
C Language

2−5

Restrictions

Take note of the following restrictions if you place a variable at an absolute address:

• The argument of the __at() attribute must be a constant address expression.

• You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses.

• When declared extern, the variable is not allocated by the compiler. When the same variable is
allocated within another module but on a different address, the compiler, assembler or linker will not
notice, because an assembler external object cannot specify an absolute address.

• When the variable is declared static, no public symbol will be generated (normal C behavior).

• You cannot place structure members at an absolute address.

• Absolute variables cannot overlap each other. If you declare two absolute variables at the same
address, the assembler and / or linker issues an error. The compiler does not check this.

• When you declare the same absolute variable within two modules, this produces conflicts during
link time (except when one of the modules declares the variable ’extern’).

• If you use 0 as an address, this value is ignored. A zero value indicates a relocatable section.

2.4 Using Assembly in the C Source: __asm()

With the __asm keyword you can use assembly instructions in the C source. Be aware that C modules
that contain assembly are not portable and harder to compile in other environments.

Furthermore, assembly blocks are not interpreted by the compiler: they are regarded as a black box.
So, it is your responsibility to make sure that the assembly block is syntactically correct.

General syntax of the __asm keyword

__asm("instruction_template"
 [: output_param_list
 [: input_param_list
 [: register_save_list]]]);

instruction_template Assembly instructions that may contain parameters from the input list or
output list in the form: %parm_nr

%parm_nr[.regnum] Parameter number in the range 0 .. 9. With the optional .regnum you can
access an individual register from a register pair.

output_param_list [["=[&]constraint_char"(C_expression)],...]

input_param_list [["constraint_char"(C_expression)],...]

& Says that an output operand is written to before the inputs are read, so
this output must not be the same register as any input.

constraint _char Constraint character: the type of register to be used for the
C_expression.

Using the Nios II Embedded Tools

2−6

C_expression Any C expression. For output parameters it must be an lvalue, that is,
something that is legal to have on the left side of an assignment.

register_save_list [["register_name"],...]

register_name:q Name of the register you want to reserve.

Typical example: adding two C variables using assembly

char a, b;
int result;

void main(void)
{
 a = 3;
 b = 4;
 __asm("ADD %0,%1,%2" : "=r"(result): "r"(a), "r"(b));
}

%0 corresponds with the first C variable, %1 with the second and so on.

Generated assembly code:

main: .type func
 movui r2,0x3
 stb r2,@gprel(a)(gp)
 movui r3,0x4
 stb r3,@gprel(b)(gp)
 ADD r2,r2,r3
 stw r2,@gprel(result)(gp)
 ret

Specifying registers for C variables

With a constraint character you specify the register type for a parameter. In the example above, the r is
used to force the use of registers (Rn) for the parameters a and b.

You can reserve the registers that are already used in the assembly instructions, either in the
parameter lists or in the reserved register list (register_save_list, also called "clobber list"). The
compiler takes account of these lists, so no unnecessary register saving and restoring instructions are
placed around the inline assembly instructions.

Constraint
character

Type Operand Remark

R general purpose
register (64 bits)

r0 .. r31 Based on the specified register, a
register pair is formed (64−bit). For
example r0:r1.

r general purpose
register (32 bits)

r0 .. r31

C Language

2−7

RemarkOperandTypeConstraint
character

i immediate value #value

l label label

m memory label variable stack or memory operand, a fixed
address

number other operand same as %number used when in− and output operands
must be the same

Use %number.0 and %number.1 to
indicate the first and second half of a
register pair when used in
combination with R.

Table 2−3: Available input/output operand constraints for the Nios II

Loops and conditional jumps

The compiler does not detect loops that are coded with multiple __asm statements or (conditional)
jumps across __asm statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asm, the whole loop must be contained in a single __asm
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
__asm statement must be contained in the same statement.

Example 1: no input or output

A simple example without input or output parameters. You can use any instruction or label. Note that
you can use standard C escape sequences.

__asm("nop\n\t"
 "nop");

Generated code:

 nop
 nop

Example 2: using output parameters

Assign the result of inline assembly to a variable. A register is chosen for the parameter because of the
constraint r; the compiler decides which register is best to use. The %0 in the instruction template is
replaced with the name of this register. Finally, the compiler generates code to assign the result to the
output variable.

char var1;

void main(void)
{
 __asm("movui %0,0xff" : "=r"(var1));
}

Using the Nios II Embedded Tools

2−8

Generated assembly code:

movui r2,0xff
stb r2,@gprel(_var1)(gp)

Example 3: using input and output parameters

Add two C variables and assign the result to a third C variable. Registers are used for the input
parameters (constraint r, %1 for a and %2 for b in the instruction template) and for the output
parameter (constraint r, %0 for result in the instruction template). The compiler generates code to
move the input expressions into the input registers and to assign the result to the output variable.

char a, b;
int result;

void main(void)
{
 a = 3;
 b = 4;
 __asm("ADD %0,%1,%2" : "=r"(result): "r"(a), "r"(b));
}

Generated assembly code:

main: .type func
 movui r2,0x3
 stb r2,@gprel(a)(gp)
 movui r3,0x4
 stb r3,@gprel(b)(gp)
 ADD r2,r2,r3
 stw r2,@gprel(result)(gp)
 ret

C Language

2−9

Example 4: reserve registers

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is
the case, you can list specific registers that get clobbered by an operation after the inputs.

Same as Example 3, but now register R3 is a reserved register. You can do this by adding a reserved
register list (: "R3"). As you can see in the generated assembly code, register R3 is not used.

char a, b;
int result;

void main(void)
{
 a = 3;
 b = 4;
 __asm("ADD %0,%1,%2" : "=r"(result): "r"(a), "r"(b) : "R3");
}

Generated assembly code:

main: .type func
 movui r2,0x3
 stb r2,@gprel(a)(gp)
 movui r4,0x4
 stb r4,@gprel(b)(gp)
 ADD r2,r2,r4
 stw r2,@gprel(result)(gp)
 ret

2.5 Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options.

The syntax is:

#pragma pragma−spec [ON | OFF | DEFAULT]

or:

_Pragma("pragma−spec [ON | OFF | DEFAULT]")

For example, you can set a compiler option to specify which optimizations the compiler should perform.
With the #pragma optimize flags you can set an optimization level for a specific part of the C
source. This overrules the general optimization level that is set in the C compiler Optimization page in
the Project Options dialog (command line option −O).

The compiler recognizes the following pragmas, other pragmas are ignored.

