
Eunomia: A Performance-Variation-Aware Fair Job
Scheduler With Placement Constraints For

Heterogeneous Datacenters
Wei Zhou

University of Virginia
Charlottesville, USA
wz5ad@virginia.edu

K. Preston White
University of Virginia
Charlottesville, USA
kpwhite@virginia.edu

Hongfeng Yu
University of Nebraska-Lincoln

Lincoln, USA
hfyu@unl.edu

Abstract—Due to hardware upgrades and server consolidation,
it is not uncommon to witness a few generations of servers
deployed in the same datacenters. As a result, variants of fair job
schedulers are proposed to enforce fairness for constrained jobs
that have hardware or software constraints on task placement.
However, the other important characteristics resulted from server
heterogeneity, performance variation, is unfortunately overlooked
by state-of-art fair job schedulers with placement constraints.

In this paper, we propose Eunomia, a performance-variation-
aware fair job scheduler, to address the unfairness issue due
to performance variation in heterogenous clusters. Eunomia
introduces a key metric, called progress share, which is defined
as the ratio between the accumulated task progress given the
current allocation and the accumulated task progress if the user
can monopolize the cluster. Eunomia aims to equalize progress
share of jobs as much as possible, so as to achieve the same
slowdown of jobs from different users due to resource sharing
and placement constraints, regardless of performance variation.
Evaluation results show that Eunomia is able to deliver better
share fairness compared with state-of-art schedulers without
performance loss.

Index Terms—Big Data, Fair Scheduler, Placement Constraint

I. INTRODUCTION

Recent workload analysis based on traces collected from
Google compute clusters demonstrates the inherent nature of
enormous heterogeneity of machine classes and variability
of resource requirements from applications [1], [2]. It is
common to see 3 to 5 generations of machines composed of
up to 40 different configurations co-existing in an enterprise
datacenter [1]–[4]. Server heterogeneity is an outcome of
hardware upgrades and consolidation over time for achiev-
ing cost effectiveness. For cloud datacenters, cloud service
providers also aim to provide differentiated services through
variations of server configurations to attract users with var-
ious performance/price needs. For example, Amazon Web
Services (AWS) offer a variety of instance types available to
users, where the number of virtual CPUs (vCPUs) per instance
ranges from 1 vCPU to 96 vCPUs and the clock speed of a
vCPU ranges from 2.3GHz to 3.3GHz [5]. On the other hand,
complexity and variability of application software impose big
challenges to compute nodes in satisfying hardware and soft-

ware constraints including, minimal number of cores, target
micro-architecture, compatible OS kernel versions, specific
libraries, etc. [1], [2].

This renders big data fair schedulers originally developed
for homogeneous clusters in large-scale enterprise or cloud
datacenters, difficult to enforce share fairness among differ-
ent entities [6], [7] while satisfying hardware and software
constraints. To this end, fair schedulers with placement con-
straints, that is, aiming at achieving fair shares in scheduling
jobs on servers that meet the constraints specified by jobs,
become a new hot research topic [4], [8]–[12]. Choosy [8]
is the pioneer work of fair schedulers to support placement
constraints, and its core idea has been extended to support
server heterogeneity [9] and hierarchy of organizations [10].
However, none of state-of-art fair schedulers with placement
constraints takes performance variation due to server hetero-
geneity into consideration, and is hard to achieve actual share
fairness and quality of service.

In this paper, we propose Eunomia, a performance-
variation-aware fair job scheduler with placement constraints
for heterogeneous datacenters. Eunomia introduces progress
share fairness, which is meant to equalize progress share of
jobs as much as possible. Progress share of a job is defined
as the ratio between the accumulated progress of scheduled
tasks of a job, and the maximum accumulated progress of
tasks that can run in the cluster if placement constraints
are removed. In other words, the objective of Eunomia is
to make execution of concurrently scheduled jobs with the
same progress rate, regardless of performance variation due
to hardware heterogeneity. As far as we know, Eunomia is
the first job scheduler to reach share fairness for constrained
jobs in the presence of performance variation among compute
nodes.

We have implemented an Eunomia prototype and conducted
quantitative evaluations via trace-driven simulations. Simula-
tion results based on micro-benchmarks and Google traces
shows that, Eunomia is able to deliver better share fairness
compared with two state-of-art schedulers: Choosy [8] and
TSF [4], without performance loss.

II. RELATED WORK AND MOTIVATIONS

A. Fair Schedulers

Basically, a fair job scheduler aims to enforce fair sharing
of computing resources in the cluster among the users. Guar-
anteeing scheduling fairness is important for job schedulers
to support multiple tenancies in cloud datacenters. As an
example, YARN has two built-in job schedulers: Capacity
Scheduler and Fair Scheduler [13]. Both schedulers are used to
share available resources in the cluster among multiple orga-
nizations, with capacity and fairness guarantees respectively.
Capacity Scheduler partitions CPU and memory resources
based on the capacity assigned to organizations, and maintains
a job queue for each partition. Fair Scheduler is very similar
to Capacity Scheduler, but it is meant to assign available
resources to jobs fairly so that each job has an equal share
of resources.

Generally, most of existing fair schedulers are based on
the max-min fairness algorithm. Given each user has enough
demand and equal share, it maximizes the lowest share first,
then the second lowest, and then the third lowest, and so
on. In such a policy, when max-min fairness is reached,
increasing the share of a user will result in the decrease of the
share of the others with equal or smaller allocations (Pareto
efficiency) [7]. The attractive feature of the max-min fairness
algorithm is to easily support weighted fairness in resource
allocations. By assigning different weights to different users
in max-min fairness, it is able to allocate resources to each user
according to his/her share (equal share becomes one special
case where every user has the same weight), and ensure a
user’s share regardless of the demand of other users. YARN’s
Fair Scheduler is based on the max-min fairness algorithm, and
there has been a large body of literature on improving existing
fair schedulers to enable them to adapt dynamic and various
workloads and environments. Traditionally, fair schedulers
take only one resource type, CPU, into considerations, and use
the number of cores as the metric to determine the quantity of
allocations for each user. DRF (Dominant Resource Fairness)
is a generalization of the classical max-min fairness to multiple
resource types [7], DRF defines “dominant share” as the
maximum share of any resource type a user is allocated, and
aims to maximize the minimum dominant share for all the
users. DRFH is then proposed to extend the DRF idea to cloud
environments with heterogeneous servers [9]. CMMF (Con-
strained Max-Min Fairness) and its online scheduler Choosy
were proposed to extend the classic max-min fairness to
support placement constraints [8]. TSF (Task-Share Fairness)
was then proposed to extend the idea of Dominant Resource
Fairness to support placement constraints in multiple-resource
sharing environments [4]. The basic idea of TSF is to equalize
the task share of each user and maximize the minimal task
share first.

Although there are some fair schedulers of constrained jobs
taking heterogeneity into considerations as aforementioned,
they mainly focus on how to schedule jobs with demands of
multiple types of resources and supplies of various hardware

configurations. Eunomia is the first to take performance varia-
tion due to server heterogeneity into account and uses the key
metric of progress share to reach better share fairness.

B. Performance Variability

Server heterogeneity has been commonly observed and rec-
ognized in production datacenters. Usually, several generations
of machines with different hardware configurations may co-
exist in the same cluster [1], [2]. A subset of machines may
even be equipped with GPUs for special tasks like visualiza-
tion, high-performance computing, or machine learning. For
example, processors used in Amazon Web Services (AWS)
are a variety of Intel Xeon CPUs including E5-2680v2, E5-
2686v4, E5-2670, E7-8880v3, E5-2670v2, E5-2676v3 series,
and processors’ clock speeds range from 2.3GHz to up to
3.3GHz [14]. For another example, SSD storage provided in
AWS ranges from 1 × 4GB SSD to 8 × 80GB SSDs while its
HDD storage ranges from 3 × 2TB HDDs to 24 × 2TB HDDs.
Various combinations of computation and I/O configurations
lead to performance variability in heterogeneous clusters.

C. An Illustrative Example

Simply applying fair schedulers for constrained jobs to het-
erogeneous clusters cannot reach actual share fairness without
taking performance variation into account. Moreover, it is not
uncommon to witness the cases like the scheduling systems
were manipulated to gain advantages by greedy users in large
companies.

We give an example of naive fair schedulers for constrained
jobs that do not consider performance variation in Figure 1a.
As shown in this figure, we assume there are 3 machines.
Machines 1 and 2 have the same hardware configuration: two
1GHz CPUs and 2GB MEM, denoted as <2 × 1GHz CPUs,
2GB MEM>. Machine 3’s configuration is <2 × 2GHz CPUs,
2GB MEM>. Due to software constraints, Alice’s job can only
run on Machines 1 and 2, while Bob’s job can only run on
Machines 2 and 3, as shown in Figure 1a where dotted lines
denote placement constraints. The tasks of the two jobs have
the same demand: <1 CPU, 1GB MEM>.

As shown in Figure 1b, because Alice and Bob have the
equal share of the cluster, Alice can run 3 tasks (2 on Machine
1 and 1 on Machine 2), while Bob also can run 3 tasks
(2 on Machine 3 and 1 on Machine 2). This seems a fair
resource allocation, since Alice and Bob run the same number
of tasks on the cluster. However, it is clear that 2 of Bob’s
3 tasks are running on the faster CPU, and none of Alice’s
tasks are running on the faster CPU. If both jobs have the
same number of tasks and it is assumed that task execution
time is inversely proportional to CPU clock speed (note it is
not always a realistic assumption, we just want to simplify
the assumption in this example), Bob benefits more from the
allocation because his job can be completed much earlier than
Alice.

(a) User/machine assumption (b) Naive fair allocation (c) After 1st round of alloca-
tions in Eunomia

(d) Final allocations in Euno-
mia

Fig. 1: An illustrative example of resource allocations by naive fair scheduler and Eunomia

III. EUNOMIA

A. Basic Idea

To this end, we propose Eunomia, a performance-variation-
aware fair scheduler, which takes performance variation due to
server heterogeneity into considerations, and aim to equalize
the progress share for each user. In Eunomia, progress share is
computed as the ratio between the accumulated task progress
given the current allocation and the accumulated task progress
if the user can monopolize the cluster. Accumulated task
progress is defined as the sum of the product of the task
progress on a type of servers and the allocated number of
the servers of the same type. Progress share can be treated as
work slowdown of a job due to resource sharing and placement
constraints. Assume task execution time on <1 × 1GHz CPU,
1GB MEM> is p, and task execution time on <1 × 2GHz
CPU, 2GB MEM> is p/2, Table I gives the per-CPU task
progress as a function of different types of nodes. If Alice is
allocated with 2 <1 × 1GHz CPU, 1GB MEM> and 1 <1 ×
2GHz CPU, 2GB MEM>, then the accumulated task progress
of Alice’s job = 2× 1 + 1× 2 = 4.

TABLE I: CPU task progress matrix

Server Type Alice’s Task
Progress

Bob’s Task
Progress

<1GHz CPU, 1GB
MEM>

1 1

<2GHz CPU, 2GB
MEM>

2 2

According to the progress share of a user, Eunomia applies
the max-min fair allocation, that is, maximizes the lowest
progress share first, then the second lowest, and then the third
lowest, and so on. Let’s continue to use the example in 1a to
illustrate how the allocations are undertaken in Eunomia.

As shown in Figure 1c, assume Machine 1 is allocated to
Alice and Machine 3 is allocated to Bob respectively. Then,
Alice’s progress share is (2×1)/(2×1+2×1+2×2) = 2/8,
Bob’s progress share is (2 × 2)/(2 × 1 + 2 × 1 + 2 × 2) =
4/8. It is clear that Alice has the lowest progress share. Then
1 <1 × 1GHz CPU, 1GB MEM> on Machine 2 is further
allocated to Alice. Then Alice’s progress share is (3×1)/(2×
1 + 2 × 1 + 2 × 2) = 3/8, which is still the lowest progress
share. Then one more <1 × 1GHz CPU, 1GB MEM> on

Machine 2 is allocated to Alice. Then Alice’s progress share
is (4× 1)/(2× 1+ 2× 1+ 2× 2) = 4/8, and both Alice and
Bob have the same progress share now, as shown in Figure 1d.

B. Offline and Online Eunomia Algorithm

Figures 1c and 1d give an intuitive example to demonstrate
how resources are allocated by Eunomia with progressive
filling. The basic idea of progressive filling is to incrementally
reach target fair sharing through multiple rounds, and it is
widely used in various max-min fair job schedulers including
Choosy [8] and TSF (Task Share Fairness) [4]. In the first
round, Eunomia computes and equally raises progress shares
for all the users based on their resource allocations until
the maximum progress share is achieved. Then the users
whose progress shares cannot be further raised are treated
“inactive” users, and their resource allocations are frozen. In
the second round, Eunomia continues to further recompute
and equally raise progress shares of the remaining active
users while keeping those of the inactive user(s) unchanged.
Eunomia repeats the process round by round until all the users
become inactive. The progressive filling method is considered
an offline algorithm since it is impractical to implement due
to its prohibitively high computation overheads. Table II and
Algorithm 1 give terminology and a formalized algorithmic
description of the offline Eunomia algorithm with progressive
filling. Note that pi is the normalized performance vector
which are determined by the task execution time of user i
on different machines.

We now illustrate our Eunoima algorithm as shown in
Algorithm 1. In each round, Eunoima first finds the maximum
progress share st that is achieved for all active users by
solving a linear programming problem. In particular, the
linear programming problem has a non-negative variables xim,
which denotes the number of tasks of user i scheduled on
machine m, and three types of constraints: machine resource
capacity constraints, user constraints for active users and
inactive users, respectively. The active users’ constraints (1)
ensure that in each round, each active user’s progress shares is
raised equally (See Line 37). The inactive users’ constraints (2)
ensure that a user will not decrease his/her allocated number
of tasks when he/she becomes inactive (See Line 38). And
the resource capacity constraints (3) ensure that all users’
allocated number of tasks on each machine does not exceed
the machine’s capacity (See Line 39).

Algorithm 1 Offline Eunomia Scheduler Using Progressive Filling

1: procedure EUNOMIA(Lm, pi, di, ci, wi)
2: t 1 . Current round
3: U t {1, 2, ..., N} . Initialize active user set
4: for i 2 U t do
5: xi 0 . Initialize tasks number scheduled for each user
6: end for
7: while true do
8: ({xim}, st) LP(t, U t , Lm , pi , di , ci , wi)
9: ({xi}, U t+1) SATURATED(t, st , U t , Lm , pi , di , ci , wi)

10: if U t = ; then . All users saturated?
11: return {xim} . Return number of tasks scheduled on each node for each user
12: end if
13: end while
14: t t+1
15: end procedure
16: procedure SATURATED(t, st, U t, Lm, pi, di, ci, wi)
17: Vt ; . Inactive user set after round t
18: for i 2 U t do
19: for j 2 U t\{i} do
20: xj

PM
m=1 xjm . Freeze all but i

21: end for
22: ({xz

im}, sz) LP(t, {j}, Lm , pi , di , ci , wi)
23: if sz == st then . If progress share cannot be increased
24: Vt Vt [{i} . User i becomes inactive
25: end if
26: for j 2 U t\{i} do
27: xj 0 . Unfreeze number of tasks of active users
28: end for
29: end for
30: for i 2 U t do
31: xi

PM
m=1 xim . Freeze number of tasks of inactive users

32: end for
33: return ({xi}, U t\Vt)
34: end procedure
35: procedure LP(t, U t, Lm, pi, di, ci, wi)
36: maximize st subject to:
37:

1

wi

PM
m=1 fimpim

MX

m=1

ximpimcim = st, i 2 U t (1)

38:
MX

m=1

ximcim � xi, i /2 U t (2)

39:
NX

i=1

ximdir  lmr, m 2 [1, M], r 2 [1, R] (3)

40: return ({xim}, st)
41: end procedure

After all active users obtain the maximum progress share
st in round t, Eunomia does a test to determine which
users remain active. It solves the same linear programming
problem mentioned above for each active user i by keeping
all users except i at their previous round’s allocated number
of tasks, while maximizing the progress share of user i. If it
is impossible to increase user i’s progress share, then user i is
saturated and becomes inactive, and his/her allocated number
of tasks is frozen.

The offline Eunomia algorithm with progressive filling
needs to recompute and raise progress shares for the users
remaining active in each round. However, it is impractical

to implement due to its prohibitively high computation over-
heads. In practice, resource allocations and job scheduling only
come into play when (1) a new job arrives and at least one
server meets task resource demands of the job; and (2) a server
completes one task and the resource is freed for re-allocation.
Similar to other fair schedulers, we develop a simple online
Eunomia algorithm, that is, whenever resources on a server
become available, Eunomia allocates the resources to the user
with the current lowest progress share, whose constraints can
be met by the server. We measure the fairness and performance
of the online Eunomia algorithm in the following.

TABLE II: Terminology in the offline Eunomia algorithm with
progressive filling

Notation Description
N The total number of users
M The total number of machines in the cluster
R The total types of resources
Lm Resource capacity vector, where lmr is the capacity of

resource r on machine m
pi Normalized performance vector of user i, where pim is the

normalized performance of machine m for user i
di Normalized user demand vector of user i, where dir is the

demand of resource r for a task of user i
ci User constraint vector, where cim = 1 if machine m can run

tasks of user i. Otherwise, cim = 0
wi User weight where wi is the weight of user i
xim xim is the number of tasks of user i scheduled on machine

m
fim fim is the number of tasks of user i scheduled on machine

m in the hypothetical case where the cluster is monopolized
by user i without any constraints

si si is the progress share for user i where si =
xi

fi×wi

U Active user set in round t
V Inactive user set after round t

TABLE III: Node configuration in the micro-benchmark

Node
Configuration

Type-1
nodes

Type-2
nodes

Type-3
nodes

Type-4
nodes

Number of Nodes 5 5 5 5
Normalized Perfor-
mance

1.0 1.5 2.0 3.0

Number of Cores 4 4 4 4
Memory (GB) 4 4 4 4

IV. EXPERIMENTAL RESULTS

A. Experimental setup

We develop an event-driven job scheduler simulator to
conduct fairness and performance evaluations of Eunomia.
This simulator takes job traces as input and is able to simulate
the entire process and resulting events of job schedulers, from
job arrival, job queueing, dispatching tasks to nodes, receiving
completion from nodes, and job departure. Currently this
simulator is able to simulate two state-of-art fair schedulers
of constrained jobs: Choosy and TSF, as well as our proposed
Eunomia. It is also highly configurable, can be easily used
to simulate a cluster consisting of hundreds or thousands of
nodes.

B. Micro-benchmark experiment results

Micro-benchmark experiments are to demonstrate how Eu-
nomia schedules constrained jobs on heterogeneous nodes with
performance variation, and compare the fairness behaviors
of state-of-art fair schedulers like Choosy and TSF with
the proposed Eunomia. In micro-benchmark experiments, we
simulate a cluster consisting of 4-types of nodes with different
normalized performance. There are 20 nodes in total, that is,
5 nodes per type. The detailed node configuration information
is depicted in Table III.

In this micro-benchmark evaluation, we simulate 4 jobs
with nearly the same configuration arriving at the same time,
except the last job explicitly places constraints on type-4

TABLE IV: Job configuration in micro-benchmark experiment

Job configuration Job 1 Job 2 Job 3 Job 4
Start time(s) 0 0 0 0
Number of tasks 1000 1000 1000 1000
Demand of cores
per task

1 1 1 1

Demand of mem-
ory per task 1GB 1GB 1GB 1GB
Mean task execu-
tion time on Type-
1 nodes(s)

2 2 2 2

Nodes meeting
constraints

All
types of
nodes

All
types of
nodes

All
types of
nodes

Type-4
nodes

Fig. 3: Progress shares for
4 jobs over time under the
TSF scheduler

Fig. 4: Progress shares for
4 jobs over time under the
Eunomia scheduler

nodes. This is to compare how the fair job schedulers allocate
resources if a user intentionally places job constraints on high-
performing nodes and wants to take advantage of this false
job constraint. The detailed job configuration information is
depicted in Table IV.

Figures 3 and 4 shows that the arrival and completion of
4 jobs under TSF and Eunomia schedulers respectively (We
omit the result of Choosy because it is very similar to TSF).
Figure 3 clearly demonstrates for TSF Job 4 is completed
much earlier than other jobs. This is because Job 4 obtains the
most progress share (40%) until it is completed. It indicates
that TSF fails to achieve the fairness without considering
performance variation due to server heterogeneity. Figure 4
depicts how Eunomia schedules the same 4 jobs. One can
see that each job obtains equal progress share during their
execution time, and all 4 jobs are completed nearly at the
same time. It is evident that Eunomia is able to deliver better
fairness than TSF under server-heterogeneous environments
and resistant to false job placement constraint requirements
from greedy users.

C. Macro-benchmark experiment results

Macro-benchmark experiments are meant to validate the
performance of the proposed Eunomia job schedulers. Note
that the main goal of a fair job scheduler is to deliver the
guaranteed fairness instead of performance improvement, so
the purpose of macro-benchmark experiments is to show the
performance impact of Eunomia compared with other state-
of-art fair job schedulers. To this end, we take publicly avail-
able Google cluster traces as input, synthesize and feed the
workload to a simulated cluster consisting of 100 nodes. The
original Google cluster traces cannot be directly used in the

(a) Distribution of job size
(b) Distribution of machines
meeting job constraints

Fig. 5: Distribution of job size and machines meeting job
constraints in the synthesized trace

(a) Distribution of job queue-
ing delay

(b) Distribution of job comple-
tion delay

Fig. 6: Distribution of job queueing and completion delay

simulation because they are a set of sampled job events, task
events, machine events, machine attributes, task constraints,
etc., and synthesization work needs to be done to sample
and extract the job information and compose the needed job
traces including job arrival time, number of tasks, number of
CPU cores required, and amount of memory required. The
synthesized workload consists of 63,976 tasks across 2,888
jobs in 5,000 seconds. Figure 5a shows the distribution of
job sizes. We also sample and synthesize the needed node
information from Google cluster traces, for example, number
of CPU cores and amount of memory for each node. We follow
the latest way proposed by Sharma et al. [2] to synthesize job
and node constraints. Figure 5b shows the distribution of nodes
meeting job constraints. One can see about 18% of jobs can
be run at any nodes while 50% of nodes can run 35% of jobs.
In addition, we categorize 100 nodes into 10 types, and each
type has different normalized performance ranging from 1.0
to 3.25, with a step of 0.25.

Figures 6a and 6b show the CDF distribution of job queue-
ing delay and job completion delay of Choosy, TSF, and
Eunomia respectively. Job queueing delay is defined as the
duration between the arrival time of a job and the time when
its first task of the job is scheduled. Job completion delay
is defined as the duration between the arrival time of a job
and the time when its last task of the job is completed. Since
the cluster is idle when the simulation starts, we omit the
performance results of the first 288 jobs (10% of total jobs)
and consider it as a “warm-up” period of the cluster. One can
see that Eunomia achieves nearly the same job queueing delay
and job completion delay as Choosy and TSF do. It implies
that Eunomia does not cause any performance loss compared

with state-of-art fair schedulers of constrained jobs.

V. CONCLUSION

In this paper, we propose Eunomia, a performance-
variation-aware fair job scheduler, to address the unfairness
issue due to performance variation in heterogenous clusters.
Eunomia introduces a key metric, called progress share, which
is defined as the ratio between the accumulated task progress
given the current allocation and the accumulated task progress
if the user can monopolize the cluster. Eunomia aims to
equalize progress share of jobs as much as possible, so as to
achieve the same slowdown of jobs from different users due
to resource sharing and placement constraints, regardless of
performance variation. Simulation results show that Eunomia
is able to deliver better share fairness compared with state-of-
art schedulers without performance loss.

REFERENCES

[1] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and
Michael A. Kozuch. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In 3rd ACM Symposium on Cloud Computing
(SoCC ’12), 2012.

[2] Bikash Sharma, Victor Chudnovsky, Joseph L. Hellerstein, Rasekh
Rifaat, and Chita R. Das. Modeling and synthesizing task placement
constraints in google compute clusters. In 2nd ACM Symposium on
Cloud Computing (SoCC ’11), 2011.

[3] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. In 18th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’13), 2002.

[4] Wei Wang, Baochun Li, Ben Liang, and Jun Li. Multi-resource
fair sharing for datacenter jobs with placement constraints. In 2016
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’06), 2016.

[5] Amazon ec2 instance types. https://aws.amazon.com/ec2/instance-
types/.

[6] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Gravesy, Jason Lowey,
Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen OMalley,
Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. Apache hadoop
yarn: Yet another resource negotiator. In 4th Annual Symposium on
Cloud Computing (SoCC ’13), 2013.

[7] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. Dominant resource fairness: Fair allocation
of multiple resource types. In 8th USENIX conference on Networked
systems design and implementation (NSDI ’11), 2011.

[8] Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Choosy:
Max-min fair sharing for datacenter jobs with constraints. In 8th ACM
European Conference on Computer Systems (EuroSys ’13), 2013.

[9] Wei Wang, Baochun Li, and Ben Liang. Dominant resource fairness
in cloud computing systems with heterogeneous servers. In 33rd
Annual IEEE International Conference on Computer Communications
(INFOCOM ’14), 2014.

[10] Arka A. Bhattacharya, David Culler, Eric Friedman, Ali Ghodsi, Scott
Shenker, and Ion Stoica. Hierarchical scheduling for diverse datacenter
workloads. In 2013 ACM Symposium on Cloud Computing (SoCC ’13),
2013.

[11] Shanjiang Tang, Bu-Sung Lee, Bingsheng He, and Haikun Liu. Long-
term resource fairness: Towards economic fairness on pay-as-you-
use computing systems. In 28th ACM International Conference on
Supercomputing (ICS ’14), 2014.

[12] Haikun Liu and Bingsheng He. Reciprocal resource fairness: Towards
cooperative multiple-resource fair sharing in iaas clouds. In International
Conference for High Performance Computing, Networking, Storage, and
Analysis (SC ’14), 2014.

[13] Tom White. Hadoop: The Definitive Guide, 4th Edition. OReilly Media
Inc., 2015.

[14] Amazon ec2 instance types. https://aws.amazon.com/ec2/instance-
types/.

	INTRODUCTION
	Related Work and Motivations
	Fair Schedulers
	Performance Variability
	An Illustrative Example

	Eunomia
	Basic Idea
	Offline and Online Eunomia Algorithm

	Experimental Results
	Experimental setup
	Micro-benchmark experiment results
	Macro-benchmark experiment results

	Conclusion
	References

