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Abstract—In large-scale enterprise data centers for big data
analytics, long batched jobs and short interactive jobs are usually
mixed. Hybrid job schedulers, consisting of one centralized
scheduler for long jobs and multiple distributed schedulers for
short jobs, have become a promising alternative because they can
significantly shorten latencies of short jobs via independent and
parallelized assignment of short tasks by distributed schedulers
and lower chances of head-of-line blocking via a number of
performance optimization techniques.

However, short jobs are still facing long job latencies under
hybrid job schedulers due to workload fluctuation and straggler
task problem. In this paper, we propose Eirene to optimize
the latency performance of short jobs via two schemes tightly
coupled into the general architecture of hybrid job schedulers.
Coordinated Cold Data Migration leverages high task waiting time
of short jobs under heavily-loaded periods and migrates cold data
from disks to local memory for the initial phase of reading input
so as to shorten task runtime and queueing time. On the other
hand, Scheduler-Aware Task Cloning exploits spare computing
resources under lightly-loaded periods and performs proactive
task cloning for short jobs to mitigate the straggler problem.

We implement a prototype of Eirene based on Eagle, a state-
of-the-art hybrid job scheduler. Experimental results show that,
under heavy loads, Eirene is able to improve 50-percentile (P50),
75-percentile (P75), 90-percentile (P90) latency performance of
short jobs by up to 44.4%, 80.3%, 84.1% respectively compared
with Eagle under the Facebook trace with a cluster of 50000
nodes.

Index Terms—Big Data, Job Scheduler, Resource Management

I. INTRODUCTION

One salient characteristic of production workloads of big
data analytics in large-scale data centers is a mixture of long
jobs and short jobs, as evident in recent production workload
analysis [1]–[5]. Although the total number of short jobs could
be 10× greater than that of long jobs, they usually consume
disproportionally fewer resources than long jobs. For example,
over 90% of jobs in Google clusters are short jobs, but short
jobs consume only 17% of resources [3]. This is because com-
puter clusters in an enterprise are usually shared by different
departments for high utilization efficiency. It is common to

see analysts and developers submit short but interactive jobs
like ad-hoc queries or personalized search, while long-running
services and batch jobs occupy a large portion of computing
resources in shared clusters. Conventional centralized job
schedulers like YARN [6] and Mesos [7] are able to achieve
high cluster utilization since they have a global view of
resource usage and resource demands of jobs. However, they
are incapable of meeting the job latency1 demand for short
jobs because job queueing delay becomes non-trivial when
the single scheduler is overwhelmed by a massive amount
of short jobs [8]. In contrast, distributed job schedulers like
Sparrow [8] are able to achieve good latency performance of
short jobs with parallel job scheduling. However, they suffer
from inefficient cluster utilization because decisions of task
assignments are made based on sampling and randomization.

To this end, hybrid job schedulers like Hawk [9], Eagle [10],
Phoenix [11], and Dice [12] have been proposed to deliver
both high cluster utilization and low latency for short jobs
with a combination of one centralized scheduler for long jobs
and multiple distributed schedulers for short jobs, and become
a promising alternative to conventional centralized schedulers
and distributed schedulers. However, from existing workload
analysis and our experimental study, we believe that short jobs
under hybrid job schedulers still encounter severe performance
issues due to two reasons. First, the widely-observed straggler
problem can significantly degrade latency performance of short
jobs as straggler tasks could take up to 8 times longer than the
mean task runtime in Hadoop clusters, causing the jobs to be
slowed down by 47% on average [13] (See Section II-D for
more detail). Second, our experimental study shows that, even
with hybrid job schedulers, workload fluctuation can still result
in up to 3000 seconds of task waiting time for short jobs under
heavily-loaded periods with the Yahoo trace, considering the
mean task runtime of short jobs is less than 90.58 seconds
(See Section II-B for more detail).

In this paper, we propose Eirene to address the above
performance issues of short jobs with two schemes. On one

1Job latency, also called job completion delay, which denotes the timespan
from the job submission time to the job completion time.978-1-7281-0858-2/19/$31.00 ©2019 IEEE



hand, Coordinated Cold Data Migration aims to migrate cold
data for the initial input read phase of tasks for short jobs from
hard disk to memory so as to shorten task runtime and resulting
long task waiting time2 under heavily-loaded periods. Eirene
overlaps cold data migration for short tasks waiting in the
queue on the worker nodes with the task waiting time, which
is achieved by the coordination between distributed schedulers
and worker nodes. On the other hand, Scheduler-Aware Task
Cloning aims to duplicate every task of short jobs and use
the result of the clones that are completed first under lightly-
loaded periods. Eirene leverages the fact of tiny resource
usage of short jobs and the availability of spare computing
resources under light loads, and proactively launches extra
copies of short tasks for straggler mitigation. Coordinated Cold
Data Migration and Scheduler-Aware Task Cloning are tightly
coupled into the general architecture of hybrid job schedulers
and fully utilize the characteristics of distributed schedulers
and worker nodes in hybrid job schedulers.

We implement a prototype of Eirene on top of Eagle [10],
a state-of-the-art hybrid job scheduler. Experimental results
demonstrate the effectiveness and efficiency of Eirene. For
example, under heavy loads, Eirene is able to improve 50-
percentile (P50), 75-percentile (P75), 90-percentile (P90) la-
tency performance of short jobs by up to 44.4%, 80.3%, 84.1%
respectively compared with Eagle under the Facebook trace
with a cluster of 50000 nodes.

In summary, we make the following contributions as below:
• We propose the Coordinated Cold Data Migration scheme

to migrate cold data for the initial input read phase of
tasks for short jobs from hard disk to memory, so as to
shorten task runtime of short jobs and resulting long task
waiting time under heavily-loaded periods;

• We propose the Scheduler-Aware Task Cloning scheme
to duplicate every task of short jobs and use the result of
the clones that are completed first for straggler mitigation
under lightly-loaded periods;

• We conduct extensive trace-driven experiments and vali-
date the effectiveness of our proposed schemes.

II. BACKGROUND AND MOTIVATION

A. Hybrid Job Schedulers

In order to leverage both high cluster utilization of central-
ized schedulers and fast scheduling decision making of dis-
tributed schedulers for the responsiveness of short jobs, hybrid
job schedulers are proposed to combine one centralized sched-
uler and multiple distributed schedulers together. In general, a
hybrid job scheduler, like Hawk [9], Eagle [10], Phoenix [11]
and Dice [12], divides a cluster into two exclusive partitions:
general partition and short partition, as shown in Figure 1.
The short partition is dedicated to executing short jobs only
while the general partition is used to execute both long and
short jobs. The size of the short partition is determined by

2Task waiting time is the sum of task scheduling time and task queueing
time. For hybrid job schedulers, task scheduling time is negligible because
of multiple and parallel distributed schedulers. Thus task waiting time is
dominated by task queueing time.
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Fig. 1: A general architecture of hybrid job schedulers.

the resources consumed by short jobs, that is, the total task-
seconds of short jobs (the sum of task runtime of tasks for all
short jobs) over the total task-seconds of all jobs. Similar to
YARN [6] and Mesos [7], the centralized scheduler in hybrid
job schedulers is responsible for enqueueing and placing only
long jobs onto worker nodes in the general partition. On the
other hand, there are multiple distributed schedulers that can
independently schedule only short jobs on any worker nodes
in both partitions in parallel. Like Sparrow [8], distributed
schedulers employ the “batch sampling” scheme to assign
and enqueue a batch of task probes for short jobs into probe
queues of randomly-chosen worker nodes. When a worker
node becomes ready, it fetches one probe from its probe queue
and then requests the executable package of one task from a
distributed scheduler in charge of the corresponding job. When
the worker node receives the task, it launches a container and
executes the task program. Such immediate probe placement
and late task assignment are also called “late binding”.

On top of the general architecture of hybrid job schedulers,
Hawk [9] introduces the “randomized task stealing” scheme,
where idle worker nodes in the general partition steal task
probes of short jobs behind running or waiting long tasks
from randomly-chosen busy worker nodes, to compensate
occasional poor scheduling decisions by distributed sched-
ulers. Eagle [10] treats a probe as a proxy of the entire
job instead of a single task and then proposes the “Sticky
Batch Probing (SBP)” scheme. When a task is completed on
a worker node, SBP continues to request and execute the
remaining tasks of the job until all the tasks are executed.
Further, Eagle mitigates the “head-of-line” blocking problem
with the “Succinct State Sharing (SSS)” scheme, which shares
the information about worker nodes where long jobs are either
executing or waiting among distributed schedulers.

B. Experiment Study of Workload Fluctuation

To investigate the performance behaviors of short jobs under
hybrid job schedulers, we conduct a trace-driven experiment
study with the open-source Eagle simulator [14]. In the
experiment, we simulate a cluster of 4000, 5000, 6000 worker
nodes and then feed the Yahoo trace [1] as input workload to
the simulator. In the Yahoo trace, 90.6% of the jobs are short
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Fig. 2: Mean task waiting time of short jobs under the Yahoo
trace in Eagle.

jobs and the total task-seconds of short jobs account for 2%
of the overall task-seconds. As a result, 2% of the cluster is
reserved for the short partition and the rest of the cluster is
allocated for the general partition.

Figure 2 plots the mean task waiting time of short jobs under
the Yahoo trace in Eagle. Task waiting time is defined as the
duration between job submission time and the moment a task
of the job begins execution. The reason we are interested in
the metric of task waiting time of short jobs is we believe it
is a good indicator of system loads and resource contentions.
One can see from the figure that during most of the time the
mean task waiting time of short jobs is close to 0, which means
short tasks are almost immediately executed after their probes
are put on worker nodes. This implies that the cluster is under
light or moderate loads. On the other hand, we can see there
are durations of extremely high mean task waiting time. For
example, for the cluster of 4000 nodes, the mean task waiting
time reaches a peak of over 3000 seconds. Such a long task
waiting time clearly indicates the existence of heavy loads.
Considering the mean task runtime of short jobs is less than
90.58 seconds, job latencies of short jobs are thus dominantly
lagged by task waiting time. Even with the increase of worker
nodes and resulting less intensity of workload, we can still
see the lasting peaks of mean task waiting time. It is critically
important to find a workable way to significantly reduce task
waiting time and task runtime so as to lower latencies of
short jobs. As workload fluctuation is evident from our study,
we expect a desirable performance optimization approach for
short jobs to be able to address performance issues under both
lightly- and heavily-loaded periods.

C. Input Data Read Stage of Tasks and Cold Data Migration

For big data analytics jobs, the stage of reading input data
usually accounts for a non-negligible portion of job latency.
For example, reading map inputs of SQL queries on Hive
takes up to 15% of query duration [15]. For another example,
reading inputs from disk causes the first iteration of logistic re-
gression jobs to run 15× slower than late iterations [16]. Such
a noticeable duration spent on accessing to singly-read data,
that is, cold data, results from the fact that the input stage reads

much more data than late stages after filtering and aggregation,
while existing performance optimization approaches based on
caching repeatedly/frequently-accessed data, like Spark [16],
PACman [17], Triple-H [18], do not benefit the input data read
stage of tasks.

To this end, Ignem [19] and DYRS [20] are two systems
to migrate cold data from disk to memory before using them
at the input read stage of task execution. Experiment results
in Ignem show that reading input data from memory is 160×
faster than reading from hard disk, and Ignem improves hive
queries by up to 34% [19]. The key to effective cold data
migration is whether there is sufficient lead time, which is
defined as the duration between job submission time and the
moment the input data is accessed for a task. As we observe
high task waiting time of short jobs under heavily-loaded
periods, this becomes the best opportunity to overlap cold
data migration with task waiting time of short jobs, which
should in turn help reduce task runtime and improve latency
performance of short jobs. However, it is very challenging
to support cold data migration in the context of hybrid job
schedulers because distributed schedulers themselves do not
know which worker nodes will execute which tasks when they
place probes of jobs onto randomly-chosen worker nodes due
to batch sampling and late binding.

D. Straggler Problem and Mitigation

Stragglers, where one or more tasks of a job take much
longer time to complete than other tasks, are commonly seen
in enterprise production workloads. For example, more than
15% of straggler tasks for 25% phases are observed in a
large cluster for the Bing search engine [21]. Moreover, we
also analyze 4 representative traces derived from production
workloads in enterprise data centers [1]–[4] and use the same
definition of straggler tasks in Mantri research [21]: the tasks
that take 1.5× the median task runtime for a job. We find that
in 3 out of these 4 traces, over 30% of short jobs have at least
1 straggler task as shown in Table I. There are many sources
contributing to straggler tasks, like transient hardware errors or
resource contentions, oversubscribed and congested networks,
data skew in workloads (e.g., some tasks may take more input
data than others due to imbalanced data distribution), Java just-
in-time compilation overhead for the “first task” [15], [21]–
[23].

As straggler problem is seen widespread, straggler tasks
are also considered one major cause of lengthening job com-
pletion delay. For one example, job latency was lengthened
by stragglers by 29% in Bing clusters [21]. For another
example, straggler tasks could take up to 8× longer than
the mean task runtime in Hadoop clusters, causing the jobs
to be slowed down by 47% on average [13]. As a result,
a number of straggler mitigation approaches are proposed
to address this issue [13], [15], [21]–[28], and the common
strategy by most of them is speculative execution. Speculative
execution spawns duplicate copies of straggler tasks when they
are detected slow. The fundamental limitation of speculative
execution is its hysteresis in response to straggler tasks. This
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TABLE I: Stragglers in 4 traces of production workloads.

Trace number of
short jobs

portion of
straggler
jobs

number of
short tasks

portion of
straggler
tasks

Yahoo 21, 981 58.8% 514, 583 10.7%
Cloudera 19, 975 52.9% 3, 897, 480 4.4%
Google 455, 891 4.4% 12, 867, 052 7.0%
Facebook 1, 145, 663 34.3% 11, 724, 548 8.2%

is because speculative execution needs to wait to monitor task
progress and collect statistically sufficient samples to detect
straggler tasks. More importantly, spawning redundant copies
of straggler tasks at this point of time may be too late to be
functional. To this end, Dolly [13] was proposed to completely
avoid waiting and speculation by cloning every task of jobs
and use the result of the clones that are completed first.
The key to the effectiveness of task cloning like Dolly is
whether there are sufficient spare computing resources in the
cluster so that the duplicate copies of tasks can be launched
nearly at the same time when the primary copies of tasks are
started. Blindly applying Dolly’s idea to hybrid job schedulers
is impractical and could exacerbate job latency performance
because it is resource-intensive to duplicate every task of both
long and short jobs. This inspires us to consider cloning every
task of short jobs by leveraging free resources under lightly-
loaded periods, but it remains a challenging question of how to
judiciously integrate task cloning into hybrid job schedulers.

III. DESIGN AND IMPLEMENTATION

A. Basic Idea

In this paper, we propose Eirene to improve latency perfor-
mance of short jobs while minimizing adverse performance
impact on long jobs in the context of hybrid job schedulers.
More specifically, Eirene targets at improving job latency
performance of data-parallel jobs like MapReduce jobs, where
the input data is processed by the map tasks in parallel, and
then feed to the reduce tasks after filtering and aggregation.

The basic idea behind Eirene is simple: Eirene performs
cold data migration to shorten initial input read phase of tasks,
and clones every task of short jobs to mitigate straggler tasks.
Eirene is not simply applying Ignem [19] and Dolly [13] to
hybrid job schedulers. Instead, Eirene leverages the ubiquitous
workload fluctuation in enterprise data centers, and judiciously
activates cold data migration for short tasks by leveraging
long task waiting time during heavily-loaded periods, which
is called Coordinated Cold Data Migration. On the other
hand, Eirene duplicates every task for short jobs by exploiting
free resources during lightly-loaded periods, which is called
Scheduler-Aware Task Cloning. Note that both Coordinated
Cold Data Migration and Scheduler-Aware Task Cloning are
always enabled in Eirene, although they contribute to the
job latency reduction under different load intensity. Eirene
tightly couples these two functional modules into distributed
schedulers and worker nodes of hybrid job schedulers, and
significantly improve tail-latency performance of short jobs
under fluctuating workloads.
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Fig. 3: An architectural diagram of a worker node with
Coordinated Cold Data Migration support.

B. Coordinated Cold Data Migration

1) Architecture: Note that due to batch sampling and late
binding, a distributed scheduler itself does not know which
worker nodes will execute which tasks when it sends a batch
of probes of a short job onto randomly-chosen worker nodes.
This renders distributed schedulers incapable of dictating cold
data migration solely. In Eirene, cold data migration is realized
under the coordination between distributed schedulers and
worker nodes. In the proposed Coordinated Cold Data Migra-
tion, worker nodes have delegated the autonomy of performing
cold data migration in a distributed and parallel manner, while
distributed schedulers are responsible for coordinating the data
migration efforts of worker nodes and leveraging migrated data
for accelerating initial input read phase of tasks.

Figure 3 depicts an architectural diagram of a worker
node with Coordinated Cold Data Migration support. On the
left side of the figure, there are Probe Queue (PQ), Task
I/O Engine, and Task Execution Engine from the original
worker node design in the general architecture of hybrid
job schedulers. PQ is used to enqueue received probes from
distributed schedulers. When a worker node becomes ready
to execute a task, Task Execution Engine fetches one probe
from PQ and requests a task of the corresponding job from
the distributed scheduler. When it receives the task, Task
Execution Engine launches a container and executes the task
program within the container. If the task is involved with
data reads or writes, Task I/O Engine is responsible for
reading or writing data on the underlying distributed file
system like HDFS (Hadoop File System). Coordinated Cold
Data Migration augments a Migration Manager module, as
shown on the right side of Figure 3. Migration Manager is
meant to migrate cold data of short tasks from disks on local
or remote nodes to local memory on the background. It is
composed of 4 sub-modules: Per-Job Task Migration Status
Table, Migration Queue, Migration Fast Lane, and RamDisk
Virtual File System. In particular, Per-Job Task Migration
Status Table (MST) is used to keep track of data migration
progress for all waiting or running jobs on a worker node,
including the information about job id, task number, migration
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TABLE II: Per-Job Task Migration Status Table (MST).

job
id

task
no.

migration
status

read by
task?

location of migrated task
data on RVFS

1 0 Not Migrated N/A N/A
1 1 Migrated Yes /ramdisk/job1 task1 data
1 2 Not Migrated N/A N/A
1 3 Migrating No /ramdisk/job1 task3 data

TABLE III: Per-Job Task Status Table (TST).

job
id

task
no.

task status location of task data on distributed
file systems like hdfs

1 0 Not Started hdfs://node1:port/data/fileA block0
1 1 Completed hdfs://node2:port/data/fileA block1
1 2 Running hdfs://node3:port/data/fileA block2
1 3 Not Started hdfs://node4:port/data/fileA block3

status, whether the migrated data is read, and the location
of migrated task data on RVFS, as one example MST table
shown in Table II. Migration Queue (MQ) enqueues migration
requests associated with probes staying in Probe Queue, and
its function is to enforce I/O bandwidth management of data
migration to avoid contentions on foreground task execution.
Migration Fast Lane (MFL) is used to accommodate urgent
data migration requests without delays, which is important
to allow Coordinated Cold Data Migration to collaborate
with the Sticky Batch Probing (SBP) feature in Eagle [10].
RamDisk Virtual File System (RVFS) is responsible for storing
migrated data in RamDisk and servicing read requests from
the initial phase of tasks. Moreover, RVFS leverages the MST
information to evict migrated data and reclaim space for new
task data being migrated.

On the other hand, distributed schedulers in Coordinated
Cold Data Migration maintain Per-Job Task Status Table (TST)
to track the task progress of jobs as well as the location of the
input data on the underlying distributed file system for all the
tasks of every short job, as one example TST table is shown
in Table III. More importantly, distributed schedulers augment
every probe with the TST information upon placing them onto
worker nodes.

2) Workflow: In Coordinated Cold Data Migration, worker
nodes have delegated autonomy of decision making of data
migration, that is, a worker node itself decides whether and
which tasks for data migration given a probe in its Probe
Queue (PQ). When a worker node receives a probe of a job
containing the TST table and enqueues the probe in PQ, Eirene
generates a predefined number of random task numbers and
enqueues migration requests of them into the MQ queue. On
the other hand, when a worker node receives the response
from the distributed scheduler about the next task of a job to
execute accompanied with the TST table, the worker node will
examine both TST and MST tables to see if there is any task
of the same job, which is not started and whose data is not
migrated. If yes, the worker node will put the task number into
MFL, and perform data migration immediately. By doing so,
the worker node is able to overlap the execution of the current
task with data migration for the next task to execute, aligned
with the “Sticky Batch Probing (SBP)” scheme in Eagle.

Distributed Scheduler Worker Node
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C M M
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J1
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J1

J1

J1
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Fig. 4: An example of the interaction between the distributed
scheduler and worker node. J0 and J1 denote jobs 0 and 1
respectively. T0-T3 denote tasks 0 to 3 of job 1 respectively.
In TST, “S”, “R”, “C” denote “Scheduled”, “Running”, and
“Completed” respectively. In MST, “M” and “X” denote
“Migrated” and “Migrating” respectively.

At the side of the distributed scheduler, it reads the MST
table embedded in the request of the next task by the worker
node and thus knows which tasks have data already migrated to
memory. Then it chooses one random task from the tasks that
are not started but whose data have been migrated to memory,
and responds to the worker node with the chosen task number.
If none of such tasks are found, the distributed scheduler just
returns any “Not Started” task number to the worker node.
By doing so, the coordination between a distributed scheduler
and a worker node is able to maximize potential performance
gains from cold data migration.

Figure 4 illustrates an example of the interaction and
coordination between a distributed scheduler and a worker
node in Coordinated Cold Data Migration. Figure 4(a) shows
a point-in-time system snapshot after a distributed scheduler
receives a new job, say Job 1 (J1), and sends one probe
containing the TST table to a worker node. At the time, the
worker node is executing one task of Job 0 (J0), as we can
see that a probe of J0 is staying at the head of PQ, followed
by the probe of J1. The worker node reads the TST table
and knows none of J1’s tasks are completed or running, so
T1 of J1 is randomly chosen and enqueued into MQ for
data migration. Because of no ongoing data migration, the
worker node starts to migrate data for T1 immediately, as T1
is marked “migrating” in the MST table. Figure 4(b) shows a
system snapshot before the worker node requests the next task
to execute from the distributed scheduler, while T1 is shown
to be migrated already. Figure 4(c) shows that the distributed
scheduler returns T1 to the worker node. The worker node then
executes T1 and starts to migrate data for T3 immediately. As
shown in Figure 4(d), the worker node finishes the execution
of T1 and data migration for T3, and requests the next task
from the distributed scheduler again. Figure 4(e) shows that
the distributed scheduler responds to the worker node with T3,
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and the worker node then starts to execute T3 and performs
data migration for T2.

3) Implementation Issues: We discuss a few key implemen-
tation issues in the below:

• How to enforce I/O bandwidth management with MQ?
Migration Manager specifies the maximum number of al-
lowed concurrent migrations (CM) to limit the maximum
disk bandwidth for data migration. Note that experiment
results in Ignem [19] show that it takes 6.42 seconds on
average to read an HDFS block of 64MiB from hard disk
to memory. Assuming CM is 10, then disk bandwidth
used for data migration is 10 × 64

6.42 = 99.6 MiB/s
at the peak, which is lower than sustainable sequential
read throughputs of hard disks on the market. When
the current number of concurrent migrations reaches the
CM threshold, the additional migration requests will be
enqueued and waiting in MQ.

• Is there sufficient memory to store migrated data? One
possible concern is whether the memory capacity of a
worker node is sufficient to store the migrated data so as
to avoid the case of the migrated data being evicted from
memory before it is used. From the specification informa-
tion of Amazon AWS EC2 Instance Types [29], we know
the ratio of the number of vCPUs to memory capacity (in
GiB) ranges from 1:2 to 1:12. For a worst-case analysis,
assuming a vCPU can run 2 tasks in parallel, an EC2
instance with 96 vCPUs needs 96× 2× 64MiB = 12GiB
memory to store migrated data, which is far less than
the memory capacity of the instance: 96× 2 = 192GiB.
Analysis from Ignem [19] and PACman [17] also confirm
that there is sufficient memory to store migrated data.

• How to speed up reading input with migrated data on
RVFS? Remember that the request of the next task to
execute sent by the worker node contains the MST table,
which includes the location of migrated data on RVFS.
Therefore, the distributed scheduler leverages such infor-
mation and passes the location of migrated data to the
task. Moreover, a small modification to the task program
is made to read migrated data from RVFS if available,
or otherwise read data from the original location on
the underlying file system. A simplified version of the
example code snippet to read input data is shown in
Listing 1.

Listing 1: Example Python code snippet of reading input data.
1 import os
2
3 # assume HDFS is used as the underlying distributed file system.
4 # assume hdfsRead() and rvfsRead() are provided APIs to read data
5 # from HDFS and RVFS respectively.
6 def readInputData(location_on_hdfs):
7 # if environment variable of data location on rvfs exists.
8 if os.environ[’location_on_rvfs’]:
9 # read data from rvfs

10 dataBuffer = rvfsRead(os.environ[’location_on_rvfs’])
11 else:
12 # read data from HDFS
13 dataBuffer = hdfsRead(location_on_hdfs)
14
15 return dataBuffer

C. Scheduler-Aware Task Cloning

In order to effectively mitigate stragglers and improve la-
tencies of short jobs, Scheduler-Aware Task Cloning in Eirene
duplicates every task of short jobs and uses the results of
the tasks that finish first, the same as Dolly [13]. However,
Scheduler-Aware Task Cloning distinguishes itself from the
existing approaches like Dolly in two important aspects as
below:

• Short Jobs Oriented. Scheduler-Aware Task Cloning is
applied to short jobs only. This is because Eirene rec-
ognizes the fact in production environments short jobs
consume a very small portion of resources but they
are also latency-sensitive. Replicating all tasks of short
jobs will not likely result in resource contentions. More
importantly, Scheduler-Aware Task Cloning leverages the
fluctuating nature of workloads and activates task cloning
only under idle or lightly-loaded periods.

• Distributed Scheduler Aware. Scheduler-Aware Task
Cloning intentionally minimizes changes to hybrid job
schedulers for simplicity and feasibility. As a result, it is
designed to be tightly coupled with a distributed sched-
uler to leverage its inherent feature of “batch sampling”.

In detail, for a given short job consisting of N tasks,
the original batch-sampling scheme sends probes to 2 × N
randomly-chosen worker nodes. After the N tasks are assigned
to the first N probes whose worker nodes request the dis-
tributed scheduler of tasks to execute, the later N probes are
canceled when the corresponding worker nodes request tasks
to execute from the distributed scheduler. Then the worker
nodes fetch the next probes and may execute tasks of other
jobs, like the example shown in Figure 5(a). In contrast,
Scheduler-Aware Task Cloning tries to leverage such probes
and repurpose them to represent clones of tasks that have
not been completed. In addition to the “task status” column
in Per-Job Task Status Table, Scheduler-Aware Task Cloning
adds one new column, called “cloned task status”, to track
the status of cloned tasks. When the distributed scheduler
receives a request of a task to execute from a worker node, it
checks if all the primary copies of tasks have been launched
or completed (“Started” and “Completed” status in the “task
status” column). If yes, the distributed scheduler will try to
find a running task that has no clone (from the “cloned task
status” column) and return its task number to the worker
node. The worker node does not differentiate a primary copy
or a duplicate copy of a task. It just launches a container
and executes the received task program from the distributed
scheduler. The distributed scheduler may receive two task
completion messages, but it marks the task as “Completed”
in the table only when the first one arrives and simply ignores
the second one. An example timeline of task scheduling and
execution with Scheduler-Aware Task Cloning is shown in
Figure 5(b).

It has to be noted that Scheduler-Aware Task Cloning
also cooperates with Coordinated Cold Data Migration for
maximizing the performance potential of data migration.
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Fig. 5: An example with and without Scheduler-Aware Task
Cloning. Figure (a) shows the timeline of the task execution of
a 4-task job (“J0”) under the original batch sampling scheme.
t0 denotes the time when J0 is submitted to the job scheduler.
t1 denotes the completion time of T1, which is the straggler
task. Job latency of J0 is thus t1 − t0. Figure (b) shows the
timeline of the task execution of J0 with Scheduler-Aware Task
Cloning. Note that the probes on worker nodes E - G are
repurposed to represent and execute cloned tasks. Because of
Sticky Batch Probing, the probe on worker node A is also
repurposed to represent and execute the last clone task after
T0 is completed. T1’s clone completes at t2, so the job latency
of J0 becomes t2 − t0, which is shorter than t1 − t0.

In determining which task to clone, Scheduler-Aware Task
Cloning gives the preference to the worker nodes that have
migrated data of tasks that have no clones yet. However, we
expect the chance of Coordinated Cold Data Migration and
Scheduler-Aware Task Cloning being concurrently activated
is low because they are usually activated under different load
intensity conditions.

IV. PERFORMANCE EVALUATIONS

A. Experimental Setup

In order to evaluate the effectiveness and efficiency of the
proposed Coordinated Cold Data Migration and Scheduler-
Aware Task Cloning schemes, we implement a prototype of
Eirene on top of the state-of-the-art hybrid job scheduler, Ea-
gle [10] in the open-source Hawk/Eagle simulator [14], which
is widely used in research work of Sparrow [8], Hawk [9],
Eagle [10], Phoenix [11], Dice [12].

We feed the same traces used in Section II-D as input
workload to the simulator, and the detailed characteristics of
traces are shown in Table IV. The original Facebook trace is

TABLE IV: Trace characteristics.

Trace Total
jobs

Cutoff task
runtime

Short
jobs

Task-seconds
of short jobs

Yahoo 24,262 90.6 seconds 90.6% 2%
Cloudera 21,030 272.8 seconds 95.0% 9%
Google 506,546 1129.5 seconds 90.0% 17%
Facebook 100,000 76.6 seconds 98.0% 2%

TABLE V: Configuration parameters of simulations.

Description Abbr. Values
Coordinated Cold Data Migration (CCDM)

Max. number of concurrent migrations CM 10
Max. number of migrations per probe MPP 2

Data migration time (seconds) DMT 6.42
Scheduler-Aware Task Cloning (SATC)

Projected runtime of cloned tasks PRT random
Cluster scale Values

Cluster sizes for the Yahoo trace 3500, 4000, 4500, 5000
Cluster sizes for the Cloudera trace 13000, 13500, 14000, 14500
Cluster sizes for the Google trace 12000, 13000, 14000, 15000

Cluster sizes for the Facebook trace 50000, 55000, 60000, 65000

long, we just use the first 100,000 records in the experiments
to reduce simulation time. The jobs with mean task runtime
less than cutoff task runtime are short jobs. The ratio of total
task-seconds of short jobs to those of all jobs also dictates the
size of the short partition.

Table V shows the configuration parameters of simulations.
Note that MPP denotes the maximum number of randomly-
generated task numbers to migrate per probe when a probe
is placed into the PQ queue by the distributed scheduler.
Data migration time of 6.42 seconds is cited from the Ignem
research [19], and this is the estimated amount of task runtime
reduction for the tasks whose input data has been migrated
to RVFS and then directly used by the tasks. Regarding the
Scheduler-Aware Task Cloning scheme, since the traces do
not include task runtime information for cloned tasks, we
use runtime of randomly-chosen primary copies of tasks of
the same job to project runtime of cloned tasks. Table V
also gives the configurations of cluster size used in our
experiments. We vary cluster sizes to study the scalability of
Eirene. In particular, the cluster sizes are carefully chosen to
demonstrate the performance trend from the overloaded case
to the moderately-loaded case. We run simulations with bigger
cluster sizes but the experiment results are consistent with the
trend, so we omit to report most of their results in the paper.

Regarding the performance metrics, we consider 50-
percentile (P50), 75-percentile (P75), 90-percentile (P90) job
latencies as key metrics to evaluate the latency performance
of short jobs. Moreover, we focus on normalized performance
numbers, which are the ratio of P50, P75, P90 latency numbers
from Eirene to the ones from the original Eagle respectively.

B. Results

1) Performance Analysis: Figure 6 depicts the normalized
latency performance of Eirene compared with Eagle as a
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function of different cluster sizes, under the four traces. We
obtain a few observations from the figure. First, we clearly
see the consistent performance improvement by Eirene across
the 4 different workloads. Second, significant performance
improvement is observed under the overloaded case. For
example, Eirene improves P50, P75, P90 latency performance
of short jobs by up to 44.4%, 80.3%, 84.1% respectively
compared with Eagle, under the Facebook trace with a cluster
of 50000 nodes. It is clear that Eirene is able to drastically
improve the latency performance of short jobs by shortening
task waiting time and resulting long latencies of jobs under the
Yahoo and Cloudera traces as well. Under the Google trace,
Eirene achieves 5.9%, 10.9%, 8.9% performance improvement
in terms of P50, P75, P90 latency. This is because the cutoff
task runtime of short vs. long tasks for the Google trace is
1129.5 seconds, which is 175 times longer than the estimated
task runtime reduction of 6.42 seconds if the input data is
migrated and accessed locally. This implies some correlation
between the extent of performance improvement and the ratio
of task runtime reduction brought by Eirene to the task runtime
of short jobs. Third, we can observe that the performance
improvement is decreased with the increase of cluster size.
It means that Eirene benefits heavy workloads more than
light workloads. In summary, Eirene is shown to consistently
improve job-latency performance of short jobs across different
cluster sizes in a scalable manner.

To understand the contributions to performance improve-
ment by Coordinated Cold Data Migration (CCDM thereafter)
and Scheduler-Aware Task Cloning (SATC thereafter) individ-
ually, we conduct experiments with the two schemes in over-
loaded and lightly-loaded cases. Figure 7 plots the P50, P75,
P90 latency performance of short jobs normalized to Eagle in
the overloaded case with Eagle, CCDM, SATC, and Eirene.
One can see that in the overloaded case, CCDM is the sole
contributor to performance improvement compared with Eagle
across all the four traces, while SATC does not result in any
performance improvement. This is expected because SATC is
not actually activated if the cluster is kept overloaded, while
the high task waiting time due to overloading is leveraged by
CCDM to migrate cold data for task runtime reduction.

On the other side, Figure 8 plots the P50, P75, P90 latency
performance of short jobs normalized to Eagle in the lightly-
loaded case with different schemes. One can see that in this
case, the performance improvement results from the SATC
scheme under the Yahoo and Facebook traces. For example,
SATC improves the P50, P75, P90 latency performance of
short jobs of Eagle by 11.4%, 7.2%, and 4.8% respectively
under the Facebook trace. This is expected since abundant
computing resources under light loads enable SATC to execute
cloned copies of tasks of short jobs nearly at the same
time the primary copies of tasks are executed. We have two
additional observations. First, we can see trivial performance
improvement for the Cloudera trace. It is likely because this
trace has only 4.4% straggler tasks over all of the tasks for
short jobs. Second, we notice there is a slight performance
regression (up to −3.1% on P50 latency) under the Google
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Fig. 9: The number of short tasks benefited from CCDM or
SATC under the Yahoo trace as the cluster scale increases.

trace for SATC since this trace has only 4.4% straggler jobs.
In addition, short jobs in the Google trace have a relatively
large task cutoff runtime (1129.5 seconds), which may cause
the task cloning scheme to consume considerable computing
resources.

We add two counters to the simulator to keep track of
the total number of short tasks benefited from CCDM and
SATC respectively. The first counter is incremented for every
occurrence when a task reads input data from RVFS rather than
the underlying distributed file system. The second counter is
incremented for every occurrence when the cloned copy of a
task completes earlier than the primary copy. To illustrate the
trend of contributions to performance improvement by CCDM
and SATC as the increase of cluster size, we plot the trend
of these two counters under the Yahoo trace on a cluster of
from 3000 nodes to 6000 nodes. We can see from Figure 9,
as cluster size increases, the number of tasks benefited from
CCDM decreases linearly with a steep slope and the number
of tasks benefited from SATC increases linearly with a slow
slope. In addition to the fact that tail latencies of short
jobs are mainly affected under heavily-loaded periods rather
than lightly-loaded periods, this may be another reason why
SATC obtains fewer performance gains than CCDM and we
see decreasing performance improvement as the cluster scale
increases in Eirene.

2) Sensitivity Study: As we witness from the above section
that CCDM plays a more important role than SATC in terms
of the latency performance of short jobs, it is desirable
to quantitatively evaluate the impact of tunable parameters
of CCDM shown in Table V. In the following, we vary
two key CCDM configuration parameters and evaluate their
performance impacts under the Yahoo trace on a cluster of
4000 nodes as a case study.
Data migration time (DMT). Figure 10 plots the latency
performance and the number of tasks benefited from CCDM
with the varying DMTs to simulate different disk/network
speeds. It is reasonable to see the number of tasks benefited
from CCDM drops as the increase of DMT because a longer
DMT has a higher chance to miss more opportunities for
performing and benefiting from data migration. However, we
find that the latency performance is actually improved with
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Fig. 6: P50, P75, P90 latency performance of short jobs normalized to Eagle with different cluster sizes.
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Fig. 7: P50, P75, P90 latency performance of short jobs normalized to Eagle with different schemes in the overloaded case.
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Fig. 8: P50, P75, P90 latency performance of short jobs normalized to Eagle with different schemes in the lightly-loaded case.
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Fig. 10: Latency performance and the number of tasks bene-
fited from CCDM with different DMTs.

longer DMT. One possible reason is that, with the doubling
of the data migration time (that is also the estimated task
runtime reduction), the number of tasks benefited from CCDM
is decreased linearly. The accumulated performance gain from
longer DMT outweighs the accumulated performance loss
from the decrease of benefited tasks.

Maximum number of concurrent migrations (CM). Fig-
ure 11 plots the latency performance and the number of tasks
benefited from CCDM with the varying CMs. We can see that
there are almost no noticeable changes to latency performance
and the total number of tasks benefited from CCDM with the
increase of CM from 5 to 20. This indicates that migration
bandwidth is not a performance bottleneck, and we can choose
a conservative value for CM.

V. EXTENDED RELATED WORK

Performance Optimizations for Hybrid Job Schedulers.
In addition to the aforementioned Hawk [9] and Eagle [10]
schedulers, the most relevant work to Eirene is Dice [12]. Dice
is also meant to improve job latency performance of short
jobs under hybrid job schedulers. In Dice, “Elastic Sizing”
aims to dynamically adjust the short partition size so as to
prioritize short jobs over long jobs under heavy loads, while
“Opportunistic Preemption” aims to opportunistically preempt
resources of running long tasks in the general partition so
as to mitigate the head-of-line problem by short tasks on
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Fig. 11: Latency performance and number of tasks benefited
from CCDM with different CMs.

the same worker nodes. In contrast, Eirene tackles different
problems and takes a totally different approach. Coordinated
Cold Data Migration focuses on shortening input data reading
time of short jobs so as to minimize both task runtime and
resulting long task waiting time of short jobs. In the mean-
time, Scheduler-Aware Task Cloning addresses the straggler
problem and proactively clone tasks under light loads. Note
that the proposed schemes in Eirene are orthogonal to Dice,
so both approaches can be easily integrated to maximize the
performance gains.
Cold Data Migration. In addition to the aforementioned
Ignem [19] and DYRS [20] cold data migration systems, the
most relevant work to Coordinated Cold Data Migration is
HPMR [30] and MEMTUNE [31]. In HPMR, an inter-block
prefetching scheme prefetches the HDFS blocks from a remote
rack to the server that is supposed to process such blocks. Sim-
ilarly, MEMTUNE is proposed to exploit the DAG execution
graph of Spark jobs and prefetch data that will be used by
the next stages. Different from these prefetching schemes in
centralized job schedulers, Coordinated Cold Data Migration
enables data prefetching for short jobs in hybrid job schedulers
whose distributed schedulers are incapable of dictating data
migration solely. This is achieved by the carefully-designed
coordination between distributed schedulers and worker nodes.

VI. CONCLUSION

In this paper, we propose Eirene to improve the job la-
tency performance of short jobs for hybrid job schedulers
under fluctuating workloads. In Eirene, Coordinated Cold Data
Migration judiciously leverages long task waiting time of
short jobs during heavily-loaded periods and performs cold
data migration under the coordination between distributed
schedulers and worker nodes to shorten the time of reading
input data at the initial stage of tasks. Furthermore, Scheduler-
Aware Task Cloning proactively clones every task of short jobs
during lightly-loaded periods to address the straggler problem.
Experiment results from a prototype implementation of Eirene
on top of a state-of-the-art hybrid job scheduler demonstrate
the effectiveness and efficiency of the proposed schemes.
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