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Abstract—Medical imaging enables researchers and practi-
tioner to uncover the characteristics of diseases (e.g., human
cancer) in great detail. However, the sheer size of resulting
imaging data and the high dimension of derived features become
a major challenge in data analysis, diagnosis, and knowledge
discovery. We present a novel visual analytics system, named
iVAR, targeted at observing the comprehensive quantification of
tumor phenotypes by effectively exploring a large number of
quantitative image features. Our system is comprised of multiple
linked views combining visualization of three-dimensional vol-
umes and tumors reconstructed by computed tomography (CT)
images, and a radiomic analysis of high-dimensional features
quantifying tumor image intensity, shape and texture, and three
non-image clinical features. Thus, it offers insights into the
overall distribution of quantitative imaging features and also
enables detailed analysis of the relationship between features.
We demonstrate our system through use case scenarios on a
real-world large-scale CT dataset with lung cancer.

Index Terms—visual analytics, interactivity, medical images,
radiomics, high-dimensional data

I. INTRODUCTION

Medical imaging, a noninvasive and visual means to access

the characteristics of human tissues, is routinely applied in

clinical practice for oncologic diagnosis and treatment guid-

ance. Conventionally, tumor response to therapy is mostly

measured using two-dimensional descriptors of tumor size.

Although a change in tumor size is an important indicator

depicting tumor phenotypic dynamics, other features, such as

the intensity, shape, and texture of tumor, can also be signif-

icant. To this end, researchers have proposed radiomics [1],

[2] to improve the quantification of tumor phenotypes non-

invasively by applying a large number of quantitative features

derived from medical images. However, when analysts attempt

to analyze and understand medical imaging data, the sheer size

of data and the high dimension of derived radiomics features

become a major challenge: Tracking multiple patients over

time using high-resolution medical imaging can generate tera-

or even peta-scale data, and possibly result in hundreds or

thousands of derived radiomics features. It is a non-trivial task

for analysts to tackle large-scale medical imaging data and find

the important features.

Although using automated approaches such as correlation

clustering [3] and subspace clustering [4] is a viable al-

ternative, it is hard for analysts to control these automated

analytical processes. In addition, these clustering results often

target a specific pattern while analysts may be interested in

much more, such as correlated and uncorrelated dimensions,

outliers, and so on. Once the interesting patterns are found

in the subspace, it is necessary for analysts to track back to

the details of the patients’ imaging data to verify the results.

Thus, analysts often desire to visualize the overall distribution

of features and explore the relationship between paired or

multiple features in an interactive way, especially, to possibly

correlate imaging-derived features and clinical features.

We propose an interactive visual analytics system, named

iVAR, to tackle large-scale medical imaging data and high-

dimensional radiomics features. Our system can effectively

and efficiently visualize three-dimensional (3D) volume data

and organ objects reconstructed by computed tomography

(CT) images, as well as for exploring the comprehensive

quantification of tumor phenotypes using a large number

of imaging-derived features. The major contributions of our

interactive visual analytics framework are:

• We reconstruct 3D volume and tumor objects from

medical images based on doctors’ depictions. Our 3D

interactive visualization tool brings intuitive insights (e.g.,

location and size) of a tumor to doctors.

• We derive compressive imaging features based on the

first order statistics, shape, size, and texture of the 3D

reconstruction of tumor objects, which provide a detailed

characterization of tumor phenotypes.

• Our system supports an overview of the distribution of

features, allows analysts to build their own subspace

of custom paired features out of the large dimensional

data space, and enables multiple features analysis tasks

through the interaction with these features.

We present a use case of analyzing radiomic features derived

from a CT dataset of patients with lung cancer. It demonstrates

that our iVAR system can help users effectively explore a high

dimensional feature space and identify features of interest,

thereby facilitating the involvement of users in the analysis

process and leading to possible new discoveries.

II. RELATED WORK

There has been a great amount of research devoted to the

visualization and analysis of medical information. Our work

focuses on user interactions with imaging-derived features

and the guidance of reducing a large number of dimensions

into fewer features to explore the relationship within multi-

dimensional views of interest.
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A. CT-based Radiomic Signatures

It is possible to capture tumor phenotypic characteristics

non-invasively, given advanced technologies in medical imag-

ing. CT is one of the most widely used imaging modalities.

The quantitative characteristics of tissue density makes CT

imaging routinely used in cancer diagnoses and treatments.

Tumor phenotypic differences (e.g., shapes irregularity, in-

filtration, heterogeneity, or necrosis) can be quantified in

CT images using radiomic features. Radiomics [1], [2] pro-

vides a comprehensive quantification of tumor phenotypes

by analyzing a large set of quantitative data characterization

algorithms. Several studies [5], [6], [7], [8] have demonstrated

that radiomics has a significant clinical potential to augment

diagnosis, as well as improve tumor staging and therapy

response assessment in oncological practice using medical

images that can be routinely acquired at low costs.

B. Visual Analysis of Physical and Feature Spaces

Many statistical and visualization methods have been de-

veloped to facilitate scientists to study the correspondence of

structures and behaviors. For example, WEAVE [9] combined

the visualization of simulation data, measurement data, and 3D

anatomical data concerning the propagation of excitation in the

heart. Raidou et al. [10] proposed a visual tool to explore and

visualize the feature space of imaging-derived tissue character-

istics. The tool can also identify, explore, and analyze hetero-

geneous intra-tumor regions. In our work, we use reproducible

imaging features from the field of radiomics [1] [11]. These

features comprehensively represent quantitative information

about intensity, shape, size, and texture of imaging data.

C. High Dimensional Data Analysis

Different approaches have been used to handle the curse of

dimensionality problem in high dimensional data analysis. One

solution is to use dimensionality reduction methods, such as

principal component analysis (PCA) [12], random forest [13],

t-SNE [14], and so on. In practice, domain experts need to use

their domain knowledge to understand which combinations

of dimensions make sense. They desire a representation of

data with minimal information loss. For visual approaches

to dimensionality reduction, many techniques are proposed.

Johansson et al. [15] introduced a dimensionality reduction

system based on user-defined quality metrics using weight

functions to preserve as many important structures as possible.

Turkay et al. [16] presented dual analysis model to allow the

interactions in items and dimensions spaces. It enabled the

joint interactive visual analysis of multivariate datasets with

respect to their dimensions and actual data values.

III. SYSTEM DESIGN

We develop an interactive visual analytics system iVAR

for exploration of 3D medical data and associated medical-

imaging derived features.

TABLE I
DETAILED DERIVED FEATURES GROUPED BY THREE FEATURE TYPES

First
Order
Statistics

Skewness, Uniformity, MeanAbsoluteDeviation, Energy, RobustMeanAbsolute, De-
viation, Median, TotalEnergy, Maximum, RootMeanSquared, 90Percentile, Mini-
mum, Entropy, StandardDeviation, Range, Variance, 10Percentile, Kurtosis, Mean

Shape
and Size

Maximum3DDiameter, Compactness2, Maximum2DDiameter Slice, Sphericity, Mi-
norAxis, Compactness1, Elongation, SurfaceVolumeRatio, Volume, SphericalDis-
proportion, MajorAxis, LeastAxis, Flatness, SurfaceArea, Maximum2DDiameter
Column, Maximum2DDiameter Row, InterquartileRange

Textural
Features

ShortRunLowGrayLevel Emphasis, GrayLevelVariance, LowGrayLevelRun Em-
phasis, GrayLevelNonUniformity Normalized, RunVariance, GrayLevelNonUni-
formity, LongRunEmphasis, ShortRunHighGrayLevel Emphasis, RunLength-
NonUniformity, ShortRunEmphasis, LongRunHighGrayLevel Emphasis, Run-
Percentage, LongRunLowGrayLevel Emphasis, RunEntropy, HighGrayLevelRun
Emphasis, RunLengthNonUniformity Normalized, GrayLevelVariance, Small-
AreaHighGrayLevel Emphasis, GrayLevelNonUniformity Normalized, SizeZo-
neNonUniformity Normalized, SizeZoneNonUniformity, GrayLevelNonUniformity,
LargeAreaEmphasis, ZoneVariance, ZonePercentage, LargeAreaLowGrayLevel
Emphasis, LargeAreaHighGrayLevel Emphasis, HighGrayLevelZone Emphasis,
SmallAreaEmphasis, LowGrayLevelZone Emphasis, ZoneEntropy, SmallAre-
aLowGrayLevel Emphasis, SumVariance, Homogeneity1, Homogeneity2, Cluster-
Shade, MaximumProbability, Idmn, Contrast, DifferenceEntropy, InverseVariance,
Dissimilarity, SumAverage, DifferenceVariance, Idn, Idm, Correlation, Autocor-
relation, SumEntropy, AverageIntensity, Energy, SumSquares, ClusterProminence,
Entropy, Imc2, Imc1, DifferenceAverage, Id, ClusterTendency

A. Input Data

We use computed tomography(CT) data of patients with

lung cancer [17] in our current system development. Each CT

scan data consists of a set of axial images with the resolution

of 512 × 512 and the size of data for each patient can be

up to 453 MB. The dataset also contains clinical information

such as gender, age, survival time, and overall stage.

B. Radiomic Features

We adopt and extend the radiomic features defined in the

existing work [5] to describe tumor phenotype characteristics.

With our application and other potential domains in mind, we

use 94 features as shown in Table I and group these features

into the following three categories:

• First order statistics. This group of features describes the

distribution of tumor image intensities. It consists of the

computation of energy, entropy, kurtosis, skewness, and

so on. These features help us know the histogram disper-

sion, asymmetry, and sharpness of tumor intensities.

• Shape and size. We include the descriptors of the 3D

structure of a tumor region and determine the shape and

size based features, for example, maximum 3D diameter,

surface area, volume (provide lesion size information),

compactness, spherical disproportion, sphericity, and sur-

face to volume ratio (describe how spherical, or elongated

the shape of the tumor is).

• Textural features. The first two feature groups do not

provide any information regarding the relative position of

the various gray-levels over an image. Texture features are

based primarily on gray level co-occurrence (GLCM) and

gray level run-length (GLRLM) texture matrices. Such

features describe patterns or the spatial distribution of

voxel intensities.

C. Visual Analytics Requirements

Based on the information provided by our collaborated

domain experts, we have identified the following application

requirements:
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Fig. 1. An overview of the key steps of our visual analytics workflow using medical images, extracted radiomic features, and clinical features. (a) Non-image
features are collected from clinical data. (b) Experienced physicians contour tumor areas on 2D CT slices, given two examples cases (A and B) in lung cancer
patients. 3D volume (c) and tumor objects (d) are extracted according to 2D contours. (e) Radiomic features are extracted from the reconstructed tumors,
quantifying tumor intensity, shape, size, and texture. (f) Linked visualization tools are used in the analysis of the features. Users can track back to any of the
key stages (a)-(e) to interact with the data from clinical non-imaging features to 3D constructions to imaging-derived radiomic features.

R1 Three-dimensional visualization and comparison. Given

a CT imaging dataset, a visualization of the 3D volume

and the tumor can help in anatomical understanding

for diagnosis, radiation therapy and surgical planning,

and can also be used for education purposes. The 3D

visualization methods also provide intuitive comparisons

of shape and location of tumors among different patients.

R2 Dimensionality reduction for derived features. It is chal-

lenging for users to effectively study a large number

of imaging-derived features. Automated dimensionality

reduction methods, such as clustering, suffer from a lack

of transparency and interpretability for domain experts

who are not trained in statistics or machine learning. A

visual exploration tool is desired to help them identify

interesting patterns for building and refining multidimen-

sional data.

R3 Outlier detection. The identification of anomalous data

helps users not only detect the accuracy of data collection,

but also identify the useless features.

R4 User-driven feature relation exploration. Multivariate ex-

ploratory visualization techniques are necessary to help

users discover the relations among interesting combina-

tions of dimensions.

D. Visual Analytics Design

1) Overview: We develop our visual analytics framework

according to the identified application requirements as shown

in Figure 1.

The first step is to collect non-image features from the

clinical data shown in Figure 1(a) and 2D imaging datasets

from CT scans shown in Figure 1(b). Experienced physicians

contour the tumor areas on 2D CT slices.

In the second step, for each patient’s imaging data, we

reconstruct the 3D volume by inserting CT slices in sequence

and do interpolation according to the thickness between two

consecutive. The contour lines depicted by physicians in slices

help us reconstruct the tumor volume by only filling the values

within the contour lines. A direct volume rendering method,

also called volume ray casting [18], is used for visualizing

the whole volume shown in Figure 1(c) and the tumor objects

shown in Figure 1(d). The rays are cast through the object

and the 3D scalar fields of interest are sampled along the

rays inside the object, so that we can render 3D scenes to 2D

images. Our multivariate visualization technique can display

the whole volume and highlight the tumor simultaneously.

Thus, the 3D volume and the tumor object reconstruction

can assist domain experts in getting an intuitive visualization

of the shape and the location of the tumor in a patient’s

body. Our tool also supports the comparison among different

cases. When domain experts can directly visualize the high-

dimension, large-quantity data, erroneous intermediate results

can be more easily detected to avoid the most challenging

“garbage-in, garbage-out” problem facing big-data studies.

In addition, we derive 94 CT imaging features in the third

step as described in Section III-B after extracting the tumor

information, as shown in Figure 1(e). Here, we show two
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Fig. 2. The user interface of feature analytics. In the left panel, the view (a) displays the visualization of 2D CT slices and 3D tumor reconstructions. In the
view (b), the panel (1) shows all dimensions as small multiple frequency plots. Selected dimensions are highlighted (2) and shown in a magnified plot (3).
In the view (c), a heat map (4) and a correlation matrix (5) are introduced for dimensionality reduction and outliers detection. A scatter plot (6) shows the
correlation between any two selected features. In the view (d), the multivariate panel consists of parallel coordinates (7) and a PCA scatter plot (8).

representative patients’ cases as examples.

In the fourth step, we perform interactive visual analytics of

different features. Apart from the quantitative image features,

the original CT images, and the 3D constructions, clinical non-

image features (as shown in Figure 1(a)) are also included to

convey the relationships between clinical data and imaging

data. As shown in Figure 1(f), we apply several visualization

tools and analysis methods to the analysis of features to

meet the requirements proposed by our collaborated domain

experts in Section III-C. We describe these visualization tools

in details in Section III-D2. In this step, users can track

back to any available data, such as 3D volume and tumor

reconstructions, to verify their observations.

2) Visual Representations and User Interface: We imple-

ment our framework through a number of highly interactive

linked views shown in Figure 2. The layout of the user

interface is broken down into two control panels: the left

panel in Figure 2 is the 3D visualization panel, and the right

three views constitute the feature analysis panel. Once a user

selects a number of subjects loaded to the system, the tumor

information is computed according to the contours depicted

by physicians. The selected 3D rendering results are shown in

the 3D visualization view (Figure 2(a)) so that the user can

directly gain the 3D geometry information (e.g., location and

size) of the tumors.

The view of Figure 2(b) shows the plot of each feature’s

frequency across all the patients, which allows analysts to

quickly grasp the distributions of features. Typically, uniform

distributions represent high uncertainty or high entropy while

non-uniform distributions denote low uncertainty. In the case

of non-uniform distributions, it is useful for analysts to know

whether there is a positive or negative skew, which shows

whether high or low values dominate. Therefore, we sort small

multiple frequency plots in a descending order by the values

of entropy or skewness. On the right of the small multiple

frequency plots, a magnified frequency plot (3) shows the

currently selected dimension (2). The mixed attribute types,

such as numerical, ordinal, categorical data, can be flexibly

represented here. We also provide different scales (i.e., linear

or logarithmic) for the representation of the data values.

To identify the outliers and further reduce the dimensions,

we introduce a radiomics heat map in the panel (4) with

hierarchical clustering results in the view of Figure 2(c). In the

heat map, the horizontal axis represents the patients, and the

vertical axis represents the 94 radiomics features. We compute

each entry of the heat map that corresponds to the value of

a feature of a patient. For a feature f , we first normalize all

its values across all the patients. Then, we compute the mean

avgf and the standard deviation stddevf of f . For a given

patient i, we compute its value vfi as (fi − avgf )/stddevf ,

where fi is the original feature f value of the patient i. Here,

we assume that the feature f has a normal distribution for all

patients. If a normalized value vfi is larger than 3, then we

consider it as an outlier. We know that for a normal distribution

about 99.7% points lie in [avgf − 3stddvf , avgf + 3stddvf ].
For each value vfi of a feature f of a patient i, we map
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Fig. 3. Exploration of multidimensional patterns by parallel coordinates.

it linearly to the color from green (≤ avgf − 3stddvf ) to

black (= 0) to red (≥ avgf + 3stddvf ). Thus, outliers are

0.3% that correspond to either green or red and can be easily

identified from the heat map. In order to further identify

the patterns across the patients and the features, we apply

unsupervised hierarchical clustering along the horizontal and

vertical axes. The resulting view shows the clusters of patients

with similar radiomic patterns. Therefore, it helps users to find

their interested patterns and important features.

To deal with the curse of dimensionality, we also show a

correlation matrix panel (5) in the view of Figure 2(c). Users

can easily investigate the dependence between multiple fea-

tures, so that the useless and the most significant dimensions

can be easily discovered. Each entry in the matrix expresses

the Pearson correlation coefficient of the corresponding pair

of features. Users can click on any block in the correlation

matrix, a scatter plot will be displayed in the panel (6) to show

the relationship between two corresponding features selected

from the correlation matrix.

Once users find their interested features or obtained the

reduced dimensions, a parallel coordinates panel (7) in the

view of Figure 2(d) can be used to show the feature values in

multiple dimensional spaces. Parallel coordinates plot patients’

data across many feature dimensions. Each of the feature

dimensions corresponds to a vertical axis and each patient’s

data is displayed as a polyline along the dimensions. In this

view, features can be quickly compared by filtering along any

dimension. Users can click and drag along a given dimension

to update the filter. Figure 3 shows the interactive results of

the exploration of multidimensional patterns by parallel coor-

dinates. Figure 3(a) loads all patients data from seven feature

dimensions. When a user brushes the values larger than 7 on

the Entropy dimension, Figure 3(b) shows the corresponding

values on other dimensions. When the user continues to brush

the high values on the DifferenceVariance dimension,

Figure 3(c) shows the further results.

Parallel coordinates may have a few issues in certain cir-

cumstances. For example, meaningful patterns can be obscured

by a clutter of lines, especially with large datasets and the

order of the axes, which can impact how users understand

the data. To address these issues, we introduce the principal

component analysis (PCA) panel (8) in the view of Figure 2(d)

to emphasize variation and bring out strong patterns in user

selected features.

All the panels are performed in a linked fashion so that when

users select or brush data elements in a panel, the other panels

will update their plots of the corresponding data elements.

In this way, users can intuitively interact with their analysis

processes and interpret results.

IV. APPLICATION AND RESULTS

The Lung1 dataset [17] consists of 422 non-small cell lung

cancer (NSCLC) patients that were treated at Department of

Radiation Oncology (MAASTRO) Clinic, The Netherlands.

CT scans, manual delineations, clinical data (e.g., survival

time) are available in this dataset. In this section, we use the

data of 100 patients from this dataset to show a usage scenario

of our visual analytics system, and demonstrate the usefulness

of our design by a set of highly interactive linked views to

explore the relationship among radiomic features.

A. Feature Overview

The analyst selects multiple subjects from the database, the

corresponding multiple 3D volume data and the tumor objects

data will be computed by the original imaging data. Mean-

while, the computed feature distributions will be automati-

cally populated in the feature analysis panel. Small multiple

frequency plots are sorted in a descending order by the values

of entropy. According to the order of features’ frequency, the

analyst can easily find the features with rich information and

with a small amount of information, which assists the analyst

in eliminating the useless features in building the subspace.

Fig. 4. The frequency plots of four selected features: (a) Volume,
(b) Compactness2, (c) LongRunLowGrayLevelEmphasis, and (d)
RunLengthNonUniformity.

For example, Figure 4(a) shows the plot of the feature

Volume, a commonly used measurement of tumor volume,

with a certain variation among the patients. Figure 4(b) shows

the plot of Compactness2 that is a derived radiomic fea-

ture quantifying how compact the tumor shape is. Although

Volume and Compactness2 belong to the same feature

category shape and size (see Section III-B), we can clearly

see that Compactness2 exhibits more information in its plot

and can be used as a more effective radiomic signature.

Similarly, from the overview of the frequency plots, we

can easily observe that the plots of several features in the
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Fig. 5. Radiomic heat map with unsupervised hierarchical clustering of the lung cancer patients along the horizontal axis and the radiomic features along the
vertical axis, revealing the clusters of patients with similar radiomic expression patterns. The 3D volume visualization can reveal the detailed 3D geometrical
structures of tumors in different clusters. In each image, the first number is the patient index, followed by the cluster index in parentheses.

category textural features convey a small amount of infor-

mation. For example, Figure 4(c) shows the plot of Lon-
gRunLowGrayLevelEmphasis that is a feature indicating

whether the tumor texture is dominated by long runs with

low gray levels or not. Figure 4(d) shows the plot of Run-
LengthNonUniformity that is a feature in the same category

and measures the intratumor heterogeneity. We can clearly see

that RunLengthNonUniformity conveys a significantly higher

amount of information and can be a candidate of radiomic

signature.

B. Feature Pattern
To investigate detailed feature patterns, the analyst can

explore the radiomic heat map. It shows not only the values

of patients across all features, but also the cluster information

on both patients and features. This map can facilitate the

analyst to identify feature patterns and develop her under-

standing of features. In this case, we show the heat map

in Figure 5. It can be observed that the features shown in

the yellow box are clustered in the same cluster, most of

patients’ values in these features are shown in black. We can

easily infer that these features have very stable values and

low entropy on their distributions. These features, including

LongRunLowGrayLevelEmphasis, existentially belong

to the category textural features, and their distributions can

be easily verified in the overview of the frequency plots.
The heat map in Figure 5 approximately conveys four

clusters of patients according to the similarities of their values

of all the features. For each cluster, the analyst can track

back to the details of the patients’ imaging data and the 3D

reconstructions. Figure 5 shows the volume visualization of

a few selected patients in different clusters. We can clearly

see that the tumors convey similar structural characteristics

within the same cluster, but noticeable differences across the

clusters. For example, the heat map successfully captures the

significantly distinct phenotypes of the tumors in Cluster II

(i.e., the green and red feature values in the blue box)(see

Section III-D2), which is intuitively verified using the volume

visualization, as shown in the plots of the patients #65 and

#91 in Figure 5.

C. Feature Correlation
After gaining the patterns of the features, the analyst can

choose the features in the clusters and further explore the

relationship between the features. In particular, identifying the

association of radiomic expression patterns with tumor stage

and survival time is essential for capturing prognostic radiomic

signatures and developing predictive models of survival.
The correlation matrix in our system, displaying the cor-

relation coefficient of each pair of features, can facilitate the

analyst to first quickly grasp an overview of the relationship

among the features and then examine the details. Figure 6

shows the correlation matrix of the clinical features and the

radiomic features. The clinical features include age, gen-
der, T-stage, N-stage, Overall stage, and Sur-
vival time. From the correlation matrix, we can clearly

see that there are strong correlations among the most shape

and size features. The only exceptions are Elongation
and Flatness, which are strongly correlated with each

other but not other features. These two features also do

not convey a significant correlation with Survival time.

Therefore, the analyst can possibly neglect them when se-

lecting radiomic signatures. Meanwhile, we can examine the

column of Survival time and identify the features that

are considerably associated with Survival time (e.g.,

Volume). By clicking each entry in the matrix, our system
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Fig. 6. The correlation matrix containing the clinical features, the shape and
size features, the first order statistics features, and the texture features (top),
and the two scatter plots of the select pairs of features (bottom).

can display the scatter plot of the corresponding pair of

features. Figure 6 shows the example plots of Survival
time and Flatness, Survival time and Volume, and

Volume and RunLengthNonUniformity, respectively.

These plots match the corresponding correlation coefficients

in the matrix, and can help us gain a more detailed view of

the relationship between two features. For example, the scatter

plot of Volume and RunLengthNonUniformity shows a

strong positive correlation, which matches the red color at the

corresponding entry in the matrix. In this way, the analyst can

effectively analyze any pair of features, and identify potential

associations.

D. Feature Subspace

Based on the feature pattern and correlation analysis, our

analyst can then explore suggested subspaces and decide

which one to focus. Our system provides parallel coordinates

Fig. 7. The parallel coordinates plot of five features (a), and the brushing
results (b and c).

and principal component analysis (PCA) with brushing to

assist the analyst in studying feature subspaces.

For illustration purposes, Figure 7(a) shows a parallel co-

ordinates plot of a feature subspace consisting of age, Sur-
vival time, Volume, RunLengthNonUniformity,

and LongRunLowGrayLevelEmphasis. From the overall

of frequency plots (see Figure 4), we have already known that

the feature LongRunLowGrayLevelEmphasis contains a

less amount of information and thus may be less of interest.

This can be clearly perceived in Figure 7(a) with a narrow

range of the LongRunLowGrayLevelEmphasis values

for most patients. Similarly, there is no strong correlation

between age and Survival time, but a clearly linear

correlation between Volume and RunLengthNonUnifor-
mity, which matches the scatter plot in Figure 6.

However, Figure 6 reveals a negative correlation between

Survival time and Volume, which is not obvious in

Figure 7(a). By brushing the Survival time axis, we can

closely examine the association with Survival time. In

Figure 7(b), the analyst brushes the high survival time, and

the resulting polylines clearly show a negative correlation

between Survival time and Volume. When the analyst

interactively moves the brushed area towards lower Sur-
vival time values, the correlation declines, as shown in

Figure 7(c). Therefore, the parallel coordinates plot allows

users to interactively gain a deeper understanding of the

relationships among the features.

The analyst can also use the PCA tool of our system to

develop predictive models between features. For example,

the heat map in Figure 5 shows that the texture feature

GrayLevelNonUniformity and the shape and size fea-

ture Volume are similar. In addition, Figure 6 shows that

these two features are correlated with Survival time. By

applying PCA, the analyst can obtain the result conveying

the nonlinear relationship between GrayLevelNonUni-
formity, Volume, and Survival time, as shown in

Figure 8. This technique can be also applied to other features

of interest.
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Fig. 8. The PCA result of Survival time, Volume, and
GrayLevelNonUniformity. The variances and the two orthogonal basis
vectors are also provided. The data points can be colored according to other
features. In this example, the colors correspond to four N-stages.

Fig. 9. The side view of the 3D volume visualization.

V. CONCLUSION

We propose a visual analytics system, named iVAR, for do-

main experts to interactively build and refine high-dimensional

features derived from large medical imaging data with the

help of the suggestion from the system. As shown in the

existing work [2], [5], automated approaches can help analysts

mine essential information from a large number of features.

In this work, we demonstrate that finer-grain information

can be further captured through interactive visual analytics.

Through our iVAR system with a linked view design, users can

interactively and simultaneously investigate multiple aspects

of a large feature space, and possibly obtain new insights that

could not be extracted using automated approaches.

In the future, we plan to exploit more high dimensional

data visualization techniques to enhance the capability of our

iVAR system. Moreover, in our current study, we note that the

existing radiomic approaches [2], [5] mostly employ the fea-

tures derived from the local information of tumors, and cannot

capture global structure information. For example, as shown

in Figure 5, the radiomic features of the patients #77 and #99

exhibit a significant similarity, and are tightly coupled to one

cluster. However, the survival times of these two patients are

58 days and 493 days, respectively, showing a less optimal

performance of the derived radiomic features. By closely

examining their 3D structures (Figure 9), we observe that these

two tumors have different global structural characteristics (e.g.,

location), although their local characteristics are very similar.

We would like to investigate new global information based

approaches [19] to improving the prognostic performance of

radiomic signatures.
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