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Abstract. Edge bundling methods can effectively alleviate visual clut-
ter and reveal high-level graph structures in large graph visualization.
Researchers have devoted significant efforts to improve edge bundling
according to different metrics. As the edge bundling family evolve rapidly,
the quality of edge bundles receives increasing attention in the literature
accordingly. In this paper, we present MLSEB, a novel method to gener-
ate edge bundles based on moving least squares (MLS) approximation.
In comparison with previous edge bundling methods, we argue that our
MLSEB approach can generate better results based on a quantitative
metric of quality, and also ensure scalability and the efficiency for visu-
alizing large graphs.
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1 Introduction

Traditional exploration methods of large graphs are often overwhelmed by severe
visual clutter such as excessive vertex overlappings and edge crossings. Edge
bundling is one of the effective approaches to reducing edge crossings in graph
drawings. The main idea of edge bundling is to visually merge edges with sim-
ilar features (e.g., position, direction, and length) such that edge crossings are
significantly reduced and the readability of graph drawings is improved.

Substantial efforts have been made to develop various edge bundling algo-
rithms to improve visual results. The current edge bundling family have pro-
vided a diverse graph layouts that work with a wide spectrum of applications
and domains based on different strategies or metrics [22]. As the edge bundling
techniques develop rapidly, the information visualization community is putting
increasing interests in evaluating the results of edge bundle drawings. The read-
ability and faithfulness criteria are often used to evaluate graph drawings. Edge
bundling helps simplify graph drawings and increase readability, but yields dis-
tortion that makes it hard to preserve the faithfulness of original graphs [29]. To
holistically address the evaluation of both readability and faithfulness for edge
bundling visualization, Lhuillier et al. [22] suggested a general metric where a
ratio of clutter reduction to amount of distortion is computed to measure the
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quality of edge bundling visualization. In this work, we aim to generate high-
quality edge bundling results based on Lhuillier’s suggestion, and meanwhile
ensure scalability and efficiency.

We introduce a novel edge bundling technique to generate edge bundles with
moving least squares (MLS) approximation, namely MLSEB. Inspired by thin-
ning an unorganized point cloud to curve-like shapes [20], we use a distance-
minimizing approximation function to generate bundle effects. In particular, we
first sample a graph into a point cloud data, and then use a moving least squares
projection to generate curve-like bundles. Based on Lhuillier’s suggestion, we
develop a quality assessment to evaluate edge bundling results. Using different
real-world datasets, we demonstrate that MLSEB can produce bundle results
with a higher quality, and is scalable and efficient for large graphs by comparing
different edge bundling methods.

2 Related Work

The recent study [22] has surveyed the state-of-the-art edge bundling techniques
and their applications in a very detailed manner. We revisit some of these meth-
ods by briefly summarizing the categories of the diverse bundling techniques.
We consider our method as an image-based method, and hence we will discuss
the image-based methods in more details. We will also cover some studies of
quality evaluation in edge bundling and some studies on moving least squares
approximation.

Holten [11] pioneered the edge bundling techniques in graph drawings using
a hierarchical structure. Geometric-based methods [4,17,18,25] used a control
mesh to guide bundling process. Energy-based minimization methods have been
also used in many studies. Examples include ink-minimization methods [8,9]
and force-directed methods [12,31,37,42,43]. Most of these methods used com-
patibility criteria to measure the similarity of different edges based on spatial
information (i.e., length, position, angle, and visibility), and then moved the
similar edges with ink-minimization or force-directed strategies.

Image-based techniques used a density assessment to guide bundling pro-
cess [3,6,13,23,33,44]. These methods are generally based on Kernel Density
Estimation. Kernel density estimation edge bundling (KDEEB) [13] first trans-
formed an input graph into a density map using kernel density estimation, and
then moved the sample points of edges towards the local density maxima to form
bundles. Peysakhovich et al. [33] extended KDEEB using edge attributes to dis-
tinguish bundles. CUDA Universal Bundling (CUBu) [44] used GPU acceleration
to enable interactively bundling a graph with a million edges. Fast Fourier Trans-
form Edge Bundling (FFTEB) [23] improved the scalability of density estimation
by transforming the density space to the frequency space.

There are other edge bundling studies. Bach et al. [2] investigated the con-
nectivity of edge bundling methods on Confluent Drawings. Nguyen et al. [30]
proposed an edge bundling method for streaming graphs, which extended the
idea of TGI-EB [31]. Wu et al. [41] used textures to accelerate bundling for
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web-based applications. Kwon et al. [16] showed their layout, rendering, and
interaction methods for edge bundling in an immersive environment.

Several studies introduced general metrics to quantify the readability
[5,35,36,38] and the faithfulness [29] of graph drawings. Some existing studies in
edge bundling have defined quality assessments to evaluate the resulting bundles.
Nguyen et al. [29] conducted a study on the faithfulness for force-directed edge
bundling methods. Telea et al. [39] surveyed different hierarchical edge bundling
techniques and conducted a user study for the comparison between bundled and
unbundled methods. Pupyrev et al. [34] and Kobourov et al. [15] worked towards
measuring edge crossings. KDEEB [13] and CUBu [44] proposed post-relaxation
if the distortion of edge bundles is too large, such that the mental map is pre-
served. For sequence graph edge bundling, Hurter et al. [14] used interpolation
to preserve the mental map between sequence graphs. McGee and Dingliana [26]
conducted an empirical study on the impact of edge bundling.

Moving least squares (MLS) has been widely used to approximate smooth
curves and surface from unorganized point clouds [1,21,27]. Lee [20] constructed
a curve-like shape from unorganized point clouds using an Euclidean minimum
spanning tree. Least square projection (LSP) has been used in graph draw-
ings [32], where multidimensional data points are projected into lower dimen-
sions, while the similar relationship in neighboring points is preserved.

3 Background

3.1 Definition of Edge Bundling

We first revisit a formal definition of edge bundling [23]. Let G = (V,E) ⊂
R

2, V = {vi}, E = {ei} be a graph, where vi is a vertex and ei is an edge of G.
Let D : E → R

2 be a drawing operator, such that D(G) represents the drawing
of G and D(ei) represents the drawing of an edge ei. We define a compatibility
operator φ, where φ(ei, ej) measures the similarity of two edges ei and ej . Edges
that are more similar than a threshold φmax should be bundled together, and
φ can be used with some reasonable attributes and metrics(e.g., spatial infor-
mation [12]). Let B : D → D be a bundling operation, where D ⊂ R

2 denotes
the space of all graph drawings, and B(D(ei)) denotes the resulting bundled
drawing of ei. For example, D(ei) can be a straight line drawing and B(D(ei))
can be a drawing of curve or polyline. Hence, an edge bundling algorithm can
be expressed as:

∀(ei ∈ G, ej ∈ G)|φ(ei, ej) < φmax →
δ(B(D(ei)), B(D(ej))) � δ(D(ei),D(ej)),

(1)

where δ is a distance metric in R
2. Different edge bundling approaches explored

various φ, B, and δ to tackle Eq. 1 to gain different visual effects of edge
bundling [22].
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3.2 Quality of Edge Bundling

Edge bundling techniques trade the increase of readability for overdrawing by
bending edges to form bundle effects. Hence, edge bundle techniques naturally
generate distortion from original graphs. To quantify the quality of a bundled
graph, Lhuillier et al. [22] suggested to use the ratio of clutter reduction C to
amount of distortion T as a quality metric Q, i.e.,

Q =
C

T
, (2)

In general, a larger Q corresponds to a higher quality, and vice versa. Lhuillier
et al. [22] further posed a distortion measure. Simply, for an edge ei, the dis-
tortion between an unbundled drawing D(ei) and a bundled result B(D(ei))
is measured by computing the distance between them, i.e., δ(D(ei), B(D(ei))).
Therefore, the overall distortion T between an original unbundled graph and its
bundled result can be defined as:

T =
n∑

i=1

δ(D(ei), B(D(ei))), (3)

where n is the number of edges. Equation 3 provides an intuitive metric to eval-
uate the distortion generated by a bundled graph. The calculation of clutter
reduction has not been fully concluded in the existing work. We propose a sim-
ple method to evaluate clutter reduction C, modify Eq. 3 to compute T , and
then use C and T to quantify the quality Q of edge bundling (Sect. 6.2).

4 Our Bundling Algorithm

The main purpose of edge bundling is to achieve appealing bundle effects by
bending edges, expressed by Eq. 1. Meanwhile, according to Eq. 2, an ideal algo-
rithm should increase clutter reduction C, while decrease amount of distortion
T , in order to achieve a higher quality Q of edge bundling. Therefore, we should
holistically address Eqs. 1 and 2, which, however, has not been fully investigated
in the existing work [22].

4.1 Sampling

In general, given a graph G, a polyline is used to draw the line or curve presen-
tation of an edge ei. Sample points xi

k, namely sites, are used to discretize the
drawing of ei. Formally,

{xi
k|1 ≤ k ≤ mi} ≈ D(ei), (4)

where mi is the number of sites for D(ei). Note, many methods [13,23,33,44]
use a sampling step that is a small fraction of the size of the display to sample



MLSEB: Edge Bundling Using Moving Least Squares Approximation 383

each edge, which means the number of sites of D(ei) may be different. Similarly,
the bundled drawing can also be discretized as:

B({xi
k|1 ≤ k ≤ mi}) ≈ B(D(ei)). (5)

We measure the distortion between D(ei) and B(D(ei)) by summing the
Euclidean distance between each pair of xi

k and B(xi
k). Let | · | denote the

Euclidean distance. Replace the edges in Eq. 3 using Eqs. 4 and 5, we have

T =
n∑

i=1

(
mi∑

k=1

|{xi
k}, B({xi

k})|). (6)

Similarly, Eq. 1 can be modified as:

∀(ei ∈ G, ej ∈ G)|φ(ei, ej) < φmax →
|B({xi

k}), B({xj
k})| � |{xi

k}, {xj
k}|.

(7)

Therefore, we discretize each edge drawing D(ei) of G by Eq. 4. All the sample
points generated by Eq. 4 form a point cloud. According to Eq. 7, xi

k is moved
to a new position B(xi

k) by a bundling operator B. In the case of kernel density
estimation edge bundling [13,23,33,44], xi

k is moved to B(xi
k) according to its

local density gradient. These methods form the bundles by gathering sample
points to their local density maxima, but do not consider the distortion of edges
when moving sample points. Therefore, certain artifacts, such as lattice effects
and subsampled edge fragments, can be incurred. The methods, such as resam-
pling and post-relaxation [13,44], have been proposed to address these issues.
However, these methods typically introduce a significant performance overhead
that is challenging to alleviate [44]. We develop a new bundling operator B
with respect to Eq. 7, and minimize the distortion of each sample point locally.
Moreover, our method does not require resampling, and thereby can reduce the
computational cost.

4.2 Moving Least Squares Approximation

We consider all the points formed by sampling, and assess the global distortion
by expressing Eq. 6 as:

T =
S∑

i=1

|xi − B(xi)|2, (8)

where xi is a site in the point cloud, and S is the number of sites of all edges.
We assume there is a skeleton near xi and its neighborhood locally. A skeleton

can be a suitable place to gather curves to form bundles [6]. Assume a skeleton
can be interpreted as an implicit polynomial or piece-wise polynomial curve fi,
which is unknown. The unknown fi can be gained by computing the coefficients
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of fi, i.e., by minimizing the following weighted least squares error ε within a
set H(xi) consisting of xi and its neighbor sites:

ε =
hi∑

j=1

|xj − fi|2θ(|xj − xi|), (9)

where xi ∈ H(xi), xj ∈ H(xi), hi is the size of H(xi), and |xj − fi| means the
shortest Euclidean distance between xj and fi. We define the bundling operator
B on xi as a two-step procedure: first to construct fi, and then to project xi onto
fi. The projected point is thereby B(xi) that is on fi. The distance |xi − B(xi)|
from xi to B(xi) is locally minimized by an appropriate nonnegative weighting
function θ. The input of θ is |xj − xi|, which is the distance of neighborhood xj

to the site xi. Instead of taking all sites of a graph into account, we use a circle
of radius r (bandwidth) centered at xi to collect the neighborhood xj for xi.

Fig. 1. Two steps of our
bundling operator B on
a site xi u in an iter-
ation u. First, a local
implicit regression curve
fi u is constructed by
the neighborhood of xi u

with a bandwidth r using
the MLS approximation.
Second, xi u is moved to
a new position xi (u+1)

that is the projection of
xi u on fi u.

If θ ≡ 1, a least squares (LS) approximation is gen-
erated. However, LS approximation does not work well
to generate a polynomial curve that locally reflects the
density distribution of neighborhood. Alternatively, the
moving least squares (MLS) method can reduce a point
cloud to a thin curve-like shape that is a near-best
approximation of the point set [20,21]. Hence, we use a
local assessment to approximate fi [19]. The weighting
function we use is a cubic function [27]:

θ(d) =

⎧
⎨

⎩
2
d3

r3
− 3

d2

r2
+ 1 if d < r,

0 if d ≥ r,
(10)

where d = |xj − xi|. In this sense, minimizing Eq. 9
leads to an MLS approximation so that fi is a local
regression curve, and |xi − B(xi)| is locally minimized.
In other words, the distortion is locally minimized.

In our work, we use an MLS approximation to eval-
uate the distance |xj − fi| for the neighborhood H(xi)
of xi. Therefore, we use a basic projection [19] to con-
struct the implicit local regression curve fi: We take a
partial derivative of Eq. 9 with respect to each coeffi-
cient of fi, make each partial derivative equal to zero, and then solve the system
of equations to generate all the coefficients of fi [28].

Similar to existing work [6,13,23,33,44], we implement our bundling operator
B through an iteration strategy. In our method, two steps are applied iteratively,
as shown in Fig. 1. We initially treat xi as xi 0. Then, in each iteration u, the first
step is to construct an optimal regression curve fi u by thinning the unordered
point cloud within H(xi u), the neighborhood of xi u. In the second step, we
project xi u onto fi u and obtain the projected point xi (u+1), i.e., B(xi u). In
this way, a site xi u is moved to xi (u+1) based on the weighting function θ of
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its neighborhood H(xi u). Different from the kernel density estimation methods
[6,13,23,33,44], MLS moves the site xi u in the sense that the local error ε is
bounded with the error of a local best polynomial approximation [20]. In our
current work, this process stops when the iteration number reaches a predefined
threshold. Then, for each edge, we compute a B-spline curve based on the final
positions of its sites. Figure 2 shows an example with two different iterations.
For an illustration purpose, we show the corresponding B-spline curves for the
iterations. In Fig. 2, we can see that a curve-like skeleton is gradually formed
from the point cloud through the iterations in the top row, and a bundle effect
becomes increasingly distinct as shown by the B-spline results in the bottom row.

Iteration 0 Iteration 2 Iteration 8

Fig. 2. Using an US airlines dataset as an example, we first sample each edge into a
set of points (or sites). The resulting sites form a point cloud (top-left). The top row
shows the point cloud is converged through an iterative MLS processing. The bottom
row shows the corresponding B-spline results. The first column shows the initial result
before MLS. The following columns show the results generated after the 2nd and 8th
iteration, respectively.

Most of the existing image-based techniques use kernel density estimation
(KDE), essentially, a mean-shift method that evaluates the local density maxima
and advects a site based on the gradients of the local density. However, KDE
does not consider the distortion (Eq. 3) when moving sample points, and thus
resampling or post-relaxation is often required [13,44]. Alternatively, our MLSEB
method uses an MLS approximation that projects a site xi to its local regression
curve fi, where fi is locally approximated by minimizing the distance between
H(xi) and fi with a weighted function (Eq. 9). Therefore, the distance between
its original position xi and its projected position B(xi) is locally minimized
based on the density of its neighborhood H(xi). One advantage of our method
is that MLS does not need to resample each edge in bundling iterations because
sites are projected into curves that do not generate over-converge artifacts or
lattice effects. Fröhlich et al. [7] showed that MLS produced better convergence
results than KDE in biological studies. However, it remains an open question
to determine if KDE or MLS is better than one another in edge bundling. In
Sect. 6.2, we will develop a quality assessment from Eq. 2, and use it to evaluate
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and compare the quality of the drawings generated by our MLSEB method,
the FFTEB method (a KDE-based method), and the FDEB method (a force-
directed method).

5 Implementation

Our implementation involves simple data structures and computations, and thus
is easy to implement. First, we sample the edges of an input graph. We use the
same scheme as KDEEB’s [13] to sample the input edges with an uniform step
ρ. The most time consuming step in our method is gathering the neighborhood
for every site. A typical solution in a GPU implementation is to use Uniform
Grid [10] that subdivides the space into uniformly sized cells. We use this method
and set the size of the cell to be 2

3r (r is a prescribed radius or bandwidth) such
that we can limit the search space of each site to only cover at most 9 grid
cells [10], thus avoid a O(S2) search time for S sites.

At the start of each iteration, all the sites are put into the corresponding cells
according to their current positions. This can be easily parallelized using CUDA
on a GPU [10]. Then, we project each site onto its local regression line. The solu-
tion to compute the coefficients of Eq. 9 is introduced in the work [19,28]. It only
requires a constant time to solve the coefficients of a linear or quadratic system
of equations. This can also be parallelized using a GPU because computing the
new projection position for every site is independent.

To enhance the visualization of a bundled graph, we use the same shader
scheme of CUBu [44]. We use the HSVA (i.e., hue H, saturation S, value V , and
alpha A) color representation to visualize edges. Each edge site xi is encoded with
an HSVA value. We encode the direction and the length of the corresponding edge
into H and S, respectively. V and A are used with a parabolic profile function

c(x) =
√

1 − 2|t(x) − 1
2 |, and t ∈ [0, 1] is the edge arc-length parameterization.

The functions of V and A are then V (x) = l
lmax

+ (1 − l
lmax

)c(x) and A(x) =
α(1− l

lmax
+ l

lmax
c(x)) respectively, where l is the length of the edge, lmax is the

longest edge in the graph, and α controls the overall transparency of all edges.
Next, we analyze the complexity of our MLSEB method. Similar to the exist-

ing KDE-based methods [13,23,33,44], MLSEB requires gathering neighbor sites
for computation. After gathering, KDE-based methods conduct kernel splatting,
gradient calculation, and site advection, which use a constant time for each site.
In MLSEB, the time to solve Eq. 9 and project a site to its local approximated
curve is also constant for each site. Thereby, the complexity of MLSEB is the
same as the traditional KDE-based methods, which is O(I ·N ·S), where I is the
image resolution, N is the number of bundling iterations, and S is the number
of sample points. However, MLSEB does not need additional operations, such
as resampling, that are employed in the existing KDE-based methods.

We explore the parameter choices of MSLEB as follows. Similar to most the
existing edge bundling methods, we use a step ρ, which is 5% of the image resolu-
tion I, to sample each edge. The bandwidth, r, plays an important role in MLS to
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estimate the density information around each site. A larger bandwidth captures
more sample sites to reflect a more global feature, while a smaller bandwidth
reveals a more local feature. By following a similar strategy in FDEB [43] and
KDEEB [13], we decrease r by a reduction factor λ after each iteration. Hurter
et al. [13] stated that a kernel size follows an average density estimation when
0.5 ≤ λ ≤ 0.9. We set r to be 5% ≤ r ≤ 20% of the display size I to generate
a stable edge-convergence result. Through a heuristic study, we found that it is
sufficient to yield good results by setting the iteration number N between 3 and
10 and making the polynomial order of fi in Eq. 9 to be 1 or 2.

6 Results

6.1 Visualization and Performance Results

We apply our MLSEB method to several graphs and compare its effect and
computational performance to the two existing methods: FDEB that is the clas-
sic force-directed method, and FFTEB that is the latest enhanced KDE-based
method of image-based edge bundling algorithms (such as KDEEB and CUBu).

The left column in Fig. 3 compares the visualization results of our MLSEB
method with other bundling methods using the US airlines dataset (2101 edges).
Our MLSEB method provides similar results, and generates tight, smooth and
locally well-separated bundles. High-level graph structures are also revealed in
our results. The right column in Fig. 3 shows the comparison using the US migra-
tions dataset (9780 edges). Figure 4 shows another example using the France air-
lines dataset with 17274 edges. In these results, the main migration and airline
patterns are clearly revealed using MLSEB. In the migrations dataset, FDEB
and FFTEB fall short in showing some subtle structures of the original graph.
For example, in the original node-link diagram of Fig. 3(b), the edges (within
the red box) connect the city of Portland to some cities in the northern U.S are
distorted significantly from their original positions in the results of the FDEB
(Fig. 3(d)) and FFTEB (Fig. 3(f)), while our MLSEB result has a distinguished
bundle effect that reveals this subtle graph structure. In Fig. 5, we compare
the visual result of MLSEB to FFTEB using a large US migrations dataset with
545881 edges. We encode the color of a edge with only its length in this example.
MLSEB shows more long-length edge patterns than FFTEB.

Table 1 shows the performance comparison between our MLSEB method and
the current fastest edge bundling method FFTEB. In our performance compari-
son, we used the US airlines graph, the US migrations graph, the France airlines
graph, and the large US migrations graph. The timing results for MLSEB and
FFTEB are based on one iteration, and we excluded the timing of memory allo-
cation and data transferring for both methods. The devices used in our experi-
ments are a desktop with an 8X Intel Core i7-6700K 4.0 GHz CPU with 32 GB
memory and a NVIDIA GeForce GTX TITAN X GPU. Comparing with the
fastest algorithm FFTEB in the state-of-the-art, we can clearly see that MLSEB
is at the same order of magnitude of FFTEB in terms of computational speed,
as shown in Table 1.
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)b()a(
Original Node-link Diagrams

)d()c(
FDEB

)f()e(
FFTEB

)h()g(
MLSEB

Fig. 3. Visualize the US airlines dataset (the left column) and the US migrations
dataset (the right column) with three different edge bundling methods, FDEB, FFTEB
and MLSEB, respectively. (Color figure online)

6.2 Quality Assessment of Bundled Graphs

Apart from comparing the visualization and performance results, we propose a
quality metric to evaluate the quality of bundling drawings based on Eq. 2.

Equation 2 gives a general quality metric Q based on the ratio of clutter
reduction C to amount of distortion T . However, the quantification of clutter
reduction C has been not fully concluded in existing work. We propose to employ
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BESLMBETFFBEDF

Fig. 4. Visualize the France airlines dataset (17274 edges) with FDEB, FFTEB, and
MLSEB.

BESLMBETFF

Fig. 5. Comparison of FFTEB and MLSEB using a large US migrations dataset
(545881 edges).

Table 1. Performance comparison.

Graph Edges FFTEB MLSEB

Samples Time (ms) Samples Time (ms)

US airlines 2180 105 K 40 85 K 22

US migrations 9780 489 K 48 207 K 38

France airlines 17274 864 K 70 990 K 94

Large US migrations 545881 6.4 M 123 5.8 M 554

the reduction of the used pixel number ΔP in a graph drawing to measure C.
Specifically, C = ΔP = P −P ′ that is the difference of the used pixel number P
of the original drawing and the used pixel number P ′ of the bundled drawing.

Intuitively, T can be given by Eq. 6 that quantifies the total distortion of all
the sample points. However, different methods can generate different numbers
of sample points. For example, FDEB generates the same number of sample
points for each edge, while our MLSEB method and the KDE-based methods
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Table 2. Quality comparison using the US migrations graph.

Graph Edges FDEB FFTEB MLSEB
S P P ′ T Q S P P ′ T Q S P P ′ T Q

US airlines 2180 813K 32K 25K 1.10K 6.2 105K 32K 18K 1.2K 11.9 85K 32K 19K 0.88K 14.4
US migrations 9780 3785K 34K 26K 0.88K 8.9 489K 32K 24K 1.0K 7.60 207k 33k 25k 0.92k 9.20
France airlines 17274 6685K 81K 72K 2.60K 3.7 864K 81K 57K 1.6K 21.3 990K 81K 60K 0.80K 26.0
Large US migrations 545881 n/a n/a n/a n/a n/a 6.4M 108k 84k 1.8k 13.3 5.8M 107k 95k 0.90 13.3

sample different edges into different numbers of points. Thus, instead of the total
distortion of all the sample points, we use the average distortion: T = T

S , where
S is the total number of the sample points in the graph. Therefore, we modify
Eq. 2 to

Q =
ΔP

T
. (11)

The rationale of Eq. 11 is to measure how many pixels are decreased by gen-
erating one unit distortion. A higher value of Q means a better quality result.
Table 2 shows the quantitative quality comparison between our MLSEB method,
FDEB and FFTEB. Our comparison is based on the drawings with an image
resolution of 400 × 400, as shown in Figs. 3, 4 and 5. All the statistic results
are generated after a graph is bundled, i.e., after all iterations. We note that it
makes less sense to compare the distortion in each iteration because the initial
iterations of some methods, such as FDEB and FFTEB, may have surprisingly
large distortion. It is more reasonable to compare the quality of results after the
bundling iterations are finished. We also note that using different parameters,
such as different iteration numbers and different bandwidths for different meth-
ods, can yield different results. We use the recommended parameters in FDEB’s
and FFTEB’s papers [12,23], which are the best results we can get from the
existing work. The S columns in Table 2 show the numbers of the sample points
in a graph using different methods.

We can see that the quality of MLSEB is generally better than the other two
methods in terms of Eq. 11. For the four different datasets, FFTEB makes the
most clutter reduction. However, it also incurs more distortion. FDEB achieves
a comparable quality as ours for the US migrations dataset; whereas, when
the dataset is getting larger (France airlines), FDEB will generate tremendous
distortion, as shown in Table 2 and Fig. 4, thus lowering the quality score. Note
when using the large US migrations dataset, the advantage of MLSEB over
FFTEB becomes marginal. Overall, MLSEB gains the highest quantitative scores
in terms of quality according to Eq. 11.

7 Conclusions and Future Work

We present a new edge bundling method MLSEB that holistically considers
distortion minimization and clutter reduction. Inspired by the MLS work [1,20],
our approach generate bundle effects by iteratively projecting each site to its local
regression curve to converge with other nearby sites based on its neighborhood’s
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density. Such a local regression curve can reduce the distortion of the local
bundle. Our method is easy to implement. The timing result shows MLSEB is
at the same order of magnitude of the current fastest edge bundling method
FFTEB in terms of computational speed.

We use a quality assessment to evaluate the quality of resulting edge bun-
dles. Our MLSEB method shows better results in our preliminary comparison.
However, a more comprehensive comparison between our MLSEB method and
the other methods requires further investigation, where other factors (e.g., edge
crossing reduction) may be also considered. In addition, we plan to apply optimal
bandwidth selection [24,40] to improve MLSEB. We would also like to incorporate
semantic attributes into MLSEB to enhance bundling results. Last but not least,
bundling a very large graph (e.g., one with billions or trillions of edges) remains
a very challenging task, which is a next possible direction in our future work.
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