the query and the
compressed data.

4) Graph-based Methods: Graph-based methods [7]–[9],
[19], [20] construct a graph where nodes represent data points
and edges connect nearby points. These methods offer state-
of-the-art performance in terms of search accuracy and speed.
Recently, there have been ML-based approaches that optimize
for building or searching on graph-based indexes, for example,
by learning node representation to provide better routing [21],
building decision tree models to learn and predict when to
stop searching [22], and learning vector embeddings in lower
dimensional space to preserve local geometry [23]. Wang et
al. have conducted a comprehensive survey and comparison
of the recent graph-based ANN algorithms [24].

5) Hybrid Methods: Some recent works have combined
multiple techniques to achieve better performance. For in-
stance, Douze et al. [25] proposed a method that combines



quantization with graph-based search, while Dong et al. [26]
integrated LSH with neural network embeddings.

B. Learned Database Index

Several works have explored the use of machine learning
techniques to improve the performance of databases, with a
particular focus on indexing structures. The Case for Learned
Index Structures [27] argues that learned indexes can outper-
form traditional indexing structures by learning the underlying
distribution of the data and adaptively optimizing the index
structure. The ML-Index [28] and Learned Index for Spatial
Queries [29] both propose learned indexing structures that
improve the efficiency of range and spatial queries, respec-
tively. Shift-Table [30] proposes a learned indexing structure
for range queries using model correction to reduce the latency
of the indexing process. ALEX [31] proposes an updatable
adaptive learned index that can be updated in real-time, while
Updatable Learned Index with Precise Positions [32] proposes
an indexing structure that can maintain precise positions of
the indexed elements. AI Meets Database [33] and Learning a
Partitioning Advisor for Cloud Databases [34] both explore the
use of machine learning to optimize the performance of cloud
databases, while An Index Advisor Using Deep Reinforcement
Learning [35] proposes an index advisor that can recommend
the best index structures based on the workload and data
distribution.

To handle complex queries over high-dimensional data, sev-
eral works have proposed multi-dimensional indexing struc-
tures. Learning Multi-dimensional Indexes [36] provides a
comprehensive overview of various approaches to designing
learned indexes for multi-dimensional data, including parti-
tioning and adaptive indexing.

Finally, several works propose specific indexing structures
exploiting correlations between dimensions (columns). Cor-
relation [37] provides a compressed access method for ex-
ploiting soft functional dependencies in column correlations,
while Designing Succinct Secondary Indexing Mechanism
by Exploiting Column Correlations [38] proposes a machine
learning approach to exploiting column correlations to improve
secondary indexing. LISA [39] proposes a learned index
structure for spatial data that also exploits spatial correlations
to optimize the indexing structure.

Overall, the research on machine learning for database in-
dexes has shown great promise in improving the performance
and efficiency of database management systems, and the
specific approaches proposed in these papers provide useful
insights and techniques for designing more effective indexing
structures and optimizing database performance.

III. BACKGROUND

In this section, we will introduce the notations of the
problem and existing work on which our work is based.

A. Notations

For the convenience of our discussion in the following
sections, we first introduce the notations as in Table I.

TABLE I: Notations of Symbols.

Symbols Meaning
P Vector dataset
G Graph index G = (P,E) in which E is the set of connections
R Degree of the graph G
p Index node p ∈ P
p∗ Nearest neighbour
d(, ) Distance metric on the vector space

Nout(p) Outbound neighbours of node p
q Query target
V Set of visited node during search
L Set of candidate set during search
L Size limit of L
α Distance threshold in Generalized Sparse Neighborhood Graph

B. Best First Search (BFS)

Almost all graph-based ANNS algorithms adopt certain
types of greedy routing strategies, including best first search
(BFS) and its variants [24]. During BFS, a starting node s is
first seeded, and then the algorithms will iteratively approach
the target vector q in which the nearest node to q at each step
is visited, and all its neighbors are added to a search front.
In Figure 1, we differentiate different sets of nodes by colors.
The green node is the starting node s, and the red node is the
query target q. The black nodes are the ones that used to be in
the search front, and the blue nodes are those visited. Note all
the blue nodes also used to be in the search front. The nodes
in the red dotted circle are the 4 nearest nodes in the search
front when the search stops. Once a blue node is visited, all its
neighbors are added to the search front. Since the size of the
search front has a pre-defined bound, BFS will converge once
all the nodes in the search front have been visited. It turns
out that BFS can successfully balance accuracy and efficiency
when the graph index is built properly.

Fig. 1: Visualization of a search path.

C. Generalized Sparse Neighborhood Graph (GSNG)

In the early days of ANN research, researchers wanted
to find appropriate sparse graphs while keeping enough con-



nectivity to navigate using greedy search paradigms such as
BFS. One of the suitable properties [40], [41] is the Sparse
Neighborhood Graph(SNG) in which a connection exists if
and only if it is not the longest edge in any triangles. Or more
rigorously, for any index node p that has a neighbor p′, there
will be no edge between p and p′′ if d(p′, p

′′
) ≤ d(p, p

′′
)

for any other node p
′′

. Essentially, this property reduces the
number of edges as much as possible, but each node still
connects to its nearest neighbors. The conclusion follows that
BFS can always converge to the nearest neighbors on SNG.
While this property is promising in many cases, the lack of
long-range connections makes this type of graph not quite
efficient for navigation.

Hence, researchers have proposed the Generalized Sparse
Neighborhood Graph (GSNG), in which long-range connec-
tions are preserved to some extent, and a trade-off between
sparsity and navigability is achieved. GSNG generalizes SNG
by stating that for any index node p which has a neighbor p′,
there will be no edge between p and p′′ if α × d(p′, p

′′
) ≤

d(p, p
′′
), in which α ≥ 1. If α is larger, more long-range con-

nections will be preserved. It turns out GSNG is a promising
property that increases the efficiency of BFS on index graphs.

IV. LM-DISKANN

In this section, we will introduce each of the core algorithms
of our method. Our method is based on DiskANN [9] and
FreshDiskANN [20]. DiskANN is based on a new graph-based
indexing algorithm called Vamana, a static graph index in
which the index is built at a time and can not be changed
further in the future. FreshDiskANN is built on DiskANN,
which dynamically modifies the index as new nodes come in
or existing nodes get removed. FreshDiskANN spends much
effort to reduce memory footprint and synchronize in-memory
data structures and on-disk index. Since our method has a low
memory footprint and is mainly on disk, and since our research
purpose is to test the impact of removing all the in-memory
vectors, we only keep the essential part of FreshDiskANN.
Thus, our method can be considered a dynamic version of the
DiskANN, and the methods of search, insert, and delete need
to be modified accordingly.

A. Layout of Augmented Index Node on Disk

For each node, we store the compressed vectors of all
the neighbors immediately following the neighbors’ IDs. The
layout of each node is illustrated in Figure 2. Each node
starts with its ID, then its vector, and then all the neighbor
IDs. If the number of neighbors is less than the maximum
number of neighbors, the remaining space is padded with 0s.
Each node ends with the compressed vectors of neighbors,
also followed by padding if the number of neighbors is less
than the maximum number of neighbors. For instance, we use
the dataset SIFT1M for evaluation. SIFT1M has 128 for each
data point, and our experiment sets the maximum number of
neighbors equal to 70, so the size of each index node for
SIFT1M is (1 + 128 + 70 + 70× 8)× 4 = 3036 bytes. Thus,
each node can be fit into a single 4KB page, and it is not more

Fig. 2: Layout of our augmented index node on disk.

expensive to load our augmented node than the original node.
This is the fundamental reason why our method works.

B. LM-Search

Search is the core functionality of an ANN index. Vamana
uses the original best-first search algorithm, and since our
method is built upon Vamana, we also use the original BFS.
The only difference is that during a search, our method
retrieves the neighborhood information from the node itself
rather than from a separate in-memory array of vectors.

The search function accepts the graph index G, query vector
q, maximum candidate set size L, and result size k. To start
each search, our method randomly samples a node from the
index as the starting node and initializes the candidate list L
as containing the starting node s. The algorithm also keeps a
set of visited nodes V . A distance map D is also initialized
with D(s) = d(s, q), in which d(s, q) is the distance from
s to q. In each iteration of the search algorithm, the current
nearest unvisited node p∗ from the query vector q is retrieved
from the candidate list, and all its neighbors are inserted into
the candidate list. If the size of the resulted neighbor list is
larger than L, the candidate set is trimmed to keep only the
L closest neighbors to the query vector q.

Since our method uses an augmented node containing the
complete neighboring information as illustrated in Figure 2,
the distance map D is calculated based on the compressed
vectors unless the node is visited and its distance from the
query is updated. The efficiency of our method is not much
different from the original implementation. When there is no
more unvisited node in the candidate list, the search process
converges and returns the closet k nodes in the candidate
set, together with all the visited nodes. The latter is returned
because it will be used incrementally when building the graph
index. It is easy to see that the convergence efficiency of
the search depends heavily on the value of L: the larger L
is, the more time the search process will take more steps to
converge. Also, convergence efficiency depends on the scale of
the graph G, if there are more nodes in the graph, it will take
longer to converge. We will also prove this in our experiments.
Algorithm 1 illustrates the detailed pseudocode.

C. LM-Insert

Our index supports dynamic updates by providing LM-
Insert. The insert method is also used to build the graph index
from scratch. LM-Insert accepts the graph index G and the
node to insert p. After the method returns, the graph index will
contain a new node p and also satisfy the GSNG property. The
method first searches the nearest neighbor of p in the graph
index G and gets the set of visited nodes L. Then, all the nodes
in L are inserted into the neighbors of p, followed by a pruning
process. Reversely, p is also inserted in the neighbor list of



Algorithm 1: LM-Search(G,q,L,k)
Input: Graph index G, query vector q, maximum

candidate list size L, result size k
Output: k nearest neighbours of query data point q

1: begin
2: s ← randomly select from index nodes
3: V ← ∅
4: L ← {s}
5: D = {s : d(s, q)}
6: while L\V ̸= ∅ do
7: p∗ ← argminp∈L\V D(p)
8: L ← L.insert(Nout(p

∗))
9: foreach neighbor n in Nout(p

∗) do
/* Estimate the distance from

each neighbour n to q by
using its compressed vector
from p∗ */

10: D.insert(n : d(p∗.n, q))
11: end
12: V ← V.insert(p∗)

/* Now update the distance from
p∗ to q by its original vector

*/
13: D(p∗) = d(p∗, q)
14: if |L| > L then
15: L ← L cloest nodes in L
16: end
17: end
18: return k cloest nodes in L ; V
19: end

each of its neighbors, followed by a pruning process. Adding
connection in both directions and pruning will guarantee the
updated graph G’s connectivity and its GSNG property.

If LM-Insert is used to build the graph index from scratch,
we can expect the neighbors of exiting nodes to be continu-
ously modified as a new node comes in. Since LM-Insert relies
on LM-Search, we can also expect its latency will increase
steadily as the graph index grows. Algorithm 2 shows the
detailed pseudocode of LM-Insert.

D. LM-Delete

To support dynamic updates, we also need to support
deleting nodes. The method LM-Delete accepts graph index
G and the node to delete p as augments. The result of running
this procedure will be a graph index G without p, which
still satisfies GSNG property while keeping connectivity as
much as possible. The method first marks node p as deleted
and then tries its best to fix the broken paths resulting from
the deletion. For each of the original neighbors of p, all the
other neighbors will be connected to it, followed by a pruning
process. Algorithm 3 details the pseudocode of LM-Delete.

Algorithm 2: LM-Insert(G,p,L)
Input: Graph index G, node to insert p
Output: A new instance of the graph index G

containing newly inserted node p while
satisfying GSNG property.

1: begin
/* Search p in G, get nearest

neighbour p∗ and all the visited
nodes during search: V. We also
assume graph index G has
defined its candidate set size L

*/
2: [p∗;V]← LM-Search(G, p,G.L, 1)
3: Nout(p)← Nout(p) ∪ V
4: LM-Prune(G, p,G.α,G.R)
5: foreach Node n in Nout(p) do
6: Nout(n)← Nout(n) ∪ p
7: LM-Prune(G,n,G.α,G.R)
8: end
9: end

Algorithm 3: LM-Delete(G,p)
Input: Graph index G, node to delete p
Output: Graph index G with p removed while still

satisfying GSNG property.

1: begin
2: Mark p as deleted

/* Fix broken paths while keeping
GSNG property. */

3: foreach Neighbour n in Nout(p) do
4: Nout(n)← Nout(n) ∪Nout(p)\n
5: LM-Prune(G,n,G.α,G.R)
6: end
7: end

E. LM-Prune

In Section IV-C, the insert method calls the function of
neighbor prune. When the number of neighbors exceeds the
predefined maximum number of neighbors, a neighbor prun-
ing process will be triggered automatically. This process is
designed to guarantee that the index graph satisfies the gen-
eralized sparse neighborhood graph(GSNG) property, which
keeps a balance between graph sparsity and connectivity.

The method accepts the index graph G, a node p, the
neighbors of which we want to prune, a distance threshold α,
and the maximum number of neighbors R in the graph index.
We first initialize the candidate set C with the current neighbors
of p, that is Nout(p), and clear all the current neighbors. The
pruning process runs in an iterative fashion, in which each
step finds the nearest node p∗ in the candidate set C, adds it
to the neighbors of p, and then removes all the nodes p′ in
Nout(p), which satisfies α× d(p∗, p′) ≤ d(p, p′). Our method



Algorithm 4: LM-Prune(G,p,α,R)
Input: Graph index G, node p, candidate set C,

distance threshold α and maximum node
degree R

Output: p has new neighbours which makes G
satisfies the GSNG property

1: begin
2: C ← C ∪Nout(p)\{p}
3: Nout(p)← ∅
4: while C ̸= ∅ do

/* Calculate the distance from p′

to p by using the compressed
vector in augmented node p

*/
5: p∗ ← argminp′∈L\V d(p.p′, p)

6: Nout(p)← Nout(p).insert(p
∗)

7: if |Nout|(p)| ≥ R then
8: break
9: end

10: foreach p′ in C do
/* Calculate the distance from

p′ to p∗ by using the
compressed vector in
augmented node p */

11: if α ∗ d(p.p∗, p′) ≤ d(p, p.p′) then
12: remove p′ from C
13: end
14: end
15: end
16: end

of neighbor prune is different from the implementation of
Vamana in that the neighbors are stored in augmented node p,
and we do not need in-memory auxiliary arrays to calculate
the distance from the candidate nodes and p and also the
distance between each pair of the candidate nodes. Again,
the efficiency of our method is not much different from the
original implementation. Algorithm 4 provides the detailed
pseudocode.

F. Search Efficiency and I/O

As we see in Section IV-B, given a starting node s and a
query point q, when we call LM-Search(), a set of nodes is
visited, and an extra set of nodes is added into the candidate
set L (or search front). Recall in Figure 1, all its neighbors
are added to the search front when a blue node is visited.
Also, their distances to the query p are needed for determining
the next visited node. Thus, when Vamana implements Best
First Search(BFS) on a disk-based index, essentially all the
black and blue nodes need to be loaded into memory, which
incurs a significant amount of random I/Os. Vamana attempts
to mitigate this problem by storing a compressed copy of all
the vectors in memory, and then it only needs to load blue
nodes. Our method addresses this problem in an alternative

TABLE II: Datasets used in Experiments.

Dataset Dimensions Train Size Test Size Neighbors∗ Distance
SIFT1M [5] 128 1,000,000 10,000 100 Euclidean
GIST1M [5] 960 1,000,000 10,000 100 Euclidean

DEEP1M [42] 96 1,000,000 10,000 100 Angular
∗Pre-calculated KNN in Ground Truth.

way where, instead of keeping in-memory arrays of vectors,
we augment each on-disk node by appending the compressed
vectors of neighbors for each node right after the information
of the node itself. When a blue node is visited and loaded
into memory, all its neighboring information is loaded together
within one I/O. Therefore, the search efficiency is not sacri-
ficed at the expense of more disk consumption.

V. EXPERIMENTS

In this section, we compare our proposed method with
the original DiskANN, which is the SOTA disk-native ANN
algorithm. We compare the two algorithms in terms of recall-
latency curve and memory consumption on different datasets.

A. Experiment Configurations and Dataset

We use Google Cloud E2 virtual instance with 8 vcpu (4
cores), 32GB RAM and 1TB SSD as the machine setups for
our experiments.

Throughout our evaluations, we use public benchmark
datasets as shown in Table II. The attributes for each dataset
are also listed in the table. Each dataset is divided into two
partitions: a training set and a test set, in which the training
set is used to build the graph index and the test set for queries.
Each training set contains 1 million data points. For the test
set, each dataset contains 10 thousand data points and provides
pre-calculated results for the exact K Nearest Neighbor Search
up to K=100.

For a fair comparison, we implement our own version of
Vamana in Python by strictly following the algorithms as in
[9]. Since the original Vamana is essentially a static index that
is built once and can not modified afterward, we adapt it to
a dynamic index [20]. Thus, in this way, we can compare it
with our method in a more convenient way. For both Vamana
and our method and for all the datasets, we use the optimal
parameter settings: R = 70, L = 75, α = 1.2, and W = 2 to
build the index. For the Vanama implementation, we build a
PQ 32-byte codebook [5] using 10,000 points in the test set,
given the data distribution of the test set is similar to that of
the train set. Thus, the codebook can be used interchangeably
between the two.

After 1 million data points from the train set are inserted, we
query 10 thousand data points from the test set, and then we
delete these 10 thousand points. We measure latency, accuracy,
and space consumption throughout the whole process. We
present the results in the following subsections.

B. Index Building Time

We first measure the index-building time after 1 million data
points from the train set are inserted into the index. From Table



(a) Incremental building time for SIFT1M (b) Incremental building time for GIST1M (c) Incremental building time for DEEP1M

Fig. 3: Building time per node as the function of inserted node numbers.

(a) Latency vs. recall curve for SIFT1M (b) Latency vs. recall curve for GIST1M (c) Latency vs. recall curve for DEEP1M

Fig. 4: Latency vs. recall comparison for all three datasets.

(a) Recall vs. L for SIFT1M (b) Recall vs. L for GIST1M (c) Recall vs. L for DEEP1M

Fig. 5: Recall for different candidate size L.

TABLE III: Index Building Time.

Algorithm SIFT1M GIST1M DEEP1M
Vamana 2329s 29743s 2078s

LM-DiskANN 2467s 31951s 2182s
∗All the statistics correspond to peak index sizes on disk.

III, we can see our implementation of Vamana takes more
time than reported in the original paper, for we use Python
instead of C++ as in the original implementation, and we
use incremental building process rather than batch building.
We can also see the index building time of our method is
slightly longer than that of Vamana because our method needs
to store all the neighboring information on disk when a new
node is inserted. GIST1M consumes much more construction
time than the other two datasets for both Vamana and our
method. This is because the data distribution of GIST1M is
more complex and takes more steps to converge than the other

TABLE IV: Deletion Latency.

Algorithm SIFT1M GIST1M DEEP1M
Vamana 47ms 56ms 50ms

LM-DiskANN 45ms 58ms 44ms

two datasets.

We sample the node insertion time every 200,000 nodes
when building the index. The sampled data is plotted in
Figure 3. Our method takes slightly more time to insert each
node than Vamana, and the insertion time increases when the
number of inserted nodes grows. This is not surprising because
when building the index incrementally, it takes more time to
search the appropriate neighbors for the newly inserted node
as the index grows bigger. GIST1M takes way more time than
the other two at all stages, roughly 1 magnitude longer.



TABLE V: Memory Consumption.

Algorithm SIFT1M GIST1M DEEP1M
Temporary Permanent Total Temporary Permanent Total Temporary Permanent Total

Vamana 59K 16000K 16059K 309K 16000K 16309K 49K 16000K 16049K
LM-DiskANN 227K 4040K 4267K 477K 4040K 4517K 217K 4040K 4167K
∗All the statistics are peak memory consumption.

C. Recall-Latency Curve

After all the 1 million vectors from the train set are inserted
into the index, we query the 10 thousand vectors from the
test set one by one and record the average query latency
and 10-recall@10. We repeat this process for different L, that
is, adjust the candidate set size for searching and check the
impact of searching complexity (represented by L) on the
query latency and accuracy. The results for all three datasets
are plotted in Figure 4. We can see that, for all three datasets,
our method performs almost the same as Vamana. This is
also not surprising because we adopt a similar algorithm as
Vamana. Our method performs slightly worse because, during
the search, we need to load complete routing information for
each node, which incurs slightly larger I/O overhead. But our
method achieves a similar latency vs. recall curve with much
less memory footprint.

Figure 5 illustrates the impact of different choices of can-
didate set size L on 10-recall@10. Starting from L = 60, we
sample different values of L at the step of 20 until L = 200 is
reached. In essence, when L increases, we increase the chances
the correct nearest neighbors will be captured and thus increase
the time steps of query convergence. We can see when L = 60,
the 10-recall@10 on all the datasets is around 0.5. Remember
that we use L = 70 for index building. Thus, this means if we
continue to use the relatively small value of L, there will be
a quality degeneration when the index continues expanding.
Therefore, it is expected we use a larger value of L as the
index grows. Further research is required on how L should be
increased as the function of the volume of the index.

D. Deletion Latency

As our method supports dynamically updating the index,
after 10K test vectors are queried on the index, we further
insert 10K vectors from the test set and delete them one by
one. The average deletion latency is recorded in Table IV.
We can see the deletion latency does not vary much among
different datasets. This is because, unlike insertion, which
needs to search on the index first, deletion only needs to
stitch the hole made from the removed node. The deletion
on GIST1M is slightly larger, this is probably due to the more
dense connectivity of this dataset. Thus, more nodes have the
maximum number of neighbors, and the deletion has more
neighbors to fix.

E. Memory Consumption

We measure and compare memory consumption for Vamana
and our method on all the datasets. When discussing memory
consumption, we often refer to the size of heap usage in

the memory. In the context of ANN, heap usage can be
further divided into two components: temporary heap usage
and permanent heap usage. The former is the heap consumed
in the course of searching, inserting, or deletion, the majority
of which is determined by the candidate set size in searching
a query. The latter is the size of the consistently occupied
heap throughout the manipulation of the graph index, which
is dominated by the size of auxiliary data structures such
as arrays of PQ-compressed vectors for Vamana and the set
of IDs of all the nodes for our method. Table V lists the
peak usage of the temporary heap and the permanent heap
and also calculates the total peak usage of the two parts.
The “peak” case usually happens when the index is fully
loaded with all the data from the train and test sets. From
the table, we can see for all three datasets, Vamana consumes
less temporary heap than our method, but in turn, consumes
a much more permanent heap. Therefore, our LM-DiskANN
method consumes only roughly one-quarter of the memory
usage of Vamana in total. This is because our method keeps the
complete neighboring information for each node and removes
the need to keep a separate compressed version of all the
vectors in memory.

F. Index Size on Disk

For a fair comparison, we also calculate the peak index
size on disk, which happens when both the train and test
sets are stored in the index. Table VI lists the disk usage
for both methods and the three datasets. We can see our
method requires more disk space than Vamana. This is because
we need to store the complete routing information for each
node, which brings more redundancy. For datasets with higher
dimensions, our method requires less extra disk space than
those with lower dimensions. For GIST1M, we only need 50%
more disk space than Vamana, but for the other two, we need
300% more disk space. In essence, our method trades disk
consumption for memory footprint, which may become a wise
choice when the dataset grows large.

TABLE VI: Index Size on Disk.

Algorithm SIFT1M GIST1M DEEP1M
Vamana 799M 4161M 670M

LM-DiskANN 3030M 6423M 2933M
∗All the statistics are peak index sizes on disk.

VI. CONCLUSION

In this paper, we have addressed the challenges associated
with Approximate Nearest Neighbor (ANN) search. The pri-



mary challenge we identified is the memory-intensive nature
of existing graph-based ANN index structures, which becomes
prohibitive for large datasets. Our solution, LM-DiskANN,
offers a novel approach to this problem by designing a disk-
native graph-based ANN index that stores complete neighbor-
ing information for routing at each node, thereby significantly
reducing the memory footprint.

Our approach diverges from existing methods by eliminat-
ing the need for multiple random disk accesses during the
search process. Instead, LM-DiskANN ensures that when one
data point is loaded into the main memory, its neighbors are
likely loaded together in one block I/O. This innovative design
not only optimizes the search process but also supports dy-
namic insertion and deletion, making it adaptable to evolving
datasets.

Through rigorous experimentation, we have demonstrated
that LM-DiskANN stands out in terms of memory efficiency
while maintaining a competitive recall-latency curve, compara-
ble to state-of-the-art graph-based ANN indexes. This balance
between efficiency and performance underscores the potential
of LM-DiskANN as a promising solution for future big data
applications, especially in scenarios that involve integration
with LLMs.

As the field of algorithm research continues to evolve, and
as datasets grow in size and complexity, the need for efficient
and scalable solutions like LM-DiskANN becomes ever more
critical. We believe that our contributions in this paper pave
the way for further innovations in the domain of on-disk ANN
search.
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