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Abstract
High-throughput genotyping coupled with molecular breeding approaches have dra-

matically accelerated crop improvement programs. More recently, improved plant

phenotyping methods have led to a shift from manual measurements to automated

platforms with increased scalability and resolution. Considerable effort has also gone

into developing large-scale downstream processing of the imaging datasets derived

from high-throughput phenotyping (HTP) platforms. However, most available tools

require some programming skills. We developed PhenoImage, an open-source graph-

ical user interface (GUI) based cross-platform solution for HTP image processing

intending to make image analysis accessible to users with either little or no program-

ming skills. The open-source nature provides the possibility to extend its usability

to meet user-specific requirements. The availability of multiple functions and filter-

ing parameters provides flexibility to analyze images from a wide variety of plant

species and platforms. PhenoImage can be run on a personal computer as well as

on high-performance computing clusters. To test the efficacy of the application, we

analyzed the LemnaTec Imaging system derived red, green, and blue (RGB) color

intensity and plant pigmentation-based fluorescence shoot images from two plant

species: sorghum [Sorghum bicolor (L.) Moench] and wheat (Triticum aestivum L.)

differing in their physical attributes. In the study, we discuss the development, imple-

mentation, and working of the PhenoImage.

1 INTRODUCTION

In the genomics and post-genomics era, technological

advances in sequencing platforms have paved the way

Abbreviations: CPU, central processing unit; GI, greenness index; GUI,

graphical user interface; HCA, hierarchical clustering analysis; HTP,

high-throughput phenotyping; HPC, high-performance computing; HSV,

hue, saturation, and value; IDs, identifications; PSA, projected shoot area;

RGB, red, green, and blue; ROI, region of interest; WHC, water holding

capacity; WL, water-limited treatment; WW, well-watered treatment.
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for high throughput genotyping (Furbank & Tester, 2011;

Jackson et al., 2011). These developments coupled with

molecular breeding approaches have enhanced the genetic

understanding of plants, which has dramatically progressed

the crop-improvement efforts (Moose & Mumm, 2008;

Tester & Langridge, 2010; Varshney et al., 2009). However,

precise and efficient phenotyping has been a challenge

(Furbank & Tester, 2011). To tackle this problem, plant

phenotyping technologies have achieved a huge leap in recent

times—the shift from laborious and error-prone manual
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measurements toward automation (Fiorani & Schurr, 2013;

Gong & He, 2014). Automated imaging-based platforms

have tremendously enhanced our ability to record a plant’s

physical and physiological attributes in a non-invasive man-

ner. Despite these advances, phenotyping technologies still

trail developments on the genomics front, especially the rate

at which the phenotypic data is generated (Furbank & Tester,

2011; Gehan et al., 2017; Houle et al., 2010; Minervini

et al., 2015; Sandhu et al., 2019). The major limit is not

the ever-evolving sophisticated instrumentation for image

capturing but with the downstream processing of large-scale

phenotypic data, which is not easily accessible to many plant

biologists.

High-throughput phenotyping (HTP) imaging platform

refers to the accurate acquisition and analysis of multidi-

mensional traits at the individual plant level in the context

of this work (Yang et al., 2020). It is no surprise, these

platforms generate a diversity of images corresponding to

different light spectra such as RGB, near-infrared, plant

pigmentation-based fluorescence, and hyperspectral. Thus,

terabytes of digital information can be routinely generated

through an imaging experiment. Currently, the website

www.plant-image-analysis.org documents 179 image soft-

ware tools (Lobet et al., 2013). Availability and usage of some

of these tools are being restricted and adhere to proprietary

rights, for instance, LemnaGrid-Scanalyzer3D by LemnaTec

GmbH, Germany. On the other hand, several open-source

tools designed for specific applications, ranging from cell to

whole canopy analysis, are readily accessible in the public

domain (Lobet et al., 2013). In addition to their broader

functionalities, these have also opened new avenues to

integrate third-party algorithms. Examples include HTPheno

(developed as a plugin for ImageJ) (Hartmann et al., 2011),

Plant Computer Vision or Plant CV (a community-based

toolkit for plant phenotyping analysis) (Fahlgren et al.,

2015; Gehan et al., 2017), Integrated Image Platform or

IAP (Klukas et al., 2014), and Image Harvest (Knecht

et al., 2016). Despite their power and flexibility, these tools

may require some proficiency with programing language

as a pre-requisite to process large-scale datasets. This is

a challenge for many biologists with limited or no coding

skills.

The availability of several affordable automated and semi-

automated phenotyping platforms has increased their usage to

score the traits of interest (Klukas et al., 2014; Li et al., 2014).

Keeping this view in mind, we developed PhenoImage—

an open-source, graphical user interface (GUI)-based cross-

platform solution for large-scale data processing—which is

not only convenient to use but highly precise and effective

at the same time. The intuitive nature of the application will

allow plant scientists with little or no knowledge of program-

ming language to process phenotypic dataset on their personal

computers. In addition, the application can facilitate paral-

Core Ideas
∙ PhenoImage is an application for analyzing images

derived from high-throughput phenotyping.

∙ Using the tool, users can access image analysis

with little or no programming skills.

∙ The open-source nature provides the possibility to

further extend its usability.

lel processing of large-scale image data on high-performance

computing clusters. To test the efficacy of the application,

we analyzed the LemnaTec Imaging system-derived RGB and

plant pigmentation-based fluorescence images from sorghum

[Sorghum bicolor (L.) Moench] and wheat (Triticum aestivum
L.), which differ in their physical attributes. The availability of

multiple functions and filtering parameters provides flexibil-

ity to analyze a wide variety of plant species. Images acquired

from other phenotyping platforms or handheld devices can

also be processed using PhenoImage.

2 MATERIALS AND METHODS

2.1 PhenoImage workflow

PhenoImage is a MATLAB-based application, i.e., compat-

ible with multiple operating systems. The software is avail-

able in two versions, a regular version that requires MAT-

LAB license and a standalone version that uses “MATLAB

Compiler Runtime” and does not necessarily require a MAT-

LAB license for its operation. Both versions can be down-

loaded from http://wrchr.org/phenolib/phenoimage. The same

GUI application can support image data processing on a sin-

gle central processing unit (CPU) and parallel processing on

high-performance computing (HPC) clusters.

2.2 Software development and
implementation

The GUI for high throughput image analysis is based on

MATLAB. The summary of image processing workflow of

PhenoImage includes (a) file loading, (b and c) image crop-

ping and filtering, (d) digital trait extraction using specific

functions (based on the user’s requirement), and (e) followed

by image processing either on a local machine or HPC

clusters (Figure 1). We have provided a step-by-step guide

to use PhenoImage (see the PhenoImage Guide Document

Supplemental file).

http://www.plant-image-analysis.org
http://wrchr.org/phenolib/phenoimage
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F I G U R E 1 PhenoImage workflow. First, the path of the folder

containing red, green blue (RGB) images is described. Then, a region

of interest containing plant image is defined, followed by the selection

of color space of preference. Afterward, filter parameters are

determined, and functions corresponding to the digital traits of users’

choice are selected. Then the processing of the images is executed using

either a local central processing unit (CPU) or high-performance

computing clusters

2.3 File loading

The image files can be loaded by specifying regular

expressions in Path using the following format: “FOLDER

NAME\*.png.” This should allow the loading of all images

under the respective folder. The application is compatible with

widely used image formats such as jpg, png, and tiff. The spin-

ner can be used to change the Original Image that is currently

displayed (Figure 2).

The visible images (RGB) of plants can be obtained using

any system such as LemmaTec or using standard digital cam-

eras. If analyzing images using standard digital cameras, the

user must ensure constant focal distance to have a similar scale

for all the images corresponding to the same batch to facilitate

precise comparison.

2.4 Selection of ROI and image filtering

For selecting region of interest (ROI), the user can either crop

the image interactively by dragging a marquee tool over the

image or by typing the position of the ROI using this format,

[X_min, Y_min, Width, Height], where X_min, Y_min is the

coordinate of the upper-left corner, and Width and Height cor-

respond to the size of the ROI. The ROI selected is fixed for

the image analysis of the respective folder. Thus, it is rec-

ommended that the user selects a relatively larger ROI. This

is important, especially during the analysis of plant growth

dynamics in a temporal manner where plants tend to increase

in size.

Next, image segmentation separates plant pixels from the

background. For segmentation, a logical expression can be

specified in Filter (Figure 2). The application supports (a) red,

green, and blue (RGB), (b) hue, saturation, and value (HSV),

and (c) Lab color spaces, which provide flexibility to the

user to optimally segment the RGB images. Any combina-

tion of arithmetic and logical operation can be used to seg-

ment the plant. In terms of setting the filter, “&” means logi-

cal AND, and “|” means logical OR. For example, “r < 200

& g < 150” means finding pixels with red values less

than 200 and green values less than 150. The Processed
Image will be displayed after clicking the “Test” button

(Figure 2).

If the user is unsure about predefining the filter, then the

Segmentation feature can be utilized (Zhu et al., 2021). For

this, click on “Foreground” and a new pop-up window having

the original image appears. The user can select the zoom-in

option from the task bar menu to enlarge the area of inter-

est (i.e., plant tissue in this case). Once the area is zoomed

in, the user can deselect the zoom-in option and scribble on

the enlarged area of interest with a red mark (Figure 3). Next,

background (i.e., pot, pot stand, plant background, etc.) is

selected by clicking the “Background” button and scribble on

the background using a green mark. Afterward, the user can

click the “Segment” button to initiate the segmentation or sub-

traction of plant pixels from the background (Figure 3). We

empirically segment the plant by finding plant pixels where

the difference to the mean of selected foreground is less than

60. Implementation of the Segment function may take a few

additional seconds. After segmentation, the Processed Image
will show pixels corresponding only to the plant and the his-

tograms corresponding only to the plant region will be dis-

played in Channel 1, 2, and 3. The range of the histogram

for each channel can be used to define Filter parameters. The

Segmentation feature is helpful to define filter parameters

in a similar manner for both RGB and plant pigmentation-

based fluorescence images; however, histogram values for

only the red channel need to be considered for setting the

filter in the case of plant pigmentation-based fluorescence

images.



4 of 13 ZHU ET AL.

F I G U R E 2 Graphical user interface (GUI) of PhenoImage. The numbers denote a step-by-step guide to use the application: (1) define Path of

the folder containing plant images and click the “Load” button; (2) The light bulb shows status of the loading procedure, as the blue light bulb turns

red while the loading is in progress and green when completed; (3) one of the images from the folder is displayed in the Original Image section;

(4) the spinner can be used to change the current image shown in the Original Image space; (5) then the user must define Region of interest or ROI by

dragging the cursor on the Original Image; (6) select the Color space of preference; (7 and 8) click on the “Histogram” button to visualize intensity

of channels corresponding to the respective Color space; (9a and 9b) the user can either directly use the histogram values to define the Filter or the

user can use the Segmentation function, where Foreground and Background need to be specified to precisely segment plant pixels from the

background; (10 and 11) the user can click “Test” to view the Processed Image and if the user has decided on the Filter; (12) then selection of

Functions is performed. The functions or the digital parameters that need to be extracted are based on user preference. (13) If running on a single

machine, the user can Execute the function to process all images in the respective folder, and progress of batch processing can be viewed in the

Progress bar and saved; or (14) high-performance computing clusters can be used to process the images

2.5 Defining functions for plant trait
analysis

For digital trait extraction, the user can select functions from

a dialog window by clicking “Functions,” where any user-

defined functions can be selected. The selected functions will

be listed in the text region and will take the segmented image

as input to extract digital traits (Table 1). Some of the com-

monly used functions are defined below.

2.5.1 Pixel count

After segmentation, only the pixels corresponding to the plant

are kept, whereas pixels corresponding to other objects in the

image are set to black. The tool counts the number of pixels

that belong to the plant in the ROI.

2.5.2 Pixel intensity

Pixel Intensity refers to the sum of the intensities of pixels in

an image. As there are three channels (red, green, and blue),

we calculate the pixel sum of each of the R, G, and B channels

separately.

2.5.3 Dimension

To define the dimensions (width and height), first a bounding

box, which is based on the segmented pixels and encloses all

pixels of the plant, is found (Figure 4). Then, the width and

height of the bounding box are used to define the dimensions

of the plant.

2.5.4 Convex area

Convex Area is a feature that is related to the shape of the

plant. The convex area is the area of the convex hull. The con-

vex hull is the smallest convex polygon enclosing all the pixels

of the plant (Figure 4).

2.5.5 Image skeleton

We find the skeleton of the plant pixels using a skeletoniza-

tion algorithm (Abeysinghe et al., 2008 ). The skeleton of

the plant approximates the center lines of the stem and the

leaves. Then, the number of pixels in the skeleton is obtained

(Figure 4).



ZHU ET AL. 5 of 13

F I G U R E 3 Representation of different features used by PhenoImage. The cropped image is derived from the original image after the selection

of the region of interest. The binary image is a mask of the plant pixels where the plant pixels are set to 1 and the background is set to 0. The

segmented image represents the segmented plant pixels from the background. The bounding box shown in the light blue color is calculated based on

the segmented pixels and encloses all pixels of the plant. Convex hull signifies the smallest convex polygon enclosing all the pixels of the plant. The

image skeleton approximates the center lines of the stem and the leaves and is calculated using a skeletonization algorithm

F I G U R E 4 Segmentation. For subtracting plant pixels from the background, click on “Foreground” and a new pop-up window displaying the

original image opens. The user can scribble on the area of interest with a red mark. Likewise, the user can define background (i.e., pot, pot stand,

plant background, etc.) by scribbling on the background using a green mark. Afterward, the user can click the “Segment” button to initiate the

segmentation of plant pixels from the background. As a result, the Processed Image will show pixels corresponding only to the plant
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T A B L E 1 List of the digital parameters that PhenoImage can

extract

Function Definition
Binary Central Moment Central moment of the

binary image of the plant

Central Moment Central moment of the

plant image

Convex Area Area of the convex of plant

pixels

Pixel Count Number of plant pixels

Plant Height Height of the bounding box

of the plant pixels

Gravity Height Height of the gravitational

center

Histogram-Blue Histogram of the blue

channel

Histogram-Green Histogram of the green

channel

Histogram-Red Histogram of the red

channel

Pixel intensity

mean-Blue

Mean of the intensities of

the blue channel

Pixel intensity

mean-Green

Mean of the intensities of

the green channel

Pixel intensity mean-Red Mean of the intensities of

the red channel

Image Skeleton Number of pixels of the

skeleton of the plant

Skeleton Central

Moment

Central moment of the

skeleton of the plant

Pixel intensity

sum-Blue

Sum of the intensities of

the blue channel

Pixel intensity

sum-Green

Sum of the intensities of

the green channel

Pixel intensity sum-Red Sum of the intensities of

the red channel

Pixel intensity

variance-Blue

Variance of the blue

channel

Pixel intensity

variance-Green

Variance of

the green channel

Pixel intensity

variance-Red

Variance of the red channel

Plant Width Width of the bounding box

of the plant pixels

2.5.6 Image moment

Image moments can be used to evaluate the shape of the plant

(Hu, 1962 ). We evaluate the image moment of the binary

image or the segmented plant image. For the binary image,

the plant pixel is considered as 1, and pixels of other objects

in the image (e.g., pot, pot-holder, and background) are

considered as 0. The moment of the binary image is only

dependent on the positions of the pixels. The fourth-order cen-

tral image moment (μ22) is evaluated for the binary image

in default. The user can easily modify the function to obtain

image moments of other orders.

2.6 Execution on a local machine

2.6.1 Image processing and results collection

The batch image processing can be initiated by clicking “Exe-

cute” (Figure 2). The light bulb located on the right side indi-

cates the status of processing. For instance, the light bulb turns

red as images are being processed and will turn green upon its

completion. The Progress gauge will show the progress of the

image processing on a percentage basis. A text file contain-

ing results from all the functions can be generated by clicking

“Save.” The user can specify the path and file name of the text

file in a pop-up dialog window.

2.7 Execution on HPC clusters

2.7.1 Execution and code generation on HPC
clusters

To accelerate the processing of a large number of images,

one feasible way is to use a HPC cluster by distributing the

workload among the cluster computing nodes and processing

images in a parallel fashion. We design PhenoImage to be also

executed on a HPC cluster and facilitate users to leverage the

power of HPC without detailed HPC knowledge.

For executing jobs on HPC clusters, slurm (Yoo et al., 2003)

is used to submit a batch job, which distributes the jobs using

job identifications (IDs). If a job requires a small number of

resources, the priority of execution of the job using slurm is

comparably high. Thus, owing to less queuing time, we chose

slurm for PhenoImage.

Further, to process images using HPC clusters, click the

“Code” button (Figure 2), which generates a MATLAB script

for processing images. A slurm file (an example is included

in PhenoImage) is used to submit a job array to the cluster.

Then, the job IDs and job size executed by slurm are used to

partition the images so that each node processes only a part

of the images. The job IDs and job size are passed to the

MATLAB script generated by PhenoImage as input param-

eters. The user only needs to input the names of the files

that need to be processed in a text file. For each node in

the HPC cluster, the script reads all the filenames and pro-

cesses a part of the images as specified by job ID and job

size. Specifically, the script will process images with indices

(JobID, JobID+JobSize, JobID+2* JobSize, . . . ). The script
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contains the position of the ROI, the expression of the color

filter, and the names of the functions that have been selected

for digital trait extraction.

After submitting of the job using the slurm file, the result

computed by each function on each node will be printed out

and finally aggregated in one output file specified in the slurm
file. The output file contains all the results for all the input

images.

2.8 Sorghum and wheat: A test case for
PhenoImage validation

2.8.1 Sorghum

Four seeds of sorghum genotype RTX430 were sown in each

of the 10 5.6-L pots (22 cm diameter by 19.5 cm height)

filled with 2.5 kg of a soil mix (consisting of two-thirds peat

moss and one-third vermiculite and 1.4 kg lime). Plants were

thinned to one seedling per pot 6 d after germination. For

the first 21 d, all pots were watered to 85% water holding

capacity (WHC). Afterward, water was withheld from half

of the pots (water-limited treatment, WL) until 30% WHC is

attained, and half of the pots were maintained at 80% WHC

(well-watered treatment, WW; Supplemental Figure S1. Dur-

ing the entire experiment, the greenhouse was maintained at

28 ˚C for 13 h day, and 25 ˚C for 11 h night, , and 40–50%

relative humidity (Saluja et al., 2020).

2.8.2 Wheat

Seeds of wheat genotype Pavon were germinated in Petri

dishes for 4 d in the dark at 25 ˚C. Uniformly germinated

seeds were transplanted into 3-L pots (12 cm diameter by

19.5 cm height) and filled with 1.2 kg of Fafard germina-

tion soil (Sungro) supplemented with Osmocote fertilizer and

Micromax micronutrients. Seedlings were grown for 7 d at

80% WHC. After 7 d, six seedlings each were maintained

at 80% WHC for well-watered treatment and 30% WHC for

water-limited treatment (Supplemental Figure S1). Growth

conditions were maintained at 22 ˚C for 16 h day, and 16 ˚C

for 8 h night. Afterward, plants were imaged every day for

15 d.

2.8.3 Water holding capacity

For calculating WHC of the soil mix, 2.5 and 1.2 kg of

soil mix for sorghum and wheat experiment, respectively,

was oven-dried (60 ˚C for 7 d) and dry soil weight was

measured. Then the soil mix was transferred to pots perforated

at the bottom for drainage. To achieve the saturation point

(weight of the soil at 100% WHC), the soil mix was saturated

with water while covered at the top to prevent evaporation.

Pots were weighed daily until no change in pot weight was

observed. These computed values were then used to calculate

the weight of soil at a particular WHC by using the following

equation:

Soil weight at a particular WHC =
[
(Soil weight at 100% WHC − Dry soil weight)

× Required WHC
]
+ Dry soil weight

2.8.4 Plant imaging

A high-throughput phenotyping facility (LemnaTec Imaging

System) at Nebraska Innovation Campus, the University of

Nebraska-Lincoln was used to evaluate sorghum (RTx430)

and wheat (Pavon) plants by RGB and plant pigmentation-

based fluorescence images. For sorghum plants, starting from

the day water was withheld, both WW and WL pots were

imaged every day until WL pots reached 30% WHC. Plants

were imaged for 18 d (Supplemental Figure S1). Due to tech-

nical error during the experiment, the imaging system failed to

acquire images on the Day 13 of imaging, so data correspond-

ing to this day is missing from the downstream analysis. For

wheat plants, imaging was performed for 15 d for WW and

WL conditions (Supplemental Figure S1).

To reduce image occlusions, imaging was done from five

different angles (side views at 0˚, 72˚, 144˚, 216˚, and 288˚;

Supplemental Figure S2; Golzarian et al., 2011). Next, RGB

and plant pigmentation-based fluorescence images from both

the species were used as a test cases to validate PhenoImage.

For validation and optimal segmentation of RGB images, the

following filter parameters were used: g < 150 (for sorghum)

and g < 150 & h > 0.2 & h < 0.5 & s > 0.1 & v < 0.6 & a <

–5 (for wheat).

For plant pigmentation-based fluorescence images, plants

were imaged at constant blue light (400–500 nm) and

steady-state chlorophyll fluorescence was detected at 500–

700 nm in a separate chamber. An ad-hoc image segmen-

tation strategy was used to categorize image color ranges

into 32 color classes (Campbell et al., 2015). Further, Hierar-

chical Cluster Analysis (HCA) was performed using Ward’s

method (JMP Pro13) to examine the temporal profile of the

color classes with pixel intensities. For plant pigmentation-

based fluorescence images, filters were defined using only

the red pixels; sorghum r > 150, and wheat r > 50 &

r < 140.
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2.9 Manual phenotyping and comparisons
with other methods

Manual measurements were performed for both sorghum and

wheat plants on the last day of imaging in a destructive man-

ner. For this, fresh and dry shoots were weighed. Shoots

were dried for 1 wk in an oven at 60 ˚C and weighed to

determine the dry weight. The manually derived traits were

correlated with digital traits derived from last day of imag-

ing for sorghum and wheat (Day 18 and 15, respectively;

Supplemental Figure S1). The RGB images from the last

day of imaging were processed using PhenoImage (Supple-

mental Table S2), HTPheno (Hartmann et al., 2011), and

OpenCV (Bradski, 2000 ) (Supplemental Table S3). For cor-

relation, pixel count derived from PhenoImage and OpenCV,

and object area from HTPheno were considered. In addition,

sorghum plant images captured by standard smartphone cam-

era (12-megapixel, f/1.8 aperture) and wheat spike images

captured by a flatbed scanner (Epson Expression 12,000 XL

at 600 dpi resolution) (Paul et al., 2020a ) were analyzed using

PhenoImage.

3 RESULTS AND DISCUSSION

3.1 Performance testing

We evaluated the performance of PhenoImage (Figure 1

and 2) with respect to the time required to process images.

For this, we computed time required to generate data for two

functions: convex area and pixel count, derived from RGB

images, which had different levels of resolution ranging from

100× 100 to 10,000× 10,000 pixels (Supplemental Table S1).

We observed that the application’s performance at different

resolutions depended on the function that is being evaluated

(Figure 5). For example, the time taken to analyze convex area

at the highest resolution (10,000 × 10,000 pixels; 1.646 s)

increased by 53.15% compared with the lowest resolution

(100 × 100 pixels; 0.030 s). On the other hand, the time

taken to analyze pixel count increased by 16.20% with the

increase in the resolution (i.e., 0.167 and 0.009 s for the high-

est and lowest resolution, respectively) (Figure 5; Supplemen-

tal Table S1).

3.2 Sorghum and wheat: A test case for
PhenoImage validation

The RGB images from sorghum (RTx430) and wheat (Pavon)

were used for validating PhenoImage (Figure 1). These

species were selected because of their visibly different physi-

cal attributes. Sorghum has one main shoot axis, which results

F I G U R E 5 Performance testing of PhenoImage. The plot shows

the time taken to process images and extract the respective digital trait

(convex area and pixel count) from the images at different resolution

in a relatively compact-looking phenotype compared with the

wheat plant, which produces multiple tillers (Figure 5). The

two species also differ in other parameters such as stalk diam-

eter, leaf width, leaf length, and so forth. Plants from both

species were used for HTP with the LemnaTec Imaging Sys-

tem, and images were processed using PhenoImage. After

loading the images onto the application, the best filter parame-

ters were determined empirically based on a histogram gener-

ated after segmenting the foreground (i.e., plant pixels) from

the background.

We assessed two digital traits derived from the RGB

images—pixel count and convex area—which are represen-

tative of a plant’s overall architecture. Pixel count was used

as a proxy for projected shoot area (PSA) and represents

the total number of pixels of a plant, whereas the con-

vex area was the area of the convex hull and illustrates the

smallest convex polygon enclosing all the pixels of a plant

(Figure 3). For validation, the visible differences between the

two species were assessed for plants of the same age (26-

day-old) via imaging. As a result, we detected significant

differences (P < .001) between sorghum and wheat plants

with respect to PSA and the convex area (Figure 6). Interest-

ingly, although wheat plants have a higher number of leaves

than sorghum of the same age, sorghum plants had higher

PSA and convex area, apparently due to the broader leaves of

sorghum.

In addition, we evaluated PhenoImage’s ability to process

images captured using different imaging platforms such as a

standard smartphone camera and a flatbed scanner (Supple-

mental Figure S3). Consequently, PhenoImage successfully

extracted regions of interest (leaf pixels from sorghum images

and spike pixels from wheat spike images), which shows

that our application can process the images derived using
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F I G U R E 6 PhenoImage validation. (a) Original and processed

RGB images from 26-day-old sorghum and wheat plants grown under

well-watered conditions. (b) Two digital traits: convex area and

projected shoot area (PSA), which represent a plant’s architecture were

derived using PhenoImage. Each dot represents individual plant

replicate and horizontal line represents the group mean. Significant

differences (P < .001) were detected between sorghum (n = 5) and

wheat (n = 6) for both the digital traits. For statistics, Welch’s t test

(equal variance not assumed) was used

multiple platforms (Supplemental Figure S3). Also, these

results highlighted PhenoImage’s ability to extract different

plant organs such as leaves and spikes.

3.3 Comparison with manual
measurements and other image processing
methodologies

Next, we performed destructive phenotyping of sorghum and

wheat plants at the last day of imaging (Day 18 and 15,

respectively; Supplemental Figure S1). The harvested plants

were used to manually record fresh and dry shoot weight.

As expected, we observed significantly higher fresh and

dry weight for sorghum compared to wheat (Supplemental

Table S2).

Furthermore, we compared the manually recorded phe-

notypes with digital traits (pixel count) derived from RGB

images. For this, the RGB images were processed using the in-

house generated application, PhenoImage, and two publicly

available tools, HTPheno and OpenCV. HTPheno is used as a

plugin for ImageJ and does not involve programming language

(Hartmann et al., 2011). The application does not allow cali-

bration of color settings for image processing. On the other

hand, OpenCV requires skills in Python programming lan-

guage and does not offer GUI (Bradski, 2000). For both the

plant species, we detected a high correlation for fresh and dry

weight with PSA derived from RGB images processed using

PhenoImage, which is at par with the well-established image

processing platforms, HTPheno and OpenCV (Supplemental

Figure S4, Supplemental Table S2 and S3). This illustrates the

sensitivity of the PhenoImage application to estimate digital

traits is equivalent to other image processing platforms with

an added advantage that no coding skills are required to pro-

cess the images.

3.4 Temporal analysis of growth dynamics
using PhenoImage

The image-based phenotyping platforms have enabled quan-

tification of physiological and morphological features in a

time-dependent manner. In this context, we performed tempo-

ral evaluation of sorghum and wheat growth dynamics under

WW and WL conditions using HTP. The RGB and fluorescent

derived images were processed using PhenoImage for testing

sensitivity of the tool to detect subtle physiological changes

over time.

The biomass of the plant increases with growth and devel-

opment, which can be quantified by imaging, and environ-

mental stresses in general slow growth and development

(Chen et al., 2014; Röth et al., 2016). To evaluate the changes

in plant size in a temporal manner, we traced PSA derived

from RGB images under WW and WL conditions. For both

sorghum and wheat, PSA showed a gradual increase over time

under WW and WL; however, WL conditions exhibited lower

PSA relative to WW conditions for the identical time-point

(Figure 7).

Furthermore, we processed temporal dataset for wheat

plants using HTPheno and PlantCV, which revealed signif-

icant differences between WW and WL conditions starting

from Day 10–15 (HTPheno) and Day 8–10 and Day 13–15

(PlantCV; Supplemental Table S4). Also, we considered the

ratio of WW and WL for the values derived from the three

image processing platforms (PlantCV, HTPheno, and Phe-
noImage). We did not find statistical differences between the

ratio derived from HTPheno and PhenoImage for the three

randomly selected days (Day 3, 8, and 14). Contrastingly, sig-

nificant statistical difference (P < .05) was observed for the

WW and WL ratio derived from PlantCV and PhenoImage for

all the tested days (Day 3, 8, and 14; Supplemental Table S4).

This indicates that the results obtained from PhenoImage are

more in line with PlantCV than HTPheno.
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F I G U R E 7 Temporal analysis of shoot growth dynamics. Sorghum and wheat plants subjected to well-watered (WW) and water-limited (WL)

conditions were imaged for 18 and 15 d, respectively, using the LemnaTec Imaging System. Sorghum and wheat plants subjected to WL conditions

reached 30% water holding capacity on Day 18 and 14, respectively. PhenoImage derived projected shoot area (PSA) showed significant differences

between WW and WL conditions on Day 8 for both sorghum (n = 5) and wheat (n = 6). Each line represents the temporal trajectory of individual

plants under well-watered (blue) and water-limited (orange) conditions. The central bold line represents the mean of WW and WL group and the grey

band represents the standard error. For statistics, the t test was used. The vertical dashed red line represents the significance difference between WW

and WL treatments from that day onward

We evaluated changes in pixel intensities corresponding to

the “G” channel and chlorophyll florescence as an indicator of

plant health. In principle, the “G” pixel intensity derived from

the RGB images reflect the greenness of the plant, which is an

indirect indicator of chlorophyll content (Wood et al., 2020).

The greenness index (GI) was calculated using the following

formula:

GI =
𝑁G

𝑁R +𝑁G +𝑁B

where NR, NG, and NB are pixel intensity for R, G, and B

channel normalized to total pixel count for the respective

time-point and treatment. For both sorghum and wheat, we

observed higher GI under WW relative to WL conditions

(Figure 8).

Furthermore, abiotic stresses such as heat stress or water

limitation decreases photosynthetic efficiency and increases

non-photochemical quenching resulting in enhanced chloro-

phyll fluorescence and heat dissipation (Zhao et al., 2017;

Paul et al., 2020b). Therefore, we evaluated the dynamics

of chlorophyll fluorescence for sorghum and wheat under

WW and WL conditions. For this, total pixels correspond-

ing to the red channel were classified into 32 color classes

based on their fluorescence intensity. As the stress progressed,

fluorescent intensity of pixels changed. To monitor the

rearrangement of pixels over time and treatments, we per-

formed HCA. As a result, we detected four clusters (I–IV)

each for sorghum and wheat (Figure 9; left panel). For

sorghum, the identified clusters distinguished changes related

to both development and water treatments (WW and WL).

Cluster I comprised fluorescence changes at early time

points—1 to 5 days (d) of imaging—wherein cluster II and

III were associated with later time points (d6–d17) under

both WW and WL conditions (Figure 9). Furthermore, HCA

clearly distinguished fluorescence changes linked with water

treatment, as cluster II and III were predominant ones under

WL and WW conditions, respectively (Figure 9). In the case

of wheat, HCA distinguished development-driven fluores-

cence changes, as early time points (d1–d5) were represented

by cluster I and II and late time points (d6–d15) were rep-

resented by cluster III and IV (Figure 9; right panel). How-

ever, a clear distinction between WW and WL conditions was

not observed. These results are in line with previous findings

documenting decreased chlorophyll content or photosynthetic

activity as a possible penalty on a plant subjected to WL con-

ditions (Mathobo et al., 2017).

Collectively, the results establish that PhenoImage can be

used to analyze HTP-derived longitudinal phenotypic datasets

(RGB and plant pigmentation-based fluorescence images) to

detect the occurrence of subtle phenotypic changes in a plant’s

growth and development.
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F I G U R E 8 Temporal changes in intensity of green color represented by Greenness Index (GI) for sorghum and wheat under well-watered

(WW) and water-limited (WL) conditions. Sorghum (n = 5) and wheat (n = 6) plants subjected to WW and WL conditions were imaged for 18 and

15 d, respectively, using the LemnaTec Imaging System. Each line represents the temporal trajectory of individual plants under well-watered (blue)

and water-limited (orange) conditions. The central bold line represents the mean of WW and WL group and the grey band represents the

standard error

F I G U R E 9 Hierarchical Cluster Analysis of fluorescence color classes for sorghum (left panel) and wheat (right panel). Normalized pixel

counts corresponding to different color classes were clustered (I–IV) using Ward’s method in JMP Pro13 under well-watered (WW) and

water-limited (WL) conditions. Days of imaging under WW- and WL-treated plants were represented by blue and red-colored numerals, respectively
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4 CONCLUSION

PhenoImage offers an exhaustive and robust analysis of large-

scale plant phenotyping data. The intuitiveness of the appli-

cation allows scientists with little programming experience to

process large-scale datasets on their computers. The tool can

also support parallel high performance computing clusters.

The availability of multiple functions and filtering parame-

ters provides flexibility to analyze a wide variety of plant

species. Moreover, open-source nature provides the possi-

bility to extend the usability of the tool to meet specific

user requirements. The current version of the application is

designed for analyzing aboveground plant images. However,

we plan to extend its usability to examine other tissues such

as root or panicles.
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