
A Scalable Distributed Louvain Algorithm for
Large-scale Graph Community Detection

Jianping Zeng, Hongfeng Yu
Department of Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, Nebraska

Email: {jizeng, yu}@cse.unl.edu

Abstract—We present a new distributed community detection
algorithm for large graphs based on the Louvain method. We
exploit a distributed delegate partitioning to ensure the workload
and communication balancing among processors. In addition,
we design a new heuristic strategy to carefully coordinate the
community constitution in a distributed environment, and ensure
the convergence of the distributed clustering algorithm. Our
intensive experimental study has demonstrated the scalability
and the correctness of our algorithm with various large-scale real-
world and synthetic graph datasets using up to 32,768 processors.

Index Terms—large graph, community detection, graph clus-
tering, parallel and distributed processing, scalability, accuracy.

I. INTRODUCTION

Community detection, also named graph clustering, aims
to identify sets of vertices in a graph that have dense intra-
connections, but sparse inter-connections [1]. Community de-
tection algorithms have been widely used to retrieve infor-
mation or patterns of graphs in numerous applications and
scientific domains [2]–[6].

However, it remains a challenging and open research prob-
lem to parallelize a community detection algorithm and make
it scalable to tackle real-world large graphs. This is mainly
because graphs generated from many domains are referred
as to scale-free graphs, where the vertex degree distribution
of such a graph asymptotically follows a power law dis-
tribution [7]. High-degree vertices, also called hubs, create
significant challenges in the development of scalable dis-
tributed community detection algorithms. First, for community
detection, the workload associated with a vertex is typically
proportional to the vertex degree. Thus, it is difficult to
effectively partition and distribute hubs to balance workload
and communication among processors. Second, it is non-
trivial to efficiently synchronize the community states of
vertices (particularly, hubs) among processors. Without such
information, a processor cannot accurately compute its local
communities, which can further impair the correctness of final
aggregated results.

In this paper, we present a new distributed modularity-
based algorithm to boost the scalability and the correctness
of community detection, and make the following three main
contributions:

First, we extend a graph partitioning and distribution method
with vertex delegates used in distributed graph traversal al-
gorithms [8] for distributed community detection. Through a
careful duplication of hubs among processors, our method can
ensure each processor to process a similar number of edges,
and balance workload and communication among processors.

Second, we design a novel distributed Louvain algorithm
based on our new partitioning and distribution method. Our al-
gorithm can maximize modularity gain using a greedy strategy.
In addition, for low-degree vertices, the algorithm swaps their
update community information among processors through a
modified minimum label heuristic. Our design can avoid the
inter-community vertex bouncing problem that causes non-
convergence in community detection.

Third, we conduct an intensive experimental study to
demonstrate the effectiveness and the correctness of our
distributed algorithm. We not only evaluate the quality and
the scalability of community detection, but also experiment
the communication cost for large graphs, which is not fully
investigated in existing research work. Our experiments show
that our approach can process large graphs (such as UK-2007,
one of the large real-world graph datasets) in a scalable and
correct manner. To the best of our knowledge, this result is
clearly superior to the previous distributed modularity-based
community detection algorithms.

II. RELATED WORK

Modularity is one of commonly used measurements
for community quality. Since the inception of sequential
modularity-based algorithms [9], [10], several parallel algo-
rithms based on shared-memory platforms have been pro-
posed. Riedy et al. [11] presented an approach that performed
multiple pairwise community merges in parallel. Xie et al. [12]
presented a multi-threaded method that however can only
process a graph in the order of ten million edges. Bhowmick
et al. [13] proposed an OpenMP implementation that adopted
a lock mechanism and showed a limited scalability with 16
threads and graphs with 10 thousand vertices. Lu et al. [14]
implemented a shared-memory parallel Louvain algorithm
using 32 threads. In general, the scalability of these methods
is limited by the capacity of shared-memory platforms.

There is comparably limited work of distributed community
detection algorithms based on modularity. Cheong et al. [15]

presented a GPU-based Louvain algorithm that, however,
ignored the connected vertices residing in different sub-graphs
and caused an accuracy loss. Zeng et al. [16], [17] designed a
new graph partitioning method suitable for a parallel Louvain
algorithm, but their method needed a considerable prepro-
cessing time and a global reduction cost. Que et al. [18]
implemented a distributed Louvain algorithm with a nearly
balanced computational load among threads, but the inter-
processor communication was less balanced.

III. PRELIMINARIES

In a graph G = (V,E), V is the set of vertices (or nodes)
and E is the set of edges (or links). The weight of an edge
between two vertices, u and v, is denoted as wu,v, which is 1
in a undirected unweighted graph. The community detection
problem is to find overlapping or non-overlapping vertices
sets, named communities, which contain dense intra-connected
edges but sparse inter-connected edges. Without loss of gener-
ality, we only focus on non-overlapping community detection
on undirected graphs in this work. However, our approach
can be easily extended to directed graphs [15]. The non-
overlapping community set C of a graph G = (V,E) can be
represented as:

∪ci =V,∀ci ∈C and ci∩ c j = /0,∀ci ∈C (1)

A. Modularity-based Community Detection

Modularity Q is a measurement to quantify the quality of
communities detected in a graph, which can be formulated as:

Q = ∑
c∈C

(
∑

c
in

2m − (∑
c
tot

2m)2
)
, (2)

where m is the sum of all edge weights in the graph, ∑
c
in

is the sum of all internal edge weights in a community c,
calculated as ∑

c
in = ∑wu,v(u ∈ c∧ v ∈ c), and ∑

c
tot is the sum

of all edge weights, calculated as ∑
c
tot = ∑wu,v(u ∈ c∨v ∈ c).

Newman et al. [19] used a null model against the original
graph, where a high modularity score means the expected
degree of each vertex matches the degree of the vertex in the
original graph. To be simple, the intuition of Equation 2 is that
if the modularity value is high, there are many edges inside
communities but only a few between communities, indicating
a high quality of community detection.

Modularity gain, δQ, is the gain in modularity obtained by
moving an isolated vertex u into a community c ∈ C [10],
which can be computed by:

δQu→c = [
∑

c
in +wu→c

2m −
(

∑
c
tot +w(u)

2m

)2
]− [

∑
c
in

2m −
(

∑
c
tot

2m

)2
−
(

w(u)
2m

)2
] (3)

where wu→c is the total weight of edges connecting a vertex
u and a community c, and w(u) is the weighted degree of u.
After reduction, Equation 3 can be formulated as:

δQu→c =
1

2m

(
wu→c− ∑

c
tot ·w(u)

m

)
. (4)

Clauset et al. [9] introduced an agglomerative community
detection algorithm that merged the vertices achieving the
global maximum modularity values. Afterwards, Blondel et

al. [10] proposed the Louvain algorithm that is a heuristic
algorithm and can achieve better results with a lower time
complexity. Thus, it has been widely used in practice [20],
[21]. The Louvain algorithm greedily maximizes the modu-
larity gain δQu→c when moving an isolated vertex u into a
community c, which is based on Equation 4. This process con-
tinues until there is no more vertex movement to increase the
modularity. Then, the algorithm treats each community as one
vertex to form a new graph and continues the above process.
The algorithm stops when communities become stable.

B. Research Challenges

The sequential Louvain algorithm generally takes a long
time (e.g., several hours) for a large-scale graph (e.g., one
with billions of edges) using a single processor. In order to
accelerate the processing of a large-scale graph, a common
strategy is to partition and distribute a graph among multiple
processors, and then conduct computation in a distributed
and parallel fashion. However, a scale-free graph follows the
power-law degree distribution, where the majority of vertices
have small degrees, while only a few vertices (or hubs) have
extremely high degrees. The existence of hubs can cause sig-
nificant workload and communication imbalance, and inhibit
the overall performance and scalability of distributed graph
algorithms using conventional graph partitioning methods.

Fig. 1. Partitioning a graph among three processors.

We illustrate these problems using a simple graph in Fig-
ure 1 (left), where v5 is a high-degree vertex. The original
graph is partitioned on three processors, denoted as PE0, PE1,
and PE2. A vertex without a green circle is denoted as a
local vertex belonging to a processor, while a vertex around
by a green circle is a ghost vertex that resides on the other
processor. As shown in the right image of Figure 1, PE1, as-
signed with v5, has more edges and thereby has more workload
than the others. In addition, generally, ghost vertices are used
for inter-processor communication in distributed community
detection. On PE1, there are more edges connecting the local
vertices and the ghost vertices residing on PE0 and PE2,
indicating more communications between PE1 and the others
and leading to the communication imbalance problem.

Although different distributed Louvain algorithms have been
designed to avoid these problems [15], [16], [18], they suffer
from various limitations such as accuracy loss, preprocessing
overhead, or imbalanced inter-processor communication, as

discussed in Section II. We note that these distributed Louvain
algorithms use 1D partitioning, which prefers to put the
adjacency list of a vertex into a single partition.

We aim to address the problems associated with hub
vertices to enable scalable distributed community detection
for large scale-free graphs. We are inspired by the recent
work conducted by Pearce et al. [8]. To optimize parallel
traversal of scale-free graphs, Pearce et al. proposed a parallel
partitioning method that duplicates high-degree vertices and
re-distributes their associated edges among processors. These
duplicated hubs are named delegates. Using this method, they
can ensure that each processor contains a similar number
of edges, and meanwhile achieve balanced communication
among processors.

At first glance, delegate partitioning appears a viable method
leading to a straightforward parallelization solution for the
Louvain algorithm. However, there remain two challenges:
• It is challenging to evaluate the modularity gain δQ for

each vertex when updating its community membership in a
distributed environment. In our case, due to the involvement
of hub delegates on a processor, it is non-trivial to make
sure each delegate vertex has a synchronized and accurate
community state and avoid a high communication cost
across processors.

• For the sequential Louvain algorithm, it is trivial to maintain
(or improve) the convergence property, because it always
increases the modularity when moving a vertex to a com-
munity using the greedy policy. However, in a distributed
environment, a ghost vertex may be shared by multiple
processors, which can incur the bouncing problem of the
ghost vertex from different communities on different proces-
sors, and thereby impair the convergence of the distributed
parallel algorithm.

These two issues can decimate the scalability and the accuracy
of distributed community detection for handling the ever-
increasing volume of graph data.

We develop a new approach to address these challenges. We
will first introduce the framework of our distributed Louvain
algorithm (Section IV-A), and then lay out the key components
of the framework, including a distributed delegate partition-
ing strategy to balance workload and communication among
processors (Section IV-B), an enhanced heuristic strategy to
assure the convergence of parallel clustering (Section IV-C),
our scalable local clustering on each processor (Section IV-D),
and distributed graph merging (Section IV-E).

IV. OUR METHOD

A. Distributed Louvain Algorithm Framework
Algorithm 1 shows the framework of our distributed Lou-

vain algorithm that consists of four stages:
The first stage distributed delegate partitioning corresponds

to Line 1, where the algorithm uses a delegate partitioning to
duplicate hubs among processors to make sure each processor
have a similar number of edges.

The second stage is referred as parallel local clustering
with delegates, corresponding to Lines 2 to 7. In this stage,

Algorithm 1 Distributed Louvain Algorithm
Require:

G = (V,E): undirected graph, where V is vertex set and
E is the edge set;
p: processor number.

Ensure:
C: resulting community;
Q: resulting modularity.

1: Distributed Delegate Partitioning(G, p);
2: repeat
3: Parallel local clustering with delegates
4: Broadcast delegates achieving the highest modularity

gain
5: Swap ghost vertex community states
6: Update community information on each processor
7: until No vertex community state changing
8: Merge communities into a new graph, and partition the

new graph using 1D partitioning
9: repeat

10: repeat
11: Parallel local clustering without delegates
12: Swap ghost vertex community states
13: Update community information on each processor
14: until No vertex movement
15: Merge communities into a new graph
16: until No improvement of modularity

the subgraph on each processor consists of low-degree ver-
tices and duplicated hubs. The algorithm calculates the best
community movement for each vertex as Line 3. In order to
make sure each delegate have consistent community movement
information and modularity gain, the algorithm broadcasts the
information of delegates that achieve the maximum modularity
gain. Although this is a collective operation involving all
processors, its cost is marginal because of a limited number
of hubs. In Section V-C, we will show the communication
time. After the information communication from Lines 4 to 5,
the algorithm updates local community information, such as
∑

c
tot and ∑

c
in. This process continues until there is no more

community changing for each vertex.
The third stage distributed graph merging, corresponding to

Line 8, merges the communities into a new graph. As the new
graph is several order smaller than the original graph, we then
apply 1D partitioning on the new graph.

The fourth stage, corresponding to Lines 10 to 14, processes
the subgraphs in a way similar to Lines 2 to 7, except
there are no delegated vertices in the subgraphs. Thus, this
stage is referred as parallel local clustering without delegates.
The algorithm stops when there is no more improvement of
modularity.

B. Distributed Delegate Partitioning

We extend the delegate partitioning proposed by Pearce et
al. [8] as a preprocessing step in our parallel community de-
tection algorithm for large scale-free graphs. The basic idea of

(a) (b) (c)

Fig. 2. (a): A graph is partitioned on three processors using 1D partitioning, where v5 is a high-degree vertex, and PE1 has higher workload
and communication overhead. (b): We duplicate v5 on all processors and the edge numbers on the processors are 14, 8, and 14, respectively.
(c): We reassign the edges whose source vertex is v5, and balance the final load partition, where the edge number on each processor is 12.

delegate partitioning is that vertices with degrees greater than
a threshold are duplicated and distributed on all processors,
while a basic 1D partitioning is applied to low-degree vertices.
Ideally, after partitioning, an outgoing edge whose source
vertex is high-degree will be stored in the partition containing
the edge’s target vertex. In this way, the delegate and the target
vertex will co-locate in the same partition. Therefore, a similar
number of edges on each processor can be assured.

For an input graph G = (V, E) with a vertex set V and an
edge set E, the delegate partitioning can be concluded as the
following steps on p processors:

First, we detect high-degree vertices based on a threshold
dhigh, and duplicate them on all processors. Accordingly, the
edge set E is partitioned into two subsets: Ehigh (whose
source vertex degrees are greater than or equal to dhigh) and
Elow (whose source vertex degrees are less than dhigh). The
delegates of high-degree vertices are created on all processors.
After this step, the local vertex set on each processor includes
the duplicated high-degree vertices, as well as the low-degree
vertices partitioned by the traditional 1D partitioning.

Second, we define a round-robin 1D partitioning, where
we partition the edges in Elow according to their source
vertex partitioning mapping, and partition the edges in Ehigh
according to their target vertex partitioning.

Third, we correct possible partition imbalances. Ideally, the
number of edges locally assigned to each processor (i.e., Elow
and Ehigh) should be close to |E|

p . However, this may not be
gained through the first two steps. In order to achieve this
goal, we reassign an edge in Ehigh to any partition because
its source vertex is duplicated on all processors. In particular,
we reassign these edges to those processors whose number
of edges is less than |E|

p . Pearce et al. [8] categorized the
processors into the master and the workers, and differentiated
the delegates among them. In our work, we do not differentiate
the delegates among the processors.

Figure 2 shows an example of this delegate partitioning,
where a graph G is partitioned on three processors.

C. Heuristic for Convergence

In the original sequential Louvain algorithm, a vertex can
always move to a community according to the greedy strategy.
However, this case may not be always held in a distributed

(a) Without minimum label heuristic

(b) With minimum label heuristic

Fig. 3. Examples without and with the minimum label heuristic
strategy using two vertices and two processors. (a): The vertices
vi and v j are supposed to be in the same community. However,
after swapping community information, they are still in the different
communities. (b): Applying the minimum label strategy, a vertex is
only allowed to move into the community with a smaller community
ID. In this way, vi and v j can have a consistent community.

environment, as each processor concurrently updates its local
modularity gain based on the latest snapshot information of
its local subgraph. There can exist some edges across two
processors (i.e., the two endpoints of such an edge belonging
to different processors). In this case, swapping the community
information of these two vertices can delay the convergence
of the parallel algorithm.

We show a simple example of this problem in Figure 3(a),
where two vertices vi and v j are the endpoints of an edge.
They are located on two different processors, PE0 and PE1.
On PE0, the vertex vi is the local vertex and the vertex v j is
the ghost vertex, and vice versa on PE1. On each processor,
a vertex with a green circle denotes a ghost vertex.

Initially, a vertex is in its own community of size one and the
community ID is the vertex ID, i.e., C (vi) = i and C (v j) = j,
where the function C denotes the community ID of a vertex or
a community. After the local modularity gain calculation using
Equation 4, we can easily see that both vertices move to each
other’s community on their local processors to increase the
local modularity gain, i.e., C (vi) = j on PE0 and C (v j) = i
on PE1, as shown on the red dash arrows in Figure 3(a). This,
however, cannot gain any modularity for the global graph. This

phenomenon can incur the vertex bouncing problem between
two different communities, and thus inhabit the convergence
of the algorithm.

Lu et al. [14] proposed a minimum label heuristic to
address this problem for shared-memory architectures. Given
two candidate communities with the same modularity gain, this
strategy only allows a vertex to be moved into a community
with the smaller community ID, and thus prevents the bounc-
ing problem. In Lu et al.’s work, this strategy is applied on
each edge of a graph, where edges are concurrently processed
by multiple threads. In our case, we only need to consider
the minimum label heuristic for those edges connecting local
vertices and ghost vertices. Figure 3(b) shows the community
states of both vertices by applying the minimum label strategy.
We assume that C (vi)<C (v j) (i.e., i < j). Thus, the vertex v j
moves to the community of vi (i.e., C (v j) = i) on PE1 while
vi remains in its own community C (vi) on PE0.

Fig. 4. A complex case of moving a local vertex vi to one of the
communities cx, cy, cz, and cz′ . The circles highlighted in green, cz
and cz′ , are the singleton communities, and each only contains one
ghost vertex. The square cx is the local community on the same
processor as vi, and can contain one or more vertices. The square
highlighted in green cy is the community belonging to other processor
and can contain one or more vertices.

However, this heuristic is not sufficient for more complex
cases where a vertex connects to multiple communities that
have different structures in a distributed environment. Consider
the case in Figure 4, where we would like to move a local
vertex vi to one of the communities cx, cy, cz, and cz′ . cz
and cz′ are the singleton communities, and each only contains
one ghost vertex. cx is the local community on the same
processor as vi, and can contain one or more vertices. cy is the
community belonging to other processor, and can contain one
or more vertices. In this example, we assume that δQvi→cx

= δQvi→cy = δQvi→cz = δQvi→cz′ , and cz has the minimum
community label. According to the minimum label heuristic,
the vertex vi should be moved to the community cz. In their
work, Lu et al. [14] mentioned that this may only delay
the convergence, but will not affect consistency with the
sequential algorithm, because in a shared memory architecture
this community update can be easily communicated among the
processing threads or cores in the shared memory. However,
in a distributed environment, because each processor concur-
rently updates their local communities in their own memory,
the community updated information cannot be broadcasted
immediately during the process of local clustering. As the
community cz only contains one vertex, it can be moved to
other communities on its own processor, and this information
cannot be instantly sent to the other processors. Therefore,

the modularity gain of moving vertex vi to the community
cz can lead to an inefficient or wrong movement, due to the
unawareness of the update of cz on its own processor. This
impairs not only the convergence but also the consistent results
compared to the sequential Louvain algorithm.

To determine the movement of the vertex vi in this more
complex (and also more general) situation where vi connects
to multiple communities, we enhance the simple heuristic
strategy. For a simple situation where only one of the δQ
values is maximum for a vertex, we can move it to the
community with the maximum δQ value without using any
heuristic. For a more complex situation where there are several
communities who have the same δQ for a vertex, we develop
a new heuristic to make sure the vertex can move to a
local community. The following cases are considered in our
heuristic with the example in Figure 4:
• When the δQ values of all the communities are equal for a

vertex, we move the vertex to a local community: If δQvi→cx

= δQvi→cy = δQvi→cz = δQvi→cz′ , then C (vi) = C (cx).
• When the δQ values of the ghost communities are equal,

but larger than the δQ values of the local communities for
a vertex, we move the vertex to the ghost community with
more than one vertex: If δQvi→cy = δQvi→cz = δQvi→cz′ >
δQvi→cx , then C (vi) = C (cy).

• When the δQ values of the singleton ghost communities are
equal, but larger than the δQ values of the other communi-
ties for a vertex, we move the vertex to the singleton ghost
community with the minimal label: If δQvi→cz = δQvi→cz′ >
δQvi→cx ,δQvi→cy , then C (vi) = min(C (cz),C (cz′)).

In this enhanced strategy, we prefer to first move vi to
local communities, because the community information can
be updated immediately on the local processor. Otherwise,
we attempt to move vi to a ghost community with multiple
vertices. Although the ghost community can be updated on its
own processor, likely the vertices of this ghost community
cannot be entirely changed. Finally, if only moving vertex
vi to singleton ghost communities can archive the maximum
modularity gain, the minimum label strategy is applied. In
this way, we can overcome the disadvantage of the simple
minimum label strategy and achieve the convergence of our
parallel algorithm and the consistency with the result of se-
quential algorithm, which will be evaluated and demonstrated
in Section V-A.

D. Parallel Local Clustering

Algorithm 2 shows the details of our parallel local clustering
of a subgraph Gs = (Vs,Es) on a processor PEi, where Vs is
the vertex set and Es is the edge set of the subgraph Gs. For
simplicity, we only show the algorithm with delegated vertices.
For the case without delegates, the only modification is not to
classify the vertex set Vs into Vlow and Vhigh, where Vlow is
the set of low-degree vertices and Vhigh is the set of global
high-degree vertices (i.e., hubs).

The algorithm first initializes each vertex as a unique
community, described as Lines 2 to 7. Then, the algorithm cal-
culates the modularity gain for each vertex u∈Vlow∪Vhigh, and

Algorithm 2 Parallel Local Clustering
Require:

Gs = (Vs,Es): undirected subgraph, where Vs is vertex set
and Es is the edge set;
Vs =Vlow∪Vhigh: subgraph vertex set, where Vlow is low-
degree vertices and Vhigh is global high-degree vertices;
C0

s : initial community of G0
s ;

θ : modularity gain threshold;
PEi: local processor.

Ensure:
CPEi : local resulting community;
QPEi : local resulting modularity;
Q: global resulting modularity.

1: k = 0 // k indicates the inner iteration number
2: for all u ∈V k

s do
3: Set Ck

u = u
4: Set mu = 0
5: Set ∑

Ck
u

in = wu,u,(u,u) ∈ Ek

6: Set ∑
Ck

u
tot = wu,v,(u,v) ∈ Ek

7: end for
8: repeat
9: for all u ∈Vlow∪Vhigh do

10: if Cuk′ = argmax(δQCk
u→Ck′

u
)> mu then

11: C (u) = min(C (Ck′
u),C (Ck

u))
12: end if
13: end for
14: Synchronize Vhigh states
15: Synchronize ghost vertex community states
16: for all u ∈Vlow∪Vhigh do
17: ∑

Ck
u

tot = ∑
Ck

u
tot−w(u); ∑

Ck
u

in = ∑
Ck

u
in −wu→Ck

u

18: ∑
Ck′

u
tot = ∑

Ck′
u

tot +w(u); ∑
Ck′

u
in = ∑

Ck′
u

in +wu→Ck′
u

19: end for
20: //Calculate partial modularity
21: QPEi = 0
22: for all c ∈CPEi do

23: QPEi = QPEi +
∑

Ck
u

in
2m − (∑

Ck
u

tot
2m)2

24: end for
25: Q = Allreduce(QPEi)
26: k = k+1
27: until No modularity improvement

updates the state information of the vertex u according to our
modified minimum label heuristic, as described from Lines 9
to 13. From Lines 14 to 19, the algorithm communicates
the community information of delegated vertices and ghost
vertices across the processors, and then updates the community
information on the local processor. From Lines 21 to 24,
the algorithm calculates a partial modularity according to the
community information on the local processor. Through the
MPI Allreduce operation in Line 25, each processor acquires
a global modularity value.

From Lines 9 and 16 in Algorithm 2, we can clearly see

Algorithm 3 Distributed Graph Merging
Require:

Gs = (Vs,Es) : undirected subgraph, where Vs is vertex set
and Es is the edge set;
Vs =Vlow∪Vhigh : the vertex set of subgraph, where Vlow
is low-degree vertices and Vhigh is global high-degree
vertices;
PEi: local processor.

Ensure:
Gnew

s = (V new
s ,Enew

s) : undirected subgraph, where V new
s is

vertex set containing all vertices belonged to PEi and Enew
s

is the edge set whose source vertex is in V new
s

1: for all u ∈V k
s do

2: Send u to PE j (u belonged to PE j)
3: end for
4: for all (u,v) ∈ Ek

s do
5: Send (u,v) and wu,v to PE j (u belonged to PE j)
6: end for
7: for all u received do
8: Insert u into V new

s
9: end for

10: for all (u,v) and wu,v received do
11: Insert (u,v) and wu,v into Enew

s
12: end for

that the execution time of parallel local clustering is largely
proportional to the size of Vlow∪Vhigh. Our distributed delegate
partitioning (Section IV-B) ensures that each processor is
assigned a similar number of low-degree vertices and high-
degree vertices. Therefore, our parallel local clustering can
achieve well balanced workload among processors. Although
the synchronization operation has been used, its cost is
marginal because of a limited number of hubs. In Section V,
we will show the detailed performance evaluation results to
demonstrate the workload balancing and the scalability of our
algorithm.

E. Distributed Graph Merging

This step is relatively simple and intuitive. On each pro-
cessor, the algorithm merges the local communities into a
new graph, where a community becomes a vertex with the
same community ID in the new merged graph. Then, the
processor sends the information of the new vertices and their
adjacent edges to their belonging processors according to the
1D partitioning. Algorithm 3 shows the steps for constructing
the merged graph. From Lines 1 to 6, the algorithm sends the
local vertices and their adjacent edges to the related processors.
From Lines 7 to 12, each processor receives the vertices and
edges, and builds the subgraphs.

V. EXPERIMENTS

We show the experimental results of our distributed Louvain
algorithm. We first evaluate the community detection results,
including the convergence of our algorithm and the quality
of communities detected. Then, we show the performance of

TABLE I
DATASETS.

Name Description #Vertices #Edges
Amazon [22] Frequently co-purchased products from Amazon 0.34M 0.93M
DBLP [22] A co-authorship network from DBLP 0.32M 1.05M
ND-Web [23] A web network of University of Notre Dame 0.33M 1.50M
YouTube [22] YouTube friendship network 1.13M 2.99M
LiveJournal [24] A virtual-community social site 3.99M 34.68M
UK-2005 [25] Web crawl of the .uk domain in 2005 39.36M 936.36M
WebBase-2001 [24] A crawl graph by WebBase 118.14M 1.01B
Friendster [25] An on-line gaming network 65.61M 1.81B
UK-2007 [25] Web crawl of the .uk domain in 2007 105.9M 3.78B
LFR [26] A synthetic graph with built-in community structure 0.1M 1.6M
R-MAT [27] A R-MAT graph satisfying Graph 500 specification 2SCALE 2SCALE+4

BA [28] A synthetic scale-free graph based on Barabasi-Albert model 2SCALE 2SCALE+4

our algorithm, including the analysis of the partitioning, the
execution time breakdown, and the scalability.

Table I summarizes the datasets used in our experiment.
In particular, we use three large real-world datasets (i.e.,
WebBase-2001, Friendster, and UK-2007) that all contain
more than 1 billion edges. In addition, there are more than 3
billion edges in UK-2007. Besides the real-world graphs, we
also use R-MAT [27] and BA (Barabasi-Albert) [28] to gen-
erate large synthetic datasets. We implemented our algorithm
using MPI and C++, and employed Titan, a supercomputer
operated by the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, in our experiment. We set
the threshold dhigh as the number of processors to determine
high-degree vertices (i.e., hubs).

A. Community Result Analysis

We first compare the convergence of our parallel algorithm
to the sequential algorithm for all the datasets. Figure 5
shows the selected results with six datasets, and similar results
have been obtained on the other datasets. We observe that
our parallel Louvain algorithm with our enhanced heuristic
can achieve a converged modularity close to the sequential
Louvain algorithm. However, with the simple minimum label
heuristic proposed by Lu et al. [14], the modularity values
of the final results are significantly lower than the sequential
algorithm and our enhanced heuristic. For example, for the
DBLP dataset, the modularity of the simple heuristic is 0.57,
while the ones of the sequential algorithm and our enhanced
heuristic are 0.80 and 0.82, respectively. For the Amazon
dataset, the modularity values are 0.53, 0.89, and 0.93 for the
simple heuristic, the sequential algorithm, and our solution,
respectively. This shows that our solution has successfully ad-
dressed the challenging convergence problem when involving
delegates in parallel community detection. Our heuristic can
effectively suppress the vertex bouncing issue, which is non-
trivial when the communities of multiple vertices (in particular,
ghost vertices) are determined concurrently across processors.

We also note that sometimes our parallel algorithm needs
one more iteration than the original sequential algorithm. We
suspect that in each iteration, our parallel algorithm may
compute a slightly smaller modularity gain value compared
to the sequential algorithm. Such a possible smaller difference
may be accumulated to increase the iteration number of our al-
gorithm to be converged. We will investigate this phenomenon
in our future work.

Fig. 5. Comparison of modularity convergence between the sequential
Louvain algorithm, our parallel Louvain algorithm using the simple
minimum label heuristic, and our parallel Louvain algorithm using
the enhanced heuristic.

Apart from modularity, we have examined other quality
measurements to make sure that our algorithm can achieve
high quality results of community detection. The measure-
ments include Normalized Mutual Information (NMI), F-
measure, Normalized Van Dongen metric (NVD), Rand Index
(RI), Adjusted Rand Index (ARI) and Jaccard Index (JI).
Among all these measurements, except NVD, a high value
corresponds to a high quality [29]. Table II shows the results
for two datasets. For the most important measurement NMI,
their values are all above 0.80, indicating a high quality of
community detection [29].

TABLE II
QUALITY MEASUREMENTS.

Dataset NMI F-measure NVD RI ARI JI
ND-Web 0.8021 0.8111 0.2640 0.9688 0.6039 0.6651
Amazon 0.8455 0.8075 0.1678 0.9733 0.6887 0.8432

B. Workload and Communication Analysis

Most existing distributed Louvain algorithms employ the
simple 1D partitioning strategy, and thus suffer from accuracy
loss [15], preprocessing overhead [16], or imbalanced inter-
processor communication [18]. One unique feature of our
parallel Louvain algorithm is the usage of delegate partitioning
strategy that facilitates us to address the issues incurred in
the existing work. We investigate clustering workload and
communication costs affected by the 1D partitioning and our
delegate partitioning.

(a) (b)

(c) (d)

Fig. 6. Comparison of workload and communication costs using
the 1D partitioning and our delegate partitioning with the UK-2007
dataset: (a) the workload of each of 4096 processors; (b) the local
ghost vertex number of each of 4096 processors; (c) the workload
imbalance on 1024, 2048 and 4096 processors; (d) the maximum
local ghost vertex number among 1024, 2048 and 4096 processors.

Figure 6 shows the results using the large real-world dataset
UK-2007. We first investigate clustering workload affected by
different partitioning methods. Figure 6(a) shows the local
edge number on each of 4096 processors, which is related to
the local clustering running time and can be used to estimate
workload of clustering on each processor. We can clearly see
that delegate partitioning can make each processor have similar
number of edges. With 1D partitioning, the maximum local
edge number can be two orders larger than that in delegate
partitioning.

We also explore communication costs affected by the 1D
partitioning and our delegate partitioning. Figure 6(b) com-
pares the local ghost vertex number of each of 4096 processors
using these two partitioning methods. Communication cost
correlates with ghost vertex number in the parallel algorithm.
With 1D partitioning, there are several processor containing
nearly 1 million ghost vertices, while in delegate partitioning
each processor has similar ghost vertex number that is about
0.4 million. This indicates that a balanced communication can
be achieved using delegate partitioning. Through the analysis
of delegate partitioning, we note that the algorithm distributes
the edges connecting hubs and low-degree vertices evenly on
different processors. That is why in delegate partitioning the
ghost vertex number on each processor can be larger than that
on some processor using the 1D partitioning. However, this
will not make the communication as a performance bottleneck.
We will show this in Section V-C.

We further compare these two partitioning methods with an
increasing number of processors. For each processor number,

Fig. 7. Running time comparison between our approach and an
existing distributed Louvain algorithm with the 1D partitioning [15].

we define a measure of workload imbalance W as

W =
|Emax|
|Eavg|

−1, (5)

where |Emax| denotes the maximum local edge number among
processors, and |Eavg| denotes the average local edge number
among processors. Thus, W expresses the folds that the maxi-
mum workload is more than the average workload. Figure 6(c)
shows that the results of workload imbalance measure W .
We can see that the use of the 1D partitioning can increase
the workload imbalance among processors when using more
processors, while the workload imbalance is close to zero
with our delegate partitioning. This shows that our delegate
partitioning can achieve a more scalable performance than the
1D partitioning, which will be verified in Section V-D.

Figure 6(d) shows that the maximum local ghost vertex
number among processors with different numbers of proces-
sors. With an increasing number of processors, the maximum
local ghost vertex number using the 1D partitioning is reduced
slightly. This indicates that the communication cost can remain
the same with more processors. Our delegate partitioning can
effectively reduce the maximum local ghost vertex number
when increasing the processor number. Although the maxi-
mum local ghost vertex of our method can be higher than that
of the 1D partition with a fewer number of processors, our
method can reduce the ghost vertices in a scalable manner,
leading to more scalable communication performance.

Through this analysis, we observe that the delegate par-
titioning can significantly balance workload and communi-
cation, and thereby fundamentally ensure that our parallel
algorithm can outperform the distributed Louvain algorithms
simply based on the 1D partitioning [15], [16], [18]. Among
these existing work, we implemented an MPI version of
Cheong’s work [15] using the 1D partitioning. In Figure 7,
we compare the total running time between our approach and
the distribution implementation of Cheong’s work using the
1D partitioning. It clearly shows the advantage of the delegate
partitioning. In order to compare how much this workload
balance can affect the total running time, we compare the
running time between our method and the distributed Louvain

(a) (b)

Fig. 8. (a): Running times of the first and second clustering stages for
UK-2007 on 1024, 2048 and 4096 processors. (b): Time breakdown
of one inner clustering iteration using delegates for UK-2007 on 1024,
2048 and 4096 processors.

algorithm with 1D partitioning. As shown in Figure 7, we can
find that for smaller datasets (e.g., the Amazon and ND-Web
datasets), even though there is some workload difference, the
total running time is similar. However, with the size of dataset
increasing, the running time of distributed Louvain using the
1D partitioning also increase. In particular, on UK-2005, the
simple distributed algorithm with the 1D partitioning cannot
complete when using 1024 processors or more. This is because
one processor has much more workload than others and needs
more time for local clustering and swapping ghosts.

C. Execution Time Breakdown

We examine the main performance components of our
algorithm using large real-world datasets. Figure 8(a) shows
the total clustering time of our algorithm using the UK-2007
dataset, including the times of the two clustering stages (i.e.,
the first parallel local clustering stage with delegates, and the
second parallel local clustering stage without delegates). For
simplicity, the graph merging time is included in the clustering
time. There is only one step in the first parallel local clustering
stage with delegates, while there can be multiple steps in graph
clustering and merging in the second parallel local clustering
stage without delegates. As we can see, the first clustering
stage uses most of the running time. After this stage, the
original graph is merged into a new graph that can be several
order smaller than the original graph. Therefore, the running
time of the section clustering stage becomes much shorter.

As we previously stated, in the first clustering stage with
delegates, there can be multiple iterations to calculate modu-
larity gain of each vertex and swap community information.
Therefore, in Figure 8(b), we show one iteration of clustering
with delegates on each processor. For each iteration, our
clustering contains four parts, which are Find Best Community,
Broadcast Delegates, Swap Ghost Vertex State, and Other. In
Find Best Community, the algorithm calculates the modularity
gain for each vertex. After this step, each processor uses
Broadcast Delegates to broadcast the community information
of those vertex delegates with the maximum modularity gain,
and uses Swap Ghost Vertex State to send the community info
of vertices who are the ghost vertices on other processors. As
we can see, the collective operation for all delegated vertices
is just a small portion of each iteration. The Other part mainly

Fig. 9. Scalability study of our algorithm using different datasets
and different processor numbers. Our total clustering time contains
the times of the first clustering stage with delegates and the second
clustering stage without delegates. Note that each plot is in a
logarithmic scale. The results clearly show the scalable performance
of our parallel clustering algorithm with the different sizes of datasets.

updates the information of communities, such as ∑in and
∑tot , which are responsible for computing the temporal partial
modularity of each subgraph and using the MPI Allreduce to
calculate the global modularity.

Unsurprisingly, in Figure 8(b), we can notice that the time
of Find Best Community, Broadcast Delegates and Other are
reduced with the increasing number of processor number. The
time of Find Best Community is related with the workload
on each processor. With delegates partitioning, we can evenly
partition the workload among processors. With the increasing
number of processors, the number of high-degree vertices
is decreasing, and thus the time of Broadcast Delegates
can also be decreased. While in Other part, our algorithm
mainly updates local community information for calculating
temporal partial modularity, which is related with the number
of local communities. For Swap Ghost Vertex State, we find
its execution time is relatively stable, and does not change
significantly with the processor number. The reason is that
when the graph is partitioned among more processors, the
numbers of ghost vertex on the different number of processors
are still the same order (Figure 6(d)) and all these ghost
vertices need to be swapped in each iteration.

D. Scalability Analysis

We examine the parallel performance of our algorithm on
the real-world datasets of different sizes. Besides the small
real-world datasets, such as ND-Web and YouTube, we also
show the performance on large real-world datasets, including
LiveJournal (medium size), UK-2005 (large size), WebBase-

(a) (b)
Fig. 10. Parallel efficiency of our algorithm on (a) the Amazon,
DBLP, ND-Web, and YouTube datasets; (b) the LiveJournal, UK-
2005, WebBase-2001, and Friendster datasets.

(a) (b)
Fig. 11. (a): Strong scaling of the clustering time of our algorithm
with up to 32768 processors using the R-MAT and BA with the global
vertex size of 230. (b): Weak scaling of the clustering time of our
algorithm with up to 32768 processors using the R-MAT and BA
with the global vertex sizes of 229, 230, and 231 on each processor
from left to right.

2001 (large size), Friendster (large size), and UK-2007 (very
large size). As our algorithm first clusters subgraphs with
delegates and then clusters merged graphs without delegates,
the running time of our algorithm is mainly the total time
of these two clustering stages. Figure 9 shows the running
times of our parallel algorithm on the real-world datasets. Our
parallel clustering algorithm achieves a scalable performance
with the different sizes of datasets.

Figure 9 also shows the sequential time on all datasets
except WebBase-2001 and Friendster, because the sequential
time on these two datasets are too long. We can easily see
the unsustainable running time of the sequential Louvain
algorithm with the increasing graph size. We also see that the
delegate partitioning time is almost negligible for all datasets.

In order to quantify the scalability of our algorithm, we
measure the parallel efficiency, more specifically, the relative
parallel efficiency τ that is defined as:

τ = p1T (p1)
p2T (p2)

, (6)

where p1 and p2 are the processor numbers, and T (p1) and
T (p2) are their corresponding running times. Figure 10(a)
and (b) show the parallel efficiency of our algorithm for the
small real-world datasets and the large real-world datasets.
We find that in most cases, our parallel algorithm can achieve
more than 65% parallel efficiency and in some cases it can
even achieve more than 100% efficiency. We investigated
our parallel clustering on the LiveJournal dataset, and found
that on 512 processors our parallel clustering has a fewer
(around 50% less) clustering iteration number than that on
256 processors. This explains that the parallel efficiency is

more than 100% in this case. Similar observations were also
obtained for the WebBase-2001 and UK-2005 datasets on
512 and 1024 processors, where the parallel efficiency is
over 100%. In addition, Figure 9 shows the first clustering
stage with delegates is the dominant part and its running time
is effectively reduced with the increasing processor number.
This states that through duplicating high-degree vertices, our
approach can effectively evenly distribute the workload of
graph clustering among all processors.

In order to further examine the scalability of our algorithm,
we also use R-MAT [27] and BA [28] to generate synthetic
datasets. As shown in Figure 11(a), we test the strong scaling
of our algorithm, where we set the vertex scale to 30 and the
edge scale is 34. For R-MAT, the clustering time was reduced
from 194.15 seconds to 60.32 seconds when we increased the
processor number for 8192 to 32768. For BA, the clustering
time was reduced from 302.16 seconds to 95.45 seconds. We
can see that even using these very large synthetic datasets, our
distributed clustering algorithm can still achieve around 80%
parallel efficiency with up to 32768 processors.

Figure 11(b) shows the weak scaling results. We use R-
MAT and BA synthetic graphs, the vertex scale is set to 20
on each computing node, therefore vertex scale is 16 on each
processor (each computing node contains 16 processors). From
8192 to 16384 to 32768 processors, the global graph vertex
sizes are 229, 230, and 231, respectively. We notice that for
R-MAT graphs, our algorithm has a negative slope of weak
scaling. We investigated it and inferred that R-MAT graphs are
not entirely scale-free, and our algorithm uses less iteration to
converge although the graph size is increasing. For BA graphs,
our algorithm maintains a nearly horizontal line.

These experimental results showed that our method can
achieve balanced computation workload and communication
among massive processors using large graphs, which clearly
demonstrated an improved scalability over the previous state-
of-the-art using the 1D partitioning [15], [16], [18].

VI. CONCLUSION

In this paper, we present a new and scalable distributed
Louvain algorithm. Using the vertex delegates partitioning, our
algorithm can achieve balanced workload and communication
among massive processors with large graphs. Moreover, we
develop a collective operation to synchronize the information
on delegated vertices, and design a new heuristic strategy to
ensure the convergence of the algorithm. Through intensive
experiments, we analyze and compare the correctness, the
workload, and the communication of our algorithm to the other
methods. Our algorithm clearly shows a superior scalability
and accuracy over the existing distributed Louvain algorithms.

In the future, we would like to further accelerate our paral-
lel community detection approach by leveraging the power
of graphics processing units (GPUs). In our current CPU-
based implementation, the communication cost is comparably
smaller than the computational cost of clustering. Although
it appears a less difficult task to use GPUs to parallelize
local clustering on a single compute node, inter-processor

communication cost can possibly become a major performance
bottleneck when the GPU-based clustering time can be signif-
icantly reduced. To this end, we plan to improve our graph
partitioning method and investigate possible ways to further
reduce the communication cost.

ACKNOWLEDGMENT

This research has been sponsored in part by the National
Science Foundation through grants IIS-1423487, IIS-1652846,
and ICER-1541043, and the Department of Energy through
the ExaCT Center for Exascale Simulation of Combustion in
Turbulence.

REFERENCES

[1] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[2] S. Harenberg, G. Bello, L. Gjeltema, S. Ranshous, J. Harlalka, R. Seay,
K. Padmanabhan, and N. Samatova, “Community detection in large-scale
networks: a survey and empirical evaluation,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 6, no. 6, pp. 426–439, 2014.

[3] K. D. Devine, E. G. Boman, and G. Karypis, “Partitioning and load
balancing for emerging parallel applications and architectures,” Parallel
Processing for Scientific Computing, vol. 20, p. 99, 2006.

[4] A. Y. Ng, M. I. Jordan, Y. Weiss et al., “On spectral clustering: Analysis
and an algorithm,” Advances in neural information processing systems,
vol. 2, pp. 849–856, 2002.

[5] Y.-W. Huang, N. Jing, and E. A. Rundensteiner, “Effective graph
clustering for path queries in digital map databases,” in Proceedings
of the fifth international conference on Information and knowledge
management. ACM, 1996, pp. 215–222.

[6] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura,
“Rabbit order: Just-in-time parallel reordering for fast graph analysis,”
in Parallel and Distributed Processing Symposium, 2016 IEEE Interna-
tional. IEEE, 2016, pp. 22–31.

[7] K. Choromański, M. Matuszak, and J. Miȩkisz, “Scale-free graph with
preferential attachment and evolving internal vertex structure,” Journal
of Statistical Physics, vol. 151, no. 6, pp. 1175–1183, 2013.

[8] R. Pearce, M. Gokhale, and N. M. Amato, “Faster parallel traversal of
scale free graphs at extreme scale with vertex delegates,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Press, 2014, pp. 549–559.

[9] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical Review E, vol. 70, no. 6,
p. 066111, Dec. 2004.

[10] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 10, p. 8, Oct. 2008.

[11] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader, “Parallel
community detection for massive graphs,” in Parallel Processing and
Applied Mathematics. Springer, 2012, pp. 286–296.

[12] J. Xie, B. K. Szymanski, and X. Liu, “SLPA: Uncovering overlapping
communities in social networks via a speaker-listener interaction dy-
namic process,” in 2011 IEEE 11th International Conference on Data
Mining Workshops. IEEE, 2011, pp. 344–349.

[13] S. Bhowmick and S. Srinivasan, “A template for parallelizing the
Louvain method for modularity maximization,” in Dynamics On and
Of Complex Networks, Volume 2. Springer, 2013, pp. 111–124.

[14] H. Lu, M. Halappanavar, and A. Kalyanaraman, “Parallel heuristics for
scalable community detection,” Parallel Computing, vol. 47, pp. 19–37,
2015.

[15] C. Y. Cheong, H. P. Huynh, D. Lo, and R. S. M. Goh, “Hierarchical
parallel algorithm for modularity-based community detection using
GPUs,” in Proceedings of the 19th International Conference on Parallel
Processing, ser. Euro-Par’13, 2013, pp. 775–787.

[16] J. Zeng and H. Yu, “Parallel modularity-based community detection
on large-scale graphs,” in Cluster Computing (CLUSTER), 2015 IEEE
International Conference on, Sept 2015, pp. 1–10.

[17] ——, “A study of graph partitioning schemes for parallel graph com-
munity detection,” Parallel Computing, vol. 58, pp. 131–139, 2016.

[18] X. Que, F. Checconi, F. Petrini, and J. A. Gunnels, “Scalable community
detection with the Louvain algorithm,” in Parallel and Distributed
Processing Symposium (IPDPS), 2015 IEEE International. IEEE, 2015,
pp. 28–37.

[19] M. E. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical review E, vol. 69, no. 2, p. 026113,
2004.

[20] T. Raeder and N. V. Chawla, “Market basket analysis with networks,”
Social network analysis and mining, vol. 1, no. 2, pp. 97–113, 2011.

[21] D. Meunier, R. Lambiotte, A. Fornito, K. D. Ersche, and E. T. Bull-
more, “Hierarchical modularity in human brain functional networks,”
Hierarchy and dynamics in neural networks, vol. 1, p. 2, 2010.

[22] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” in Proceedings of the ACM SIGKDD Workshop
on Mining Data Semantics, ser. MDS ’12, 2012, pp. 3:1–3:8.

[23] R. Albert, H. Jeong, and A.-L. Barabási, “Internet: Diameter of the
world-wide web,” nature, vol. 401, no. 6749, pp. 130–131, 1999.

[24] P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004), 2004, pp. 595–601.

[25] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: A scalable
fully distributed web crawler,” Software: Practice & Experience, vol. 34,
no. 8, pp. 711–726, 2004.

[26] A. Lancichinetti and S. Fortunato, “Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities,” Physical Review E, vol. 80, no. 1, p. 016118, 2009.

[27] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining.” in SDM, vol. 4. SIAM, 2004, pp. 442–446.

[28] B. Machta and J. Machta, “Parallel dynamics and computational com-
plexity of network growth models,” Physical Review E, vol. 71, no. 2,
p. 026704, 2005.

[29] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community
detection in networks: The state-of-the-art and comparative study,” ACM
Comput. Surv., vol. 45, no. 4, pp. 43:1–43:35, Aug. 2013.

