

Phis's World

Episode 3: Newton's 2nd Law – Be Gentle If You Care

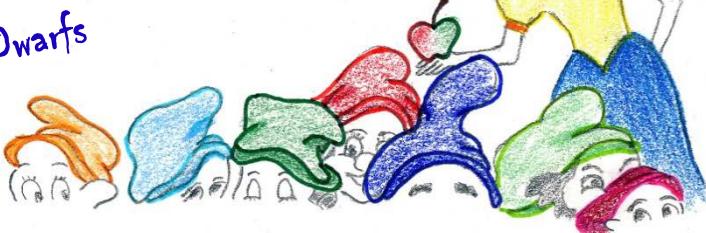
Illustration: Xia Hong

Script: Xia Hong

01/2015

Once upon a time ...

I'm back!


Hi, Phis.
How was school?

Pretty Good.
How was your
day? What are
you reading?

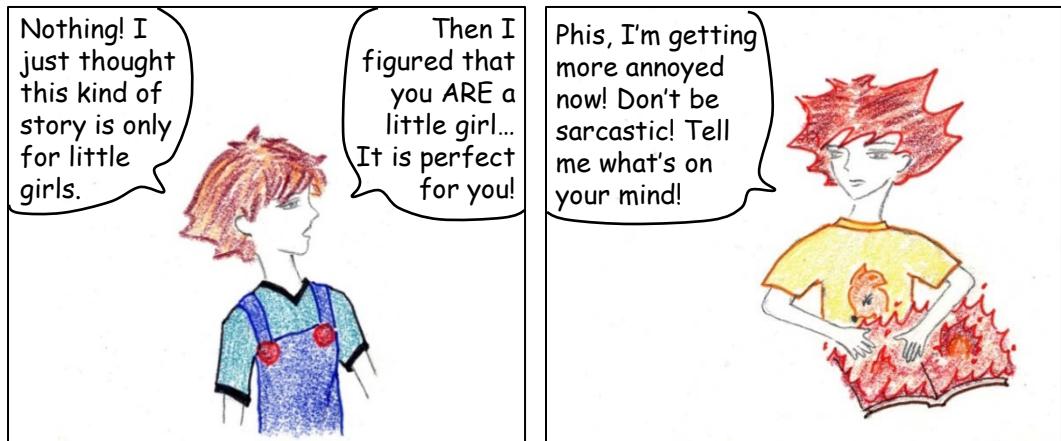
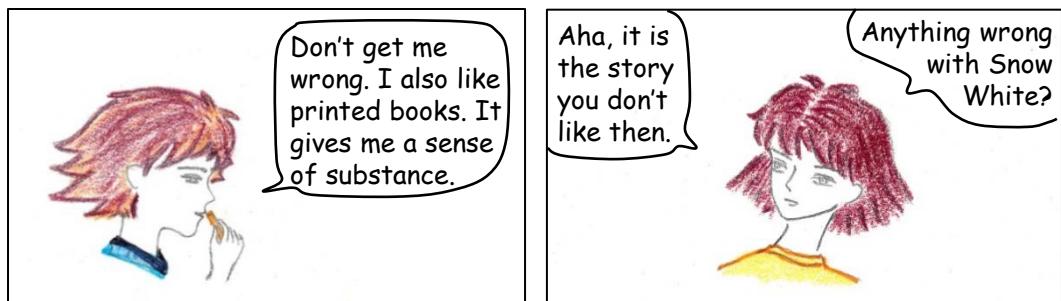
Snow White and
Seven Dwarfs

Xia
7-27-14

This is my birthday
gift from Aunt
May. I like books in
print that I can
hold in my hands!

Err...

Let me get
some food.
I'm hungry.

Wait... what's
wrong?

Do you think
it's odd that
I don't read
on my smart
phone?

You know, since I started learning physics, I have started to notice a lot of things that previously had skipped my mind.

For example, let's reconsider what happened to Snow White within:

Newton's 2nd Law

$$F = ma = \frac{\Delta p}{\Delta t}$$

Δ : change
 p : momentum
 t : time


This means when there's no force applied, or $F = 0$, there should be no change in momentum, or $\Delta p = 0$.

On the other hand, to have some drastic changes in momentum, you need to apply BRUTAL force to the object, i.e. Snow White.

When we are at rest or moving in a constant motion, there is no change in p , so no force applied.

When Snow White was carried by the seven dwarfs, they were so gentle and moved in a constant speed so that there was no force exerted on Snow White.

When there is a car crash, there is huge force generated.

And then...

Snow White met the prince...
How romantic... Err?

Oops !

He must have run over Snow White.

He was not gentle nor polite.

He did NOT care!

Let's come back to Snow White:

To stop her from choking on the apple, there is a huge change in momentum p in a short period of time t .

Δp : large

Δt : small

Newton's 2nd Law

$$F = ma = \frac{\Delta p}{\Delta t}$$

→ F : Huge !

Like in a car crash, there must be huge force generated when the prince runs over Snow White.

CONCLUSION:

THE PRINCE DID NOT CARE ABOUT SNOW WHITE !

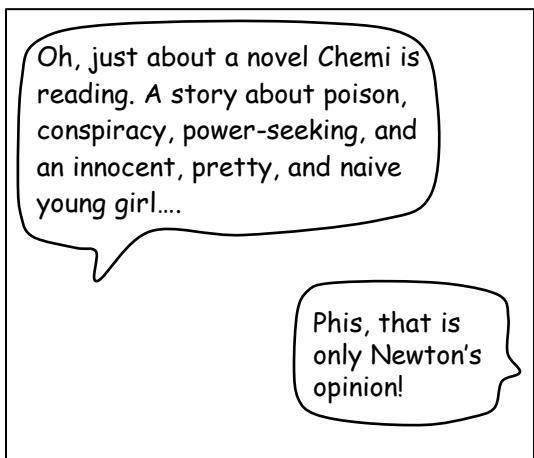
Now let me ask: If he didn't care about Snow White as a country girl he met in the first place—

What made him decide to marry her?

Her beauty?

Her royal blood?

Or her status as the sole heiress of a kingdom?



Any other questions? About Snow White or Newton's 2nd Law?

$$F = ma ?$$

Err, yes! You have not told me yet—what is **m**? And what is **a**?

Dad! You are home.

To read more about the stories of Phis, please visit us at www.physics.unl.edu/~xhong/hong/Phis/PhisHome.html.

NCMN
Nebraska Center for Materials and Nanoscience
University of Nebraska

This project is supported by National Science Foundation Grant CAREER No. DMR-1148783 and the Nebraska Center for Materials and Nanoscience.