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ABSTRACT
Data staging and in-situ/in-transit data processing are emerg-
ing as attractive approaches for supporting extreme scale sci-
entific workflows. These approaches improve end-to-end per-
formance by enabling runtime data sharing between coupled
simulations and data analytics components of the workflow.
However, the complex and dynamic data exchange patterns
exhibited by the workflows coupled with the varied data
access behaviors make efficient data placement within the
staging area challenging. In this paper, we present an adap-
tive data placement approach to address these challenges.
Our approach adapts data placement based on application-
specific dynamic data access patterns, and applies access
pattern-driven and location-aware mechanisms to reduce data
access costs and to support efficient data sharing between
the multiple workflow components. We experimentally demon-
strate the effectiveness of our approach on Titan Cray XK7
using a real combustion-analyses workflow. The evaluation
results demonstrate that our approach can effectively im-
prove data access performance and overall efficiency of cou-
pled scientific workflows.

CCS Concepts
•Information systems → Hierarchical storage manage-
ment; •Computer systems organization → Real-time
system specification;

Keywords
Adaptive data placement, data access pattern, in-situ/in-
transit, coupled scientific workflows, data staging

1. INTRODUCTION
Advanced coupled simulation workflows running at ex-

treme scale on high end computing platforms are provid-
ing new capabilities and new opportunities for insights in a
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wide range of application domains. These workflows, which
are composed of multiple coupled simulations, data analy-
sis, visualization and other application components, are also
presenting new challenges due to their scales, coupling and
coordination behaviors and overall complexities. These chal-
lenges must be addressed before the potential of these work-
flows can be fully realized. For example, the S3D combustion
simulation workflow [6] requires a variety of different, pos-
sibly concurrent, runtime analyses (e.g., descriptive statis-
tics [21], iso-surface extraction [26], feature tracking [30],
etc.) in order to derive insights from transient phenomena
in the simulation data. These workflow components can ex-
hibit distinct runtime data access behaviors and dynamic
data exchange patterns. As a result, efficiently managing
data placement, sharing, and exchange for such coupled sim-
ulation workflows has become a significant challenge.

Recent research efforts have used in-memory data staging
and in-situ/in-transit data processing approaches to address
these challenges. These approaches use a staging area that
is composed of in-memory storage distributed across a set
of staging cores/nodes on the system where the workflow is
running, to enable runtime data processing, sharing, and ex-
change, as illustrated in Figure 1. The effectiveness of this
solution however is sensitive to the data placement across
the staging cores/nodes since data access latency can sig-
nificantly impact the overall performance of the workflows
– this is especially true for read-intensive workflows such as
the S3D analysis workflow. Efficient data placement can be
challenging when multiple components with different and
possibly dynamic data access behaviors (in terms of data
accessed, access frequency, and concurrency) are interact-
ing and exchanging data at runtime, as is the case in the
S3D analysis workflow. However, data placement in cur-
rent data staging frameworks such as DataSpaces [9] and
ActiveSpaces [10], is oblivious to the data access behaviors
of the component applications that are part of the work-
flow. This can lead to inefficient data access and result in
a significant performance impact due to load imbalance and
increased contention.

In this paper, we propose an adaptive data placement ap-
proach to optimize the data access performance for staging-
based scientific workflows. In this approach, we take ad-
vantage of application-specific data access patterns to adap-
tively place data with an awareness of the system network
topology, so as to reduce data access costs and enable effi-
cient data sharing, which in turn improves end-to-end per-



Figure 1: A simulation workflow composed of coupled sim-
ulations and analysis components, implemented using data
staging.

formance. Specifically, we identify and characterize the dy-
namic data access patterns of data consumer applications
at runtime using a combination of user provided hints and
prior access behaviors. We also analyze the locations of com-
pute nodes within the network topology of the system. Us-
ing insights from both of these analyses, we adaptively place
data on the staging cores/nodes closest to the computational
nodes that will access the data, while maintaining a bal-
anced load across the staging cores/nodes. Furthermore, we
dynamically replicate data to other staging nodes in order
to resolve conflicting optimization requirements caused by
concurrent accesses from multiple application components.
This runtime data placement adaptation is performed on-
the-fly while data is being transferred from the data pro-
ducer application to the staging area.

We have developed a runtime system that implements
this adaptive data placement approach on top of the DataS-
paces [9] framework, and have deployed it on the Titan Cray
XK7 system at Oak Ridge National Laboratory. We eval-
uate our runtime system using data access traces from real
applications, and a production S3D combustion simulation
workflow that couples S3D combustion simulation with two
data analysis applications. We experimentally measure the
data access performance, and demonstrate that our data
placement approach effectively and efficiently adapts to dy-
namic data access patterns and significantly reduces the
data access time as compared to other data placement ap-
proaches.

In this paper, we make the following contributions. (1)
We present a data placement approach that leverages both
application data access patterns and system network topol-
ogy to dynamically and adaptively place data within a data
staging area to reduce data access costs. (2) We implement
and deploy a runtime system that realizes our adaptive data
placement on Titan and demonstrate its effectiveness and
performance using a production S3D combustion simulation
workflow.

The rest of this paper is organized as follows. Section 2
presents a motivating application scenario. Section 3 de-
scribes our access pattern-driven and location-aware data
placement approach. Section 4 presents the design and the
implementation of our runtime system. Section 5 presents
an experimental evaluation. Section 6 provides related work
and Section 7 concludes the paper.

2. MOTIVATING APPLICATION WORKFLOW
The motivating application for this research is a scientific

combustion simulation workflow; it is composed of one pri-
mary simulation, S3D [6], and many coupled analysis com-

ponents. The S3D combustion simulation is a massively par-
allel code used to perform first principles direct numerical
simulations of turbulent combustion. To glean fundamen-
tal insights from this simulation data, a variety of analyses
are coupled with the simulation, such as iso-surface extrac-
tion [26], feature tracking [5], and volume rendering [29].
These analyses cover a broad set of algorithms that have
heterogeneous data access patterns and requirements. To-
gether, these analyses, plus the S3D simulation, comprise
the overall workflow. We briefly describe the scientific back-
ground for two of the analyses components, in order to mo-
tivate the data access use cases that serve as drivers for this
research.

Iso-surfaces Extraction: Extracting iso-surfaces of a
varying scalar field in the computational domain is interest-
ing and important for the S3D simulation since these iso-
surfaces represent flame sheets in the turbulent flow. One
challenge in extracting these iso-surfaces is that they are
not volume filling, hence constructing them using a tradi-
tional marching cubes algorithm requires accessing the data
from only a small portion of the entire data domain (less
than 10%). However, the spatio-temporal fluctuations of
turbulent flow cause the temporal iso-surface to experience
“flapping.” The result of this volatile behavior means that
the required portion of the data domain needed for extrac-
tion may change accordingly over different time steps (i.e.,
it is not fixed). Furthermore, the domain scientist is often
interested in the extraction of multiple iso-surfaces for dif-
ferent iso-values of the scalar field. In this case, multiple
sub-regions of the data domain need to be accessed in the
same time-step.

Feature Tracking: Direct numerical simulations resolve
all the relevant spatio-temporal scales and provide informa-
tion on the dynamics of many interesting features, such as
auto-ignition kernels, expanding or contracting flames, and
extinction regions. A feature can be typically identified and
classified in a scalar field based on some critical points and
a suitable threshold. Mostly, these features move and grow
over time in the computational domain, but seldom extend
to the full domain. Therefore, the feature tracking analy-
sis can safely identify and track these features by accessing
data of relevant sub-domains, under the guidance of corre-
sponding thresholds. With the spatio-temporal changes of
these features, the sizes and locations of these sub-domains
change accordingly over time steps.

Both of these analyses exhibit dynamic data access pat-
terns, which spatially range from small fractions of the sub-
domain to the entire data domain, and temporally vary over
different time steps. For these types of applications, exist-
ing data placement solutions that are oblivious to data ac-
cess behaviors become inflexible and inefficient, especially in
workflows with various analyses running concurrently. In the
rest of this paper, we present an application-aware adaptive
data placement approach that can take such complex and
dynamic data access patterns into consideration to reduce
data access costs and improve the overall time to solution
for the large-scale simulation workflows.

3. ACCESS PATTERN-DRIVEN, LOCATION-
AWARE DATA PLACEMENT

3.1 Overview of our approach



Figure 2: Overview of the adaptive data placement ap-
proach.

The goal of our data placement approach is to optimize
data access performance for staging-based in-situ/in-transit
simulation workflows. To achieve this goal, we adapt the
placement of data in the staging area to meet dynamic ap-
plication requirements. We do this by analyzing data access
behaviors at runtime and using this analysis to anticipate ac-
cesses. Based on this prediction, we place data close to the
application components that will access. At the same time,
we attempt to evenly distribute the data across the staging
nodes to minimize data access contention. More specifically,
we monitor the data access patterns of the consumer ap-
plications at runtime and use this information, along with
information about the locations of the applications and stag-
ing nodes within the system network topology, to adaptively
optimize data placement on-the-fly while the data is being
transferred from the data producer application to the stag-
ing servers. Note that while adaptive data placement may
increase the write latency, it will not impact the progress of
the producer application, e.g., the simulation that is writing
data. This is because data is written using an RDMA-based
asynchronous write operation, which allows the application
to continue its execution while the write is happening, thus
effectively hiding the write latency from the application.

An overview of our adaptive data placement approach is
presented in Figure 2. Our approach relies on two pieces of
information, runtime data access patterns and location in-
formation. In the following subsections, we describe mech-
anisms for acquiring all this information with sufficient ac-
curacy while ensuring that the associated overheads have
minimal impact on the performance of the workflow.

3.2 Determining data access patterns
Data in most scientific simulations is defined on a dis-

cretized simulation domain and is represented as a multidi-
mensional array. The data access patterns associated with
such scientific applications have been studied in previous re-
search [18]. We leverage this work to identify the data access
patterns within simulation workflows. Specifically, we char-
acterize the spatial data access patterns in anN -dimensional
domain as one or multiple N -dimensional bounding boxes,
where a bounding box is defined as follows:

S = {(Coordstart, Coordend)d1 , ..., (Coordstart, Coordend)dn}
Here, the two coordinates – Coordstart and Coordend – rep-
resent the boundaries of the bounding box in each dimension
di. Such a bounding box representation is used in many
scientific applications including combustion (S3D), fusion
(GTC, GTS, XGC-1) and Magnetohydrodynamics (MHD)
(Pixie3D) simulations, and data access patterns in these ap-
plications can be expressed as combinations of one or more
bounding boxes. We intend to extend this approach to other

Figure 3: Examples of data access patterns in a 3D data
domain. The shadowed area represents the data accessed by
the data consumer applications.

data representations, such as graphs.
For example, Figure 3 shows the data access regions (shad-

owed in the figure) of two application processes p1 and p2,
denoted as Sp1 and Sp2 , respectively. In this Figure, the
combined data access region can be the entire data domain
(Figure 3(a)) that is described as S = {(0, 4)d1, (0, 4)d2, (0, 4)d3},
a regular sub-domain (Figure 3(b)) that is described as S =
{(0, 2)d1, (0, 2)d2, (2, 4)d3}, or an irregular sub-domain (Fig-
ure 3(c)) that is described as S = Sp1

⋃
Sp2 , Sp1 = {(0, 1)d1,

(0, 4)d2, (0, 4)d3} and Sp2 = {(1, 4)d1, (0, 1)d2, (0, 4)d3}.
Since data access patterns might vary over time as the sim-

ulation evolves, we have to efficiently identify these patterns
at runtime. To do this, we leverage the observation that
data accesses in simulations typically follow regular patterns
and evolve predictably over time. We monitor data accesses
at the staging servers and compare them across consecutive
time steps to anticipate subsequent accesses. Specifically,
we track the changes in the boundary of the accessed re-
gion, denoted as Kdi , occurring along each dimension di of
a N -dimensional bounding box in time steps T−1 and T−2.
We then predict the boundary of the accessed region in time
step T to satisfy:

CoordTdi = CoordT−1
di

+Kdi ,Kdi = CoordT−1
di

− CoordT−2
di

For example, in Figure 4, the bounding box accessed in time
steps T3 and T4 are {(5, 8)d1, (3, 5)d2} and {(3, 6)d1, (2, 6)d2},
respectively. Using the approach described above, the pre-
dicted bounding box accessed in T5 is {(1, 4)d1, (1, 7)d2}.
This approach is simple yet effective and introduces low
overheads, as our evaluation presented in Section 5 demon-
strates.

We also allow users to provide hints about when and how
frequently data access patterns change, based on their knowl-
edge of the application. For an iterative application, hints
for the main loop can be specified as follows:

H = {TSstart, TSend, frequency}
Here TSstart and TSend define the start and end time steps
of a specific interval in the application’s execution; frequency
defines how often the access pattern may change within that
interval. For example, H = {1, 50, 10} states that the appli-
cation changes its data access patterns every ten time steps
in the first 50 time steps. As a result, our runtime will cap-
ture the data access patterns at time steps 1, 11, 21, etc.,
and adapt data placement if required.

Hints are an optional enhancement that guide the place-
ment when provided. However, they might be incorrect due
to user mistake. For instance, if a user claims access pat-
tern changes at a certain time step, but in reality, it does
not. To minimize the impact of incorrect hints, we compare



Figure 4: An illustration of our approach for anticipating
data access patterns for a 2D data domain over time. The
entire 8× 8 data domain is written into the staging area by
the producer application, and the gray regions indicate data
read by a data consumer application. Our algorithm tracks
changes in the accessed region along both dimensions of the
data access region during the 3rd and 4th time steps, and
anticipates the region that will be accessed during the 5th
time step.

the data access patterns in the current and previous time
steps. If they are the same, no changes on placement; thus,
no effect on efficiency. In the case when a user is unaware of
the pattern change, our approach might fail to capture the
pattern changes immediately. Efficient data placement will
not be achieved until the new pattern is captured.

3.3 Acquiring location information
Data transmission costs are a significant part of data ac-

cess costs. For large scale systems with a torus/mesh or
fat-tree network topology, the chance of network contention/
congestion increases as the data transfer distance increases [3,
16], resulting in increased data transmission costs. Further-
more, in production HPC systems such as Titan, the system
scheduler often allocates non-contiguous compute nodes to
jobs in order to improve the overall resource utilization. As
a result, compute nodes allocated to the same job might be
located physically ‘far away’ from one another, resulting in
high data transmission costs between processes executing on
these nodes. Therefore, keeping track of the physical loca-
tions of allocated compute nodes and the distances between
them, is important for achieving efficient data placement
with low data transmission costs.

3.3.1 Identifying physical locations of nodes
The physical location of a node describes its relative posi-

tion in the system network. We illustrate our approach for
identifying a node’s physical location using a 3D mesh/torus
network topology as an example, because this topology is
widely used in current large scale HPC systems. The physi-
cal locations of compute nodes in this network topology can
be represented using coordinates – (X,Y, Z), and the dis-
tance between a pair of nodes can be measured as the short-
est path along network links in all dimensions based on their
coordinates. For example, in Figure 5, application process
p1 running on compute node (0, 1, 0) can communicate with
staging server S2 running on compute node (1, 1, 0) via a
one-hop path along the x dimension; the distance between
p1 and S2 is one. Similarly, the distance between p1 and S1 is
four. In order to reduce data access costs, the data required
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Figure 5: An example of the relationship map (RMAP)
between two staging servers and two applications. Based on
their locations in the network, application processes p2, p4,
p6 and p8 are mapped to staging server S1, while p1, p3, p5
and p7 are mapped to staging server S2.

by p1 should be placed as close as possible. Therefore, in
this case, S2 is a better choice than S1.

3.3.2 Generating the relationship map – RMAP
The relationship map (RMAP) describes the proximity

between data consumers and staging servers based on their
physical locations within the system network topology. In
RMAP, we map each data consumer process to a staging
server that is physically close to it within the network. Mean-
while, we attempt to achieve load balancing across the servers
by allowing each server to be mapped to approximately the
same number of consumer processes. The mapping assumes
that for the same consumer application, each consumer pro-
cess accesses approximately the same amount of data, which
is the case for the targeted applications. For example, as
shown in Figure 5, eight processes running two applications
access data from two staging servers. Based on their lo-
cations, application processes p2, p4, p6 and p8 are mapped
to staging server S1 with a distance of one; the other four
application processes are mapped to server S2.

Generating the relationship map described above can be
reduced to the NP-complete Generalized Assignment Prob-
lem [22]. To minimize the impact on the simulation, we use
a simple but effective greedy heuristic algorithm. Specifi-
cally, for each application process, our algorithm sorts the
distances from that process to all the staging servers and
then selects the ‘closest’ server to map to. We also set a
constraint on the maximum number of processes that can be
mapped to a single staging server to ensure load balancing.
The complexity of this algorithm isO(n·mlog(m)), wherem,
n represents the number of cores running the staging servers
and the data consumer applications, respectively. Note that
since the nodes allocated to an application do not change at
runtime in current HPC systems, the RMAP only needs to
be generated once when the workflow begins execution.

3.4 Determining data placement
Based on both pieces of information, the dynamic data

access patterns and the static RMAP, our data placement
approach places data close to the computation. Specifically,
data that will be accessed by an application process is placed
in advance on the staging server that the process is mapped
to in the RMAP. For example, in Figure 6, based on the
RMAP (derived in Figure 5) and the captured data access
patterns for the two applications, p4 is mapped to S1 and
accesses data d4. As a result, our approach places d4 on S1



Figure 6: An example of data placement for two applica-
tions that read different data regions. The light gray regions
in the full data domain are accessed by one application, while
the dark gray regions are accessed by both applications.

to satisfy the requirements of p4, as shown in the figure. The
remaining data, i.e., data that is not identified by the access
prediction mechanism as being accessed by any application,
such as d7 and d8 in the figure, is evenly distributed across
the staging servers to balance load. Note that at the begin-
ning of execution (i.e., the first time step), there is no infor-
mation available about data access patterns. As a result, we
use a pre-configured data placement, such as row/column-
based or chunking. In subsequent time steps, we can use
the access behaviors captured in the previous time step to
guide data placement. Once sufficient historical data about
access behaviors is collected, the adaptive data placement
approach can be applied based on the predicted data access
patterns.

When multiple application components within a workflow
concurrently access the same data, it might lead to conflict-
ing data placement requirements. For example, in Figure 6,
d2 is accessed by two processes p2 and p7, which are mapped
to S1 and S2, respectively. Placing d2 on either S1 or S2

can only satisfy the requirement of one application process,
resulting in higher data access costs for the other process.
To address this problem, our approach dynamically repli-
cates data and distributes replications to staging servers on
demand. For the above example, a replica for d2 is cre-
ated and these two copies are distributed to both S1 and
S2. Note that data that is replicated is read-only, thus data
consistency is not an issue. In our approach, the number
of replicas is determined by the data access requirement for
each time step and thus adapts to the dynamic data access
patterns. In addition, distinct data objects may have differ-
ent numbers of replicas, which results in an efficient usage
of storage space. For example, no extra replica is created
for d1 even though it is accessed by two processes p1 and p5,
because both processes are mapped to S2 and can share the
same copy without conflict.

In practice, we may not be able to create as many repli-
cas as required due to limited memory within the staging
area. In this case, the incoming data will replace the data
generated in previous time steps, especially those that have
multiple replicas. The other option is to extend the capac-
ity of staging area using NVRAM, SSD, or other available
resources. Such architectures with deep memory hierarchy
have been deployed on some HPC systems, such as Sith at

Figure 7: Architecture of the runtime system for adaptive
data placement. The shadowed area represents components
of DataSpaces that are reused by the runtime.

ORNL. We have explored data staging across deep memory
hierarchy in other research presented in [14, 15].

4. IMPLEMENTATION OF A RUNTIME SYS-
TEM FOR ADAPTIVE DATA PLACEMENT

We have implemented a runtime system that incorporates
our adaptive data placement approach into the DataSpaces
data staging framework [9]. The schematic overview of the
overall architecture of the runtime is presented in Figure 7.
It leverages the Data Communication Layer, Data Opera-
tion Layer and Data Storage from DataSpaces, reusing its
data transport, data insertion and querying, and data stor-
age capabilities. Following the DataSpaces architecture, our
system consists of a client-side subsystem that is co-located
with the applications in a given workflow, and a server-side
subsystem that runs on the staging cores. In this section, we
describe the implementation details of the Data Organiza-
tion Module, including Location Discovery, Trace Collector,
Trace Analyzer, and Data Placement. We also detail the
extended Data Lookup service that supports our data place-
ment approach to efficiently serve data access requests.

4.1 Location Discovery
The Location Discovery component of the runtime is re-

sponsible for identifying the physical locations of nodes al-
located to a workflow, including the DataSpaces staging
servers. For example, in the Cray XK7 supercomputer, the
location of a node can be represented by the coordinates of
the attached Gemini router and be acquired by appropri-
ate system calls (e.g., rca get meshcoord). A server that is
selected as the master server, is responsible for gathering
this information, generating a relationship map - RMAP,
and distributing the RMAP to all staging servers. Based
on the RMAP, each staging server sends messages contain-
ing its own information to the application processes that
it is mapped to. It allows application processes to directly
communicate with staging servers that are physically close
to them. Since this location information does not change,
the discovery process only needs to be performed once and
in parallel with the execution of data producer application.
Therefore, it has little impact on the overall workflow per-
formance.

4.2 Trace Collector and Trace Analyzer
The Trace Collector and Trace Analyzer components are

responsible for capturing dynamic data access patterns dur-
ing runtime. Specifically, the Trace Collector logs every time
an application process requests access to data. It extracts



the bounding boxes that describe the requested data regions
as data access behaviors. The Trace Analyzer then analyzes
such data access behaviors by comparing them with those
in the previous time step in order to detect changes in the
data access patterns. Data placement computations can be
avoided if the data access patterns remain the same.

When hints are provided by the user, both the Trace Col-
lector and Trace Analyzer are invoked only at selected time
steps, at the beginning of a new execution phase that may
introduce new data access patterns, thereby reducing some
system overheads. In the absence of hints, the Trace Collec-
tor and Trace Analyzer may be invoked at every time step
to collect the data access behavior and predict the future
data access using the method described in Section 3.

4.3 Data Placement
The Data Placement component is responsible for making

the data placement decision based on the information pro-
vided by the Location Discovery, Trace Collector and Trace
Analyzer components. Specifically, the master server col-
lects the data requirements for each staging server based on
access patterns acquired by the Trace Analyzer component
and determines an assignment of data objects to staging
servers. This data assignment is then stored in a distributed
hash table (DHT) constructed across all the staging servers.
Indeed, the DHT itself is part of the original DataSpaces
framework. We extend it in this work to support multiple
data replicas, by allowing it to keep track of the locations of
data objects and their replicas. The DHT is used by Data
Lookup for runtime data placement and data query opera-
tions.

Specifically, the index for the DHT is derived from the ap-
plications’ representation of the data domain. For example,
in the case of a Cartesian mesh, a space-filling curve (SFC)
is used to linearize the n-dimensional Cartesian coordinates
into a 1-dimensional index space, which is then assigned to
distinct staging servers. This information is used to dis-
tribute the generated data assignment to staging servers.
Consequently, each staging server is assigned distinct seg-
ments of the index space, and maintains the DHT entries
for the locations of data corresponding to that index space.

4.4 Data Lookup
The Data Lookup component builds on the existing Data

Lookup Layer of DataSpaces. In this work, it has been ex-
tended specifically to support adaptively placing data based
on the DHT, and to support accessing data replication.

The Data Lookup component hashes the spatial informa-
tion associated with a data insert request (using the SFC)
and determines the staging servers in the staging area to
which the corresponding segments of the index space are
assigned. It then uses the DHT to determine a list of loca-
tions where the inserted data should be stored, and routes
the data to those appropriate staging servers. Similarly, for
data retrieval queries, the staging servers that have the seg-
ments of the index space corresponding to the spatial infor-
mation associated with the query, search their DHT entries
for data locations. For a data object with multiple replicas,
the most appropriate one that is stored close to the appli-
cation process and does not violate the load balance across
the servers, is selected and returned to application.

5. EXPERIMENTAL EVALUATION

Figure 8: Data placement methods used in the experi-
ments.

In this section, we present an experimental evaluation of
our adaptive data placement approach, which is termed Pd-
Loc (for Pattern-Driven, Location-Aware). We evaluated
it using (1) data access traces from existing real applications
and (2) the S3D combustion simulation-analysis workflow.
Our experiments were performed on the Titan Cray XK7
supercomputer at ORNL. Titan has 18,688 compute nodes
connected through a Gemini 3D torus interconnect; and each
node has a single 16-core AMD 6200 series Opteron proces-
sor and 32GB of memory.

5.1 Evaluation using data access traces
This set of experiments evaluates the performance and

effectiveness of our adaptive data placement (Pd-Loc) us-
ing data access traces from real application workflows that
exhibit typical dynamic data access patterns. These data
access traces were extracted from workflows where different
analysis/visualization operations are performed on turbulent
combustion datasets generated by S3D, a massively parallel
combustion simulation code developed at Sandia National
Laboratories.

We used traces from two use cases in the experiments: (1)
extracting an iso-surface from the dataset that represents a
3D flame in stratified dimethyl-ether(DME)/air turbulent
mixtures (as shown in Figure 9), and (2) performing volume
rendering on the dataset that represents a 3D temporally-
evolving planar slot jet flame with dimethyl-ether (DME) as
the fuel (as shown in Figure 10).

In these experiments, we coupled one data producer with
one data consumer using two test application codes. One
was responsible for writing data to the staging area (as a
data producer), and the other for reading data from the
staging area (as a data consumer), both following the data
access patterns captured in the traces. The configuration of
the experiments was as follows: the number of cores allo-
cated for the producer and consumer were 8k and 4k respec-
tively, and 256 cores were used for the staging servers. For
simplicity, we used a normalized 3-dimensional data domain
of size 2048 × 2048 × 2048, with 16 different variables. A
total of 256GB of data was generated for the entire domain
and transferred to the staging area during a write.

As stated in previous sections, the efficiency of data reads
impacts the overall performance of the workflow. Therefore,
we measured the data read time at the data consumer appli-
cation and evaluated the efficacy of our approach using two
experiments. In these experiments, we compared the per-
formance of our adaptive data placement method (Pd-Loc)
with commonly used approaches for organizing multidimen-
sional data generated by scientific applications across data
staging nodes or parallel storage. Specifically, two data orga-
nizations[23] are popularly used: logically contiguous, e.g.,
Row, and chunking, e.g., Space Filling Curve (SFC ), as il-
lustrated in Figure 8. Detailed experiment results and com-
parisons are presented below. Please note that these results



(a) TS = 10. (b) TS = 50. (c) TS = 90.

Figure 9: A visualization of the evolving data access re-
gions in the combustion dataset that represents a 3D flame
in stratified dimethyl-ether (DME)/air turbulent mixtures.
The data access regions that include the iso-surface (shown
in red) are growing over time.

(a) TS = 1. (b) TS = 5. (c) TS = 9.

Figure 10: A visualization of the evolving data access
regions in the combustion dataset that represents a 3D
temporally-evolving planar slot jet flame with dimethyl-
ether (DME) as the fuel. The regions of interest (shown
in green) are growing and moving over time.

are averages over 20 test runs.

5.1.1 Evaluation using the trace from the Combus-
tion – Iso-surface extraction workflow

In this experiment, we emulated the dynamic data ac-
cess patterns extracted from the workflow composed of the
combustion simulation and the iso-surface extraction com-
ponent. In this scenario, scientists are interested in the re-
gions corresponding to 50% of the total heat release. These
regions would be useful for computing statistics conditioned
on burning regions. It is possible to compute temperature,
species mass fractions scalar dissipation rate, progress vari-
able means, and pdfs conditioned on whether a region is
burning or not.

Figure 9 shows a visualization of the data access regions
that include the iso-surface structure at three selected time
steps. The flame spreads over the entire X and Z axes and
slowly grows along Y axis in both directions. Correspond-
ingly, the data access regions that include the flame dynam-
ically grow from 30% to 50% of the entire data domain, and
the accessed data size increased from 76GB to 128GB. In
this case, the data access traces include 100 time steps and
the data access patterns changed every 10 time steps. The
frequency of change in data access patterns was provided to
the system in the form of user hints.

From Figure 11, we can observe that the performance of
our adaptive approach (Pd-Loc) is relatively stable except
for two time steps. One occurs at the 1st time step. This
is because there is no prior knowledge about the data ac-
cess patterns of the data consumer, and so we simply use
Row placement initially. The other occurs at the 11th time
step when the data access pattern changes, making the data
placement based on the pattern from the previous time step
ineffective. Once the data access pattern has been captured,
our approach improves data access performance for the sub-

Figure 11: A comparison of data access times during
the first 20 time steps using different data placement ap-
proaches.

Figure 12: A comparison of the average data access time
for every ten time steps that have the same data access
patterns using different data placement approaches. The
sizes (GB) of the accessed data regions for every ten time
steps are also shown in the plot.

sequent time steps.
We performed this experiment over 100 time steps to bet-

ter understand the data access performance with respect to
the dynamic data access patterns over a longer time scale.
When the data access patterns remain the same, the data
access time for a specific data placement approach is almost
constant. As a consequence, we simply compared the aver-
age data access time for every ten time steps (the interval
during which all time steps have the same data access pat-
terns), as plotted in Figure 12.

From this experiment, we can observe that SFC performs
the worst. This is because it always places contiguous dataset
on a few staging servers to preserve data locality. However,
this approach can create hotspots, resulting in inefficient
data access. In comparison with Row and SFC, Pd-Loc sig-
nificantly improves data access performance. While Row
performs better than SFC because it results in a balanced
data distribution, Pd-Loc achieves an up to 4 times speedup
over Row, by placing data close to the computation access-
ing it. Note that the speedup increases from 2 times to 4
times as the size of the accessed data grows from 30% to
50%, which indicates that the larger the data size is, the
greater the potential benefits that can be gained from our
adaptive data placement approach.

5.1.2 Evaluation using the trace from the Combus-
tion – Volume rendering workflow

In this experiment, we emulated the dynamic data access
patterns extracted from the workflow composed of the com-
bustion simulation and the volume rendering component. In
this scenario, scientists are usually interested in the scalar



Figure 13: A comparison of data access time using differ-
ent data placement approaches. The dynamic data access
behaviors are based on traces from the Combustion – Vol-
ume rendering applications over 16 time steps. The sizes
(GB) of the accessed data regions at each time step are also
shown in the plot.

dissipation rate over time. They explore the regions to study
turbulence chemistry interactions within the kernels by com-
puting dilatation, turbulent kinetic energy, etc., within the
regions, and to try to correlate them with thermo-chemical
quantities.

Figure 10 shows a visualization of the regions of data that
are accessed at three selected time steps, showing the main
flame structure of the scalar dissipation rate at those time
steps. We can see that the regions are expanding from the
center of the data domain outward to the surrounding area;
at 9th time step, it almost spreads over the entire domain.
In this case, the data access traces include 16 time steps,
and the regions of data accesses grow from 0.5% to 23% of
the entire data domain. Correspondingly, the accessed data
size grows from 1.3GB to 59GB.

Figure 13 plots the data access time for 16 time steps using
different data placement approaches. The results show that
our adaptive approach (Pd-Loc) has the shortest data access
times. This improvement is due to both, load balancing and
location-aware data placement. We can observe that Pd-Loc
achieves 3.9 and 2.5 times speed up compared to Row and
SFC respectively, in the 8th time step. Note that after the
12th time step, as the data access regions spread over the
entire domain, all the data placement approaches achieve
a relatively balanced load across the staging servers, and
results in a more stable performance. Also note that the
data access time when using Pd-Loc is almost proportional
to the data size, indicating its scalability. Specifically, as the
accessed data size increased from 1.3GB to 59GB, the data
access time increased from 0.003 to 0.138 seconds.

5.2 Evaluation using the production S3D anal-
ysis workflow

5.2.1 Experimental setup
In order to demonstrate the applicability of our adaptive

data placement approach (Pd-Loc) to production applica-
tion workflows, we integrated it with a real workflow com-
posed of the S3D combustion simulation and two analysis
applications – descriptive statistics and feature extraction.
We then tested the performance of the integrated workflow
on Titan. In this experiment, the combustion simulation

(a) TS = 1. (b) TS = 20. (c) TS = 40.

Figure 14: A visualization of the evolving data access re-
gions – FS/S (shown in green) and FC/U (shown in blue)
flow classifications for the combustion dataset that repre-
sents a lifted hydrogen jet flame. The regions of interest
(shown in green) are changing slightly over time.

generated a lifted hydrogen jet flame. We describe the two
analysis codes below.

Feature extraction: The volume data in the 3D lifted
jet flame can be classified into 27 flow structures by com-
puting a local rate-of-deformation tensor [7]. The two clas-
sifications, FC/U (focusing compressing unstable) and FS/S
(focusing stretching stable), are the most prominent features
of interests that are presumed to have a strong influence
on flamelet deformation. In this experiment, we extracted
the flow structure of FS/S and the combustion variables to
observe interaction between the flame, jet, and boundary
layer. Figure 14 presents a visualization of data regions of
FS/S flow structure that are accessed at three selected time
steps. The data access region, shown in green in Figure 14,
changed slightly at the boundary of the flame.

Descriptive statistics: Descriptive statistics [21] is a
common tool used by scientists to provide succinct sum-
maries of trends in their data. In this experiment, we used
an in-transit deployment of a scalable parallel statistic algo-
rithm based on the VTK library [1], which is similar to one
that had been used in our previous work [2].

Similar to the previous experiments, as soon as the data
is generated by the simulation, it is transferred to the stag-
ing servers. Then, both analyses can access either the full
data domain, or a subset of it, from the staging servers. For
comparison, we used the traditional DataSpaces [9] method
(labeled DS) based on chunking in addition to our adap-
tive data placement approach (Pd-Loc). In the traditional
DataSpaces method, the size of each chunk depends on the
domain decomposition for the simulation, and these chunks
are placed on staging servers using a round-robin approach.

5.2.2 Experiment results

Number of cores 16512 33024 66048
No. of data producer cores 8192 16384 32768
No. of staging cores 128 256 512
No. of cores for descriptive statistic 4096 8192 16384
No. of cores for feature tracking 4096 8192 16384
Volume size 1280× 640× 640
No. of variables 9
Data size 72GB

Table 1: This table presents the core-allocations and data
volume used in the three test scenarios: 16512, 33024 and
66048 cores.

In our experimental study, we used a lifted S3D simulation
of Hydrogen combustion with a grid size of 1280×640×640.
The core configurations, data region assignments, and data
sizes are listed in Table 1.



Figure 16: The size of data replicas created by the adaptive
data placement over 50 time steps.

Different from the previous experiments, this experiment
involves two data consumer applications running concur-
rently and accessing data from the staging area. The De-
scriptive statistics always accesses the full data domain, lead-
ing to static data access patterns. In contrast, feature extrac-
tion accesses a subdomain, which changes over time, leading
to dynamic data access patterns. Our data placement has
to adapt to the combined dynamic data access patterns of
the two data consumers to improve data access performance
for both analyses.

For this experiment we used the first core configuration
listed in Table 1. We measured the data access time for
each analysis code separately and plotted the results over
50 time steps in Figure 15. As we expected, except for the
first time step, our adaptive data placement (Pd-Loc) out-
performs the traditional DS approach in terms of data access
performance for both analyses. We can observe that the data
access time for feature extraction varied more significantly
than that for descriptive statistics for both data placement
approaches. This variability was caused by the changing
data access patterns exhibited by feature extraction. Be-
cause of the adaptability of our approach, it achieved much
better performance, which is consistent with the results in
the previous experiments. There is a slight fluctuation in
the results using our adaptive approach, which can be at-
tributed to the imperfect prediction of the irregular data
access patterns by our prediction mechanism, resulting in in-
creased data access times. However, our adaptive approach
still achieves up to a 3 times speedup as compared to the
DS approach.

In order to satisfy the requirements of both the analyses,
our adaptive approach created replicas of the data as ex-
plained in Section 3. We measured the size of these replicas
for each time step, which is plotted in Figure 16. The data
region that is concurrently accessed by both the analyses in
this experiment is the same as the region accessed by fea-
ture extraction, which is around 9GB in each time step. We
observe that the maximum replication size is 5.1GB, and
the minimum size is 2.3GB, which is only 25% of the over-
lapped data region. This experiment demonstrates that our
approach uses storage efficiently.

Strong Scaling: We also performed strong scaling ex-
periments to evaluate the scalability of our approach. We
kept the data configuration the same, but scaled both sim-
ulation and analysis applications to run on 512, 1024 and
2048 nodes. Correspondingly, the simulation ran on 8k, 16k
and 32k cores, while each analysis application ran on 4k, 8k

Figure 17: Speedup of Pd-Loc over DS for cumulative
data access time over 50 time steps for feature extraction
and descriptive statistics analyses using increasing number
of nodes.

and 16k cores, respectively. We evaluated the cumulative
data access time across 50 time steps for both feature ex-
traction and descriptive statistics, and plotted the speedup
of Pd-Loc over DS in Figure 17. We observe that our adap-
tive data placement (Pd-Loc) yields an increasing perfor-
mance improvement over the DS approach as the number of
nodes scales up. This improvement is mainly a result of the
location-aware mechanism. At smaller node counts, the im-
pact of network contention/congestion is not as significant
as it is in a larger network. However, our experiments con-
clude that the our adaptive data placement approach shows
appropriate scaling for large node counts.

System overheads: We also evaluated the system over-
heads, which are mainly caused by the runtime data place-
ment in the staging area. We have identified three primary
sources of overheads, as follows: (1) time to acquire the
dynamic data access patterns, (2) time to collect data re-
quirement information from staging servers, and (3) time to
distribute the data placement decision to the staging servers.
The total cumulative overheads over 50 time steps for 128,
256 and 512 cores running the staging servers are 0.031,
0.087 and 0.26 seconds, respectively. When compared with
the end-to-end time of the simulation, which is often on
the order of hundreds of seconds long, these data place-
ment overheads can be considered negligible. In addition,
the adaptive data placement can be performed concurrently
with the application’s computations, and therefore, it would
not have impact on the overall end-to-end performance of
the workflow.

5.3 Discussion
The efficiency of our adaptive data placement approach re-

lies on the accuracy of anticipated dynamic data access pat-
terns. As demonstrated in the experiments, this approach
works well for applications with repetitive data access be-
haviors since we can accurately capture data access patterns
at runtime. For other applications with irregular data ac-
cess patterns, our prediction mechanism, like all prediction
strategies, has its limitations. For example, it may not accu-
rately predict data access patterns that can be used for data
placement. However, we have demonstrated that our adap-
tive data placement approach, based on runtime prediction,
can achieve considerable improvement in data access perfor-
mance for data access patterns that are changing smoothly



(a) The data access performance for feature extraction. (b) The data access performance for descriptive statistics.

Figure 15: A comparison of the data access performance over 50 time steps for the two analyses that are part of the
S3D-analysis workflow.

and following a fairly predictable path. It has been shown
that such access patterns exist for a variety of scientific sim-
ulations and analyses codes, such as feature tracking and
data trajectories visualization [27], which indicates that our
approach can be effectively applied to a wide range of exist-
ing scientific applications.

Worst-case analysis: The worst case happens when the
predicted access pattern is completely incorrect, i.e., all the
data is placed on the staging servers that are ‘farthest’ from
the computational nodes that will access the data. In this
case, retrieving data from the staging area would take the
maximum time. As a result, the worst-case performance of
our approach is the same as that of other static approaches,
such as row placement. The only additional penalty in such
a worst-case when using our approach is the overheads due
to data placement and potential data replications. Based
on our evaluation, these overheads are relatively small com-
pared to the overall execution time, and data replications
are only created when needed.

Handling other network topologies: Our research
presented in this paper has focused on the torus/mesh net-
work, which is used in current high-end systems. In case
of the dragonfly network architecture, which potentially has
less network contention, reducing data transfer distance might
not result in a significant improvement in the read perfor-
mance. However, in a dragonfly network, specific communi-
cation pattern can overload certain links and increase net-
work congestion, resulting in high communication latency [13].
Therefore, we need to explore different approaches for reduc-
ing data access latency with our framework. For example,
we can utilize network topology information and adapt data
placement to use alternate communication pattern in order
to avoid the network bottleneck. We plan to explore these
and other options in our future work.

6. RELATED WORK
Data placement for scientific workflows: Several re-

search efforts have explored different adaptive techniques
for data placement for scientific workflows. For example,
Stork [17] is a data placement service on grid systems and
uses an adaptive network protocol to move data efficiently.
Popular scientific workflow management systems, such as
Kepler [19], Pegasus [8] and DAGMan [20], also include
data management strategies. The data is stored in files and
is moving among applications automated through workflow

engines. Some of these systems rely on users to specify the
data management steps using workflow scripts, which de-
scribe the sequence of execution of the composed applica-
tions, the order of exchange of data files. Therefore, these
systems have a limited ability to handle dynamic scientific
workflows, in which the interactions and data exchange pat-
terns between applications are not know a priori. Other sys-
tems provide automated mechanisms to manage data trans-
fers. These systems use the existence of files (or some other
form of output) to detect the end of a write phase and to
trigger data transfers. However, due to the nature of paral-
lel file systems such as Lustre, such runtime monitoring and
‘notification’ can cause contention and slow downs in the IO
system thereby impacting the performance of the applica-
tions.

In addition, using files as the data exchange mechanism
often relies on specialized shared, parallel file systems (PFS).
Some research efforts such as [28, 25] focus on I/O optimiza-
tion by reorganizing data inside the file-system to improve
performance. Such data reorganization would have little im-
pact on the workflow communication itself as the PFS typ-
ically has dedicated resources such as network bandwidth.
However, for the staging-based in-situ/in-transit workflows
targeted in this paper, both staging servers and applica-
tions run on the same system and share network resources.
As a result, we have to reduce data placement and access
overheads to satisfy the strict performance and overheads
requirements.

In-staging data placement: A number of data-staging
frameworks have been developed in recent years, such as
DataSpaces [9] /ActiveSpaces [10] and PreDatA [31], to sup-
port scientific workflows using memory within a data stag-
ing area for runtime data coupling and exchange. However,
these frameworks do not optimize the placement of data in
the staging area to improve data access performance, es-
pecially for workflows with dynamic data access patterns.
For example, DataSpaces places data using a hash function
based on the MPI rank without considering application data
access patterns. Similarly, existing researches have also fo-
cused on using data staging for data preparation operations
such as filtering [31] and indexing and querying [24], to op-
timize subsequent data analysis steps within a workflow.
However, none of these efforts address the optimization of
data placement within the staging area.

Techniques for optimizing data placement: Devel-
oping storage systems geared towards specific access pat-



terns is not uncommon. For example, GFS [11] is optimized
for large data sets and append accesses; EDO [25] explores
SFC-based data organization to improve the read perfor-
mance for its targeted scientific applications. However, the
optimization techniques in these systems are designed for
specific access patterns, and can become ineffective when ap-
plications within a workflow have distinct and dynamic data
access patterns. PDLA [28] optimizes data layout based on
I/O behaviors captured in traces, to improve the data ac-
cess performance of parallel I/O systems. Our work similarly
captures application access patterns at runtime. However,
in contrast, it places data to distributed in-memory storage
in a topology-aware manner. Several research efforts have
used replication to optimize access for parallel/distributed
storage systems, such as HDFS [4] and GPFS-SNC [12]. In
these approaches, multiple copies of data files are placed at
different locations, and the systems [4, 12] select the ‘best’
(in terms of access cost) replica for accesses. Our data place-
ment differs in that it dynamically creates replicas at run-
time based on current data access patterns and memory re-
source availability within the staging area.

7. CONCLUSION
In this paper, we proposed an adaptive data placement ap-

proach to improve the data access performance for staging-
based scientific workflows running on large-scale systems.
Our approach leverages application-specific data access pat-
terns and system network topology to dynamically opti-
mize the data placement in the staging area. It focuses
on making runtime data placement adaptation on-the-fly,
while data is being transferred from the data producer ap-
plication to the staging area. This paper also presented the
design and implementation of a runtime system that realizes
our data placement approach. We have deployed the run-
time on the Titan Cray XK7 and experimentally evaluated
it using a production S3D combustion simulation workflow.
The experiments demonstrate that our data placement ap-
proach effectively adapts to dynamic data access patterns
and achieves up to a 3 times speedup over other static ap-
proach in terms of data access times.

Our future work will extend the data placement approach
for other network topologies such as dragonfly, and for other
data representations in scientific applications such as graphs.
We will also explore the optimization of data placement by
taking into consideration the energy/power efficiency and
power/performance trade-offs.
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