
© July 2010 Altera Corporation

NII51017-10.0.0
8. Instruction Set Reference
Introduction
This section introduces the Nios® II instruction word format and provides a detailed
reference of the Nios II instruction set. This chapter contains the following sections:

■ “Word Formats” on page 8–1

■ “Instruction Opcodes” on page 8–2

■ “Assembler Pseudo-Instructions” on page 8–3

■ “Assembler Macros” on page 8–4

■ “Instruction Set Reference” on page 8–5

Word Formats
There are three types of Nios II instruction word format: I-type, R-type, and J-type.

I-Type
The defining characteristic of the I-type instruction word format is that it contains an
immediate value embedded within the instruction word. I-type instructions words
contain:

■ A 6-bit opcode field OP

■ Two 5-bit register fields A and B

■ A 16-bit immediate data field IMM16

In most cases, fields A and IMM16 specify the source operands, and field B specifies
the destination register. IMM16 is considered signed except for logical operations and
unsigned comparisons.

I-type instructions include arithmetic and logical operations such as addi and andi;
branch operations; load and store operations; and cache management operations.

The I-type instruction format is:

R-Type
The defining characteristic of the R-type instruction word format is that all arguments
and results are specified as registers. R-type instructions contain:

■ A 6-bit opcode field OP

■ Three 5-bit register fields A, B, and C

■ An 11-bit opcode-extension field OPX

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 OP
Nios II Processor Reference Handbook
Preliminary

8–2 Chapter 8: Instruction Set Reference
Instruction Opcodes
In most cases, fields A and B specify the source operands, and field C specifies the
destination register.

Some R-Type instructions embed a small immediate value in the five low-order bits of
OPX. Unused bits in OPX are always 0.

R-type instructions include arithmetic and logical operations such as add and nor;
comparison operations such as cmpeq and cmplt; the custom instruction; and other
operations that need only register operands.

The R-type instruction format is:

J-Type
J-type instructions contain:

■ A 6-bit opcode field

■ A 26-bit immediate data field

J-type instructions, such as call and jmpi, transfer execution anywhere within a
256-MB range.

The J-type instruction format is:

Instruction Opcodes
The OP field in the Nios II instruction word specifies the major class of an opcode as
shown in Table 8–1 and Table 8–2. Most values of OP are encodings for I-type
instructions. One encoding, OP = 0x00, is the J-type instruction call. Another
encoding, OP = 0x3a, is used for all R-type instructions, in which case, the OPX field
differentiates the instructions. All undefined encodings of OP and OPX are reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C OPX OP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMMED26 OP

Table 8–1. OP Encodings (Part 1 of 2)

OP Instruction OP Instruction OP Instruction OP Instruction

0x00 call 0x10 cmplti 0x20 cmpeqi 0x30 cmpltui

0x01 jmpi 0x11 0x21 0x31

0x02 0x12 0x22 0x32 custom

0x03 ldbu 0x13 initda 0x23 ldbuio 0x33 initd

0x04 addi 0x14 ori 0x24 muli 0x34 orhi

0x05 stb 0x15 stw 0x25 stbio 0x35 stwio

0x06 br 0x16 blt 0x26 beq 0x36 bltu

0x07 ldb 0x17 ldw 0x27 ldbio 0x37 ldwio

0x08 cmpgei 0x18 cmpnei 0x28 cmpgeui 0x38 rdprs

0x09 0x19 0x29 0x39
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–3
Assembler Pseudo-Instructions
Assembler Pseudo-Instructions
Table 8–3 lists pseudo-instructions available in Nios II assembly language.
Pseudo-instructions are used in assembly source code like regular assembly
instructions. Each pseudo-instruction is implemented at the machine level using an
equivalent instruction. The movia pseudo-instruction is the only exception, being
implemented with two instructions. Most pseudo-instructions do not appear in
disassembly views of machine code.

0x0A 0x1A 0x2A 0x3A R-type

0x0B ldhu 0x1B flushda 0x2B ldhuio 0x3B flushd

0x0C andi 0x1C xori 0x2C andhi 0x3C xorhi

0x0D sth 0x1D 0x2D sthio 0x3D

0x0E bge 0x1E bne 0x2E bgeu 0x3E

0x0F ldh 0x1F 0x2F ldhio 0x3F

Table 8–2. OPX Encodings for R-Type Instructions

OPX Instruction OPX Instruction OPX Instruction OPX Instruction

0x00 0x10 cmplt 0x20 cmpeq 0x30 cmpltu

0x01 eret 0x11 0x21 0x31 add

0x02 roli 0x12 slli 0x22 0x32

0x03 rol 0x13 sll 0x23 0x33

0x04 flushp 0x14 wrprs 0x24 divu 0x34 break

0x05 ret 0x15 0x25 div 0x35

0x06 nor 0x16 or 0x26 rdctl 0x36 sync

0x07 mulxuu 0x17 mulxsu 0x27 mul 0x37

0x08 cmpge 0x18 cmpne 0x28 cmpgeu 0x38

0x09 bret 0x19 0x29 initi 0x39 sub

0x0A 0x1A srli 0x2A 0x3A srai

0x0B ror 0x1B srl 0x2B 0x3B sra

0x0C flushi 0x1C nextpc 0x2C 0x3C

0x0D jmp 0x1D callr 0x2D trap 0x3D

0x0E and 0x1E xor 0x2E wrctl 0x3E

0x0F 0x1F mulxss 0x2F 0x3F

Table 8–1. OP Encodings (Part 2 of 2)

OP Instruction OP Instruction OP Instruction OP Instruction

Table 8–3. Assembler Pseudo-Instructions (Part 1 of 2)

Pseudo-Instruction Equivalent Instruction

bgt rA, rB, label blt rB, rA, label

bgtu rA, rB, label bltu rB, rA, label

ble rA, rB, label bge rB, rA, label

bleu rA, rB, label bgeu rB, rA, label
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–4 Chapter 8: Instruction Set Reference
Assembler Macros
Assembler Macros
The Nios II assembler provides macros to extract halfwords from labels and from
32-bit immediate values. Table 8–4 lists the available macros. These macros return
16-bit signed values or 16-bit unsigned values depending on where they are used.
When used with an instruction that requires a 16-bit signed immediate value, these
macros return a value ranging from –32768 to 32767. When used with an instruction
that requires a 16-bit unsigned immediate value, these macros return a value ranging
from 0 to 65535.

cmpgt rC, rA, rB cmplt rC, rB, rA

cmpgti rB, rA, IMMED cmpgei rB, rA, (IMMED+1)

cmpgtu rC, rA, rB cmpltu rC, rB, rA

cmpgtui rB, rA, IMMED cmpgeui rB, rA, (IMMED+1)

cmple rC, rA, rB cmpge rC, rB, rA

cmplei rB, rA, IMMED cmplti rB, rA, (IMMED+1)

cmpleu rC, rA, rB cmpgeu rC, rB, rA

cmpleui rB, rA, IMMED cmpltui rB, rA, (IMMED+1)

mov rC, rA add rC, rA, r0

movhi rB, IMMED orhi rB, r0, IMMED

movi rB, IMMED addi, rB, r0, IMMED

movia rB, label orhi rB, r0, %hiadj(label)

addi, rB, r0, %lo(label)

movui rB, IMMED ori rB, r0, IMMED

nop add r0, r0, r0

subi rB, rA, IMMED addi rB, rA, (-IMMED)

Table 8–3. Assembler Pseudo-Instructions (Part 2 of 2)

Pseudo-Instruction Equivalent Instruction

Table 8–4. Assembler Macros

Macro Description Operation

%lo(immed32) Extract bits [15..0] of immed32 immed32 & 0xFFFF

%hi(immed32) Extract bits [31..16] of immed32 (immed32 >> 16) & 0xFFFF

%hiadj(immed32) Extract bits [31..16] and adds bit 15 of immed32 ((immed32 >> 16) & 0xFFFF) +

((immed32 >> 15) & 0x1)

%gprel(immed32) Replace the immed32 address with an offset from
the global pointer (1)

immed32 –_gp

Note to Table 8–4:

(1) Refer to the Application Binary Interface chapter of the Nios II Processor Reference Handbook for more information about global pointers.
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51016.pdf

Chapter 8: Instruction Set Reference 8–5
Instruction Set Reference
Instruction Set Reference
The following pages list all Nios II instruction mnemonics in alphabetical order.
Table 8–5 shows the notation conventions used to describe instruction operation.

The following exceptions are not listed for each instruction because they can occur on
any instruction fetch:

■ Supervisor-only instruction address

■ Fast TLB miss (instruction)

■ Double TLB miss (instruction)

■ TLB permission violation (execute)

■ MPU region violation (instruction)

Table 8–5. Notation Conventions

Notation Meaning

X ←Y X is written with Y

PC ←X The program counter (PC) is written with address X; the instruction at X is
the next instruction to execute

PC The address of the assembly instruction in question

rA, rB, rC One of the 32-bit general-purpose registers

prs.rA General-purpose register rA in the previous register set

IMMn An n-bit immediate value, embedded in the instruction word

IMMED An immediate value

Xn The nth bit of X, where n = 0 is the LSB

Xn..m Consecutive bits n through m of X

0xNNMM Hexadecimal notation

X : Y Bitwise concatenation
For example, (0x12 : 0x34) = 0x1234

σ (X) The value of X after being sign-extended to a full register-sized signed integer

X >> n The value X after being right-shifted n bit positions

X << n The value X after being left-shifted n bit positions

X & Y Bitwise logical AND

X | Y Bitwise logical OR

X ^ Y Bitwise logical XOR

~X Bitwise logical NOT (one’s complement)

Mem8[X] The byte located in data memory at byte address X

Mem16[X] The halfword located in data memory at byte address X

Mem32[X] The word located in data memory at byte address X

label An address label specified in the assembly file

(signed) rX The value of rX treated as a signed number

(unsigned) rX The value of rX treated as an unsigned number

Note to Table 8–5:

(1) All register operations apply to the current register set, except as noted.
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–6 Chapter 8: Instruction Set Reference
Instruction Set Reference
f For details on these and all Nios II exceptions, refer to the Programming Model chapter
of the Nios II Processor Reference Handbook.
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf

Chapter 8: Instruction Set Reference 8–7
Instruction Set Reference
add add

Operation: rC ← rA + rB

Assembler Syntax: add rC, rA, rB

Example: add r6, r7, r8

Description: Calculates the sum of rA and rB. Stores the result in rC. Used for both signed and unsigned
addition.

Usage: Carry Detection (unsigned operands):

Following an add operation, a carry out of the MSB can be detected by checking whether the
unsigned sum is less than one of the unsigned operands. The carry bit can be written to a
register, or a conditional branch can be taken based on the carry condition. Both cases are
shown below.

add rC, rA, rB

cmpltu rD, rC, rA

add rC, rA, rB

bltu rC, rA, label

; The original add operation

; rD is written with the carry bit

; The original add operation

; Branch if carry generated

Overflow Detection (signed operands):

An overflow is detected when two positives are added and the sum is negative, or when two
negatives are added and the sum is positive. The overflow condition can control a conditional
branch, as shown below.

add rC, rA, rB

xor rD, rC, rA

xor rE, rC, rB

and rD, rD, rE

blt rD, r0,label

; The original add operation

; Compare signs of sum and rA

; Compare signs of sum and rB

; Combine comparisons

; Branch if overflow occurred

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x31 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–8 Chapter 8: Instruction Set Reference
Instruction Set Reference
addi add immediate

Operation: rB ← rA + σ (IMM16)

Assembler Syntax: addi rB, rA, IMM16

Example: addi r6, r7, -100

Description: Sign-extends the 16-bit immediate value and adds it to the value of rA. Stores the sum in rB.

Usage: Carry Detection (unsigned operands):

Following an addi operation, a carry out of the MSB can be detected by checking whether the
unsigned sum is less than one of the unsigned operands. The carry bit can be written to a
register, or a conditional branch can be taken based on the carry condition. Both cases are
shown below.

addi rB, rA, IMM16

cmpltu rD, rB, rA

addi rB, rA, IMM16

bltu rB, rA, label

; The original add operation

; rD is written with the carry bit

; The original add operation

; Branch if carry generated

Overflow Detection (signed operands):

An overflow is detected when two positives are added and the sum is negative, or when two
negatives are added and the sum is positive. The overflow condition can control a conditional
branch, as shown below.

addi rB, rA, IMM16

xor rC, rB, rA

xorhi rD, rB, IMM16

and rC, rC, rD

blt rC, r0,label

; The original add operation

; Compare signs of sum and rA

; Compare signs of sum and IMM16

; Combine comparisons

; Branch if overflow occurred

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x04
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–9
Instruction Set Reference
and bitwise logical and

Operation: rC ← rA & rB

Assembler Syntax: and rC, rA, rB

Example: and r6, r7, r8

Description: Calculates the bitwise logical AND of rA and rB and stores the result in rC.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x0e 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–10 Chapter 8: Instruction Set Reference
Instruction Set Reference
andhi bitwise logical and immediate into high halfword

Operation: rB ← rA & (IMM16 : 0x0000)

Assembler Syntax: andhi rB, rA, IMM16

Example: andhi r6, r7, 100

Description: Calculates the bitwise logical AND of rA and (IMM16 : 0x0000) and stores the result in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2c
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–11
Instruction Set Reference
andi bitwise logical and immediate

Operation: rB ← rA & (0x0000 : IMM16)

Assembler Syntax: andi rB, rA, IMM16

Example: andi r6, r7, 100

Description: Calculates the bitwise logical AND of rA and (0x0000 : IMM16) and stores the result in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0c
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–12 Chapter 8: Instruction Set Reference
Instruction Set Reference
beq branch if equal

Operation: if (rA == rB)

then PC ←PC + 4 + σ (IMM16)

else PC ←PC + 4

Assembler Syntax: beq rA, rB, label

Example: beq r6, r7, label

Description: If rA == rB, then beq transfers program control to the instruction at label. In the instruction
encoding, the offset given by IMM16 is treated as a signed number of bytes relative to the
instruction immediately following beq. The two least-significant bits of IMM16 are always
zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x26
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–13
Instruction Set Reference
bge branch if greater than or equal signed

Operation: if ((signed) rA >= (signed) rB)

then PC ←PC + 4 + σ (IMM16)

else PC ←PC + 4

Assembler Syntax: bge rA, rB, label

Example: bge r6, r7, top_of_loop

Description: If (signed) rA >= (signed) rB, then bge transfers program control to the instruction at label. In
the instruction encoding, the offset given by IMM16 is treated as a signed number of bytes
relative to the instruction immediately following bge. The two least-significant bits of IMM16
are always zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0e
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–14 Chapter 8: Instruction Set Reference
Instruction Set Reference
bgeu branch if greater than or equal unsigned

Operation: if ((unsigned) rA >= (unsigned) rB)

then PC ←PC + 4 + σ (IMM16)

else PC ←PC + 4

Assembler Syntax: bgeu rA, rB, label

Example: bgeu r6, r7, top_of_loop

Description: If (unsigned) rA >= (unsigned) rB, then bgeu transfers program control to the instruction at
label. In the instruction encoding, the offset given by IMM16 is treated as a signed number of
bytes relative to the instruction immediately following bgeu. The two least-significant bits of
IMM16 are always zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2e
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–15
Instruction Set Reference
bgt branch if greater than signed

Operation: if ((signed) rA > (signed) rB)

then PC ← label

else PC ←PC + 4

Assembler Syntax: bgt rA, rB, label

Example: bgt r6, r7, top_of_loop

Description: If (signed) rA > (signed) rB, then bgt transfers program control to the instruction at label.

Pseudo-instruction: bgt is implemented with the blt instruction by swapping the register operands.
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–16 Chapter 8: Instruction Set Reference
Instruction Set Reference
bgtu branch if greater than unsigned

Operation: if ((unsigned) rA > (unsigned) rB)

then PC ← label

else PC ←PC + 4

Assembler Syntax: bgtu rA, rB, label

Example: bgtu r6, r7, top_of_loop

Description: If (unsigned) rA > (unsigned) rB, then bgtu transfers program control to the instruction at
label.

Pseudo-instruction: bgtu is implemented with the bltu instruction by swapping the register operands.
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–17
Instruction Set Reference
ble branch if less than or equal signed

Operation: if ((signed) rA <= (signed) rB)

then PC ← label

else PC ←PC + 4

Assembler Syntax: ble rA, rB, label

Example: ble r6, r7, top_of_loop

Description: If (signed) rA <= (signed) rB, then ble transfers program control to the instruction at label.

Pseudo-instruction: ble is implemented with the bge instruction by swapping the register operands.
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–18 Chapter 8: Instruction Set Reference
Instruction Set Reference
bleu branch if less than or equal to unsigned

Operation: if ((unsigned) rA <= (unsigned) rB)

then PC ← label

else PC ←PC + 4

Assembler Syntax: bleu rA, rB, label

Example: bleu r6, r7, top_of_loop

Description: If (unsigned) rA <= (unsigned) rB, then bleu transfers program counter to the instruction at
label.

Pseudo-instruction: bleu is implemented with the bgeu instruction by swapping the register operands.
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–19
Instruction Set Reference
blt branch if less than signed

Operation: if ((signed) rA < (signed) rB)

then PC ←PC + 4 + σ (IMM16)

else PC ←PC + 4

Assembler Syntax: blt rA, rB, label

Example: blt r6, r7, top_of_loop

Description: If (signed) rA < (signed) rB, then blt transfers program control to the instruction at label. In
the instruction encoding, the offset given by IMM16 is treated as a signed number of bytes
relative to the instruction immediately following blt. The two least-significant bits of IMM16
are always zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x16
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–20 Chapter 8: Instruction Set Reference
Instruction Set Reference
bltu branch if less than unsigned

Operation: if ((unsigned) rA < (unsigned) rB)

then PC ←PC + 4 + σ (IMM16)

else PC ←PC + 4

Assembler Syntax: bltu rA, rB, label

Example: bltu r6, r7, top_of_loop

Description: If (unsigned) rA < (unsigned) rB, then bltu transfers program control to the instruction at
label. In the instruction encoding, the offset given by IMM16 is treated as a signed number of
bytes relative to the instruction immediately following bltu. The two least-significant bits of
IMM16 are always zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

MM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x36
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–21
Instruction Set Reference
bne branch if not equal

Operation: if (rA != rB)

then PC ←PC + 4 + σ (IMM16)

else PC ←PC + 4

Assembler Syntax: bne rA, rB, label

Example: bne r6, r7, top_of_loop

Description: If rA != rB, then bne transfers program control to the instruction at label. In the instruction
encoding, the offset given by IMM16 is treated as a signed number of bytes relative to the
instruction immediately following bne. The two least-significant bits of IMM16 are always
zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x1e
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–22 Chapter 8: Instruction Set Reference
Instruction Set Reference
br unconditional branch

Operation: PC ←PC + 4 + σ (IMM16)

Assembler Syntax: br label

Example: br top_of_loop

Description: Transfers program control to the instruction at label. In the instruction encoding, the offset
given by IMM16 is treated as a signed number of bytes relative to the instruction immediately
following br. The two least-significant bits of IMM16 are always zero, because instruction
addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 IMM16 0x06
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–23
Instruction Set Reference
break debugging breakpoint

Operation: bstatus ←status

PIE ←0

U ←0

ba ←PC + 4

PC ←break handler address

Assembler Syntax: break

break imm5

Example: break

Description: Breaks program execution and transfers control to the debugger break-processing routine.
Saves the address of the next instruction in register ba and saves the contents of the status
register in bstatus. Disables interrupts, then transfers execution to the break handler.

The 5-bit immediate field imm5 is ignored by the processor, but it can be used by the
debugger.

break with no argument is the same as break 0.

Usage: break is used by debuggers exclusively. Only debuggers should place break in a user
program, operating system, or exception handler. The address of the break handler is specified
at system generation time.

Some debuggers support break and break 0 instructions in source code. These debuggers
treat the break instruction as a normal breakpoint.

Exceptions: Break

Instruction Type: R

Instruction Fields: IMM5 = Type of breakpoint

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0x1e 0x34 IMM5 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–24 Chapter 8: Instruction Set Reference
Instruction Set Reference
bret breakpoint return

Operation: status ←bstatus

PC ←ba

Assembler Syntax: bret

Example: bret

Description: Copies the value of bstatus to the status register, then transfers execution to the address
in ba.

Usage: bret is used by debuggers exclusively and should not appear in user programs, operating
systems, or exception handlers.

Exceptions: Misaligned destination address

Supervisor-only instruction

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1e 0 0 0x09 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–25
Instruction Set Reference
call call subroutine

Operation: ra ←PC + 4

PC ← (PC31..28 : IMM26 × 4)

Assembler Syntax: call label

Example: call write_char

Description: Saves the address of the next instruction in register ra, and transfers execution to the
instruction at address (PC31..28 : IMM26 × 4).

Usage: call can transfer execution anywhere within the 256-megabyte (MB) range determined by
PC31..28. The Nios II GNU linker does not automatically handle cases in which the address is out
of this range.

Exceptions: None

Instruction Type: J

Instruction Fields: IMM26 = 26-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 0
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–26 Chapter 8: Instruction Set Reference
Instruction Set Reference
callr call subroutine in register

Operation: ra ←PC + 4

PC ← rA

Assembler Syntax: callr rA

Example: callr r6

Description: Saves the address of the next instruction in the return address register, and transfers execution
to the address contained in register rA.

Usage: callr is used to dereference C-language function pointers.

Exceptions: Misaligned destination address

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0x1f 0x1d 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–27
Instruction Set Reference
cmpeq compare equal

Operation: if (rA == rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpeq rC, rA, rB

Example: cmpeq r6, r7, r8

Description: If rA == rB, then stores 1 to rC; otherwise, stores 0 to rC.

Usage: cmpeq performs the == operation of the C programming language. Also, cmpeq can be used
to implement the C logical negation operator “!”.

cmpeq rC, rA, r0 ; Implements rC = !rA

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x20 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–28 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpeqi compare equal immediate

Operation: if (rA σ (IMM16))

then rB ←1

else rB ←0

Assembler Syntax: cmpeqi rB, rA, IMM16

Example: cmpeqi r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If
rA == σ (IMM16), cmpeqi stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpeqi performs the == operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x20
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–29
Instruction Set Reference
cmpge compare greater than or equal signed

Operation: if ((signed) rA >= (signed) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpge rC, rA, rB

Example: cmpge r6, r7, r8

Description: If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpge performs the signed >= operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x08 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–30 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpgei compare greater than or equal signed immediate

Operation: if ((signed) rA >= (signed) σ (IMM16))

then rB ←1

else rB ←0

Assembler Syntax: cmpgei rB, rA, IMM16

Example: cmpgei r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If
rA >= σ(IMM16), then cmpgei stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgei performs the signed >= operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x08
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–31
Instruction Set Reference
cmpgeu compare greater than or equal unsigned

Operation: if ((unsigned) rA >= (unsigned) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpgeu rC, rA, rB

Example: cmpgeu r6, r7, r8

Description: If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpgeu performs the unsigned >= operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x28 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–32 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpgeui compare greater than or equal unsigned immediate

Operation: if ((unsigned) rA >= (unsigned) (0x0000 : IMM16))

then rB ←1

else rB ←0

Assembler Syntax: cmpgeui rB, rA, IMM16

Example: cmpgeui r6, r7, 100

Description: Zero-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If
rA >= (0x0000 : IMM16), then cmpgeui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgeui performs the unsigned >= operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x28
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–33
Instruction Set Reference
cmpgt compare greater than signed

Operation: if ((signed) rA > (signed) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpgt rC, rA, rB

Example: cmpgt r6, r7, r8

Description: If rA > rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpgt performs the signed > operation of the C programming language.

Pseudo-instruction: cmpgt is implemented with the cmplt instruction by swapping its rA and rB operands.
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–34 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpgti compare greater than signed immediate

Operation: if ((signed) rA > (signed) IMMED)

then rB ←1

else rB ←0

Assembler Syntax: cmpgti rB, rA, IMMED

Example: cmpgti r6, r7, 100

Description: Sign-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA >
σ(IMMED), then cmpgti stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgti performs the signed > operation of the C programming language. The maximum
allowed value of IMMED is 32766. The minimum allowed value is –32769.

Pseudo-instruction: cmpgti is implemented using a cmpgei instruction with an IMM16 immediate value of
IMMED + 1.
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–35
Instruction Set Reference
cmpgtu compare greater than unsigned

Operation: if ((unsigned) rA > (unsigned) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpgtu rC, rA, rB

Example: cmpgtu r6, r7, r8

Description: If rA > rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpgtu performs the unsigned > operation of the C programming language.

Pseudo-instruction: cmpgtu is implemented with the cmpltu instruction by swapping its rA and rB operands.
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–36 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpgtui compare greater than unsigned immediate

Operation: if ((unsigned) rA > (unsigned) IMMED)

then rB ← 1

else rB ←0

Assembler Syntax: cmpgtui rB, rA, IMMED

Example: cmpgtui r6, r7, 100

Description: Zero-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA >
IMMED, then cmpgtui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgtui performs the unsigned > operation of the C programming language. The maximum
allowed value of IMMED is 65534. The minimum allowed value is 0.

Pseudo-instruction: cmpgtui is implemented using a cmpgeui instruction with an IMM16 immediate value of
IMMED + 1.
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–37
Instruction Set Reference
cmple compare less than or equal signed

Operation: if ((signed) rA <= (signed) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmple rC, rA, rB

Example: cmple r6, r7, r8

Description: If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmple performs the signed <= operation of the C programming language.

Pseudo-instruction: cmple is implemented with the cmpge instruction by swapping its rA and rB operands.
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–38 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmplei compare less than or equal signed immediate

Operation: if ((signed) rA < (signed) IMMED)

then rB ←1

else rB ←0

Assembler Syntax: cmplei rB, rA, IMMED

Example: cmplei r6, r7, 100

Description: Sign-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA <=
σ(IMMED), then cmplei stores 1 to rB; otherwise stores 0 to rB.

Usage: cmplei performs the signed <= operation of the C programming language. The maximum
allowed value of IMMED is 32766. The minimum allowed value is –32769.

Pseudo-instruction: cmplei is implemented using a cmplti instruction with an IMM16 immediate value of
IMMED + 1.
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–39
Instruction Set Reference
cmpleu compare less than or equal unsigned

Operation: if ((unsigned) rA < (unsigned) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpleu rC, rA, rB

Example: cmpleu r6, r7, r8

Description: If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpleu performs the unsigned <= operation of the C programming language.

Pseudo-instruction: cmpleu is implemented with the cmpgeu instruction by swapping its rA and rB operands.
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–40 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpleui compare less than or equal unsigned immediate

Operation: if ((unsigned) rA <= (unsigned) IMMED)

then rB ←1

else rB ←0

Assembler Syntax: cmpleui rB, rA, IMMED

Example: cmpleui r6, r7, 100

Description: Zero-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA <=
IMMED, then cmpleui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpleui performs the unsigned <= operation of the C programming language. The maximum
allowed value of IMMED is 65534. The minimum allowed value is 0.

Pseudo-instruction: cmpleui is implemented using a cmpltui instruction with an IMM16 immediate value of
IMMED + 1.
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–41
Instruction Set Reference
cmplt compare less than signed

Operation: if ((signed) rA < (signed) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmplt rC, rA, rB

Example: cmplt r6, r7, r8

Description: If rA < rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmplt performs the signed < operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x10 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–42 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmplti compare less than signed immediate

Operation: if ((signed) rA < (signed) σ (IMM16))

then rB ←1

else rB ←0

Assembler Syntax: cmplti rB, rA, IMM16

Example: cmplti r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If
rA < σ (IMM16), then cmplti stores 1 to rB; otherwise stores 0 to rB.

Usage: cmplti performs the signed < operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x10
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–43
Instruction Set Reference
cmpltu compare less than unsigned

Operation: if ((unsigned) rA < (unsigned) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpltu rC, rA, rB

Example: cmpltu r6, r7, r8

Description: If rA < rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpltu performs the unsigned < operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x30 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–44 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpltui compare less than unsigned immediate

Operation: if ((unsigned) rA < (unsigned) (0x0000 : IMM16))

then rB ←1

else rB ←0

Assembler Syntax: cmpltui rB, rA, IMM16

Example: cmpltui r6, r7, 100

Description: Zero-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If
rA < (0x0000 : IMM16), then cmpltui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpltui performs the unsigned < operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x30
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–45
Instruction Set Reference
cmpne compare not equal

Operation: if (rA != rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpne rC, rA, rB

Example: cmpne r6, r7, r8

Description: If rA != rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpne performs the != operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x18 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–46 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpnei compare not equal immediate

Operation: if (rA != σ (IMM16))

then rB ←1

else rB ←0

Assembler Syntax: cmpnei rB, rA, IMM16

Example: cmpnei r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If
rA != σ (IMM16), then cmpnei stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpnei performs the != operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x18
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–47
Instruction Set Reference
custom custom instruction

Operation: if c == 1

then rC ← fN(rA, rB, A, B, C)

else Ø ← fN(rA, rB, A, B, C)

Assembler Syntax: custom N, xC, xA, xB

Where xA means either general purpose register rA, or custom register cA.

Example: custom 0, c6, r7, r8

Description: The custom opcode provides access to up to 256 custom instructions allowed by the Nios II
architecture. The function implemented by a custom instruction is user-defined and is specified
at system generation time. The 8-bit immediate N field specifies which custom instruction to
use. Custom instructions can use up to two parameters, xA and xB, and can optionally write the
result to a register xC.

Usage: To access a custom register inside the custom instruction logic, clear the bit readra, readrb, or
writerc that corresponds to the register field. In assembler syntax, the notation cN refers to
register N in the custom register file and causes the assembler to clear the c bit of the opcode.
For example, custom 0, c3, r5, r0 performs custom instruction 0, operating on
general-purpose registers r5 and r0, and stores the result in custom register 3.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand A

B = Register index of operand B

C = Register index of operand C

readra = 1 if instruction uses rA, 0 otherwise

readrb = 1 if instruction uses rB, 0 otherwise

writerc = 1 if instruction provides result for rC, 0 otherwise

N = 8-bit number that selects instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C ra rb rc N 0x32
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–48 Chapter 8: Instruction Set Reference
Instruction Set Reference
div divide

Operation: rC ← rA ÷ rB

Assembler Syntax: div rC, rA, rB

Example: div r6, r7, r8

Description: Treating rA and rB as signed integers, this instruction divides rA by rB and then stores the
integer portion of the resulting quotient to rC. After attempted division by zero, the value of rC
is undefined. There is no divide-by-zero exception. After dividing –2147483648 by –1, the
value of rC is undefined (the number +2147483648 is not representable in 32 bits). There is
no overflow exception.

Nios II processors that do not implement the div instruction cause an unimplemented
instruction exception.

Usage: Remainder of Division:

If the result of the division is defined, then the remainder can be computed in rD using the
following instruction sequence:

div rC, rA, rB

mul rD, rC, rB

sub rD, rA, rD

; The original div operation

; rD = remainder

Exceptions: Division error

Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x25 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–49
Instruction Set Reference
divu divide unsigned

Operation: rC ← rA ÷ rB

Assembler Syntax: divu rC, rA, rB

Example: divu r6, r7, r8

Description: Treating rA and rB as unsigned integers, this instruction divides rA by rB and then stores the
integer portion of the resulting quotient to rC. After attempted division by zero, the value of rC
is undefined. There is no divide-by-zero exception.

Nios II processors that do not implement the divu instruction cause an unimplemented
instruction exception.

Usage: Remainder of Division:

If the result of the division is defined, then the remainder can be computed in rD using the
following instruction sequence:

divu rC, rA, rB

mul rD, rC, rB

sub rD, rA, rD

; The original divu operation

; rD = remainder

Exceptions: Division error

Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x24 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–50 Chapter 8: Instruction Set Reference
Instruction Set Reference
eret exception return

Operation: status ←estatus

PC ←ea

Assembler Syntax: eret

Example: eret

Description: Copies the value of estatus into the status register, and transfers execution to the
address in ea.

Usage: Use eret to return from traps, external interrupts, and other exception handling routines. Note
that before returning from hardware interrupt exceptions, the exception handler must adjust the
ea register.

Exceptions: Misaligned destination address

Supervisor-only instruction

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1d 0x1e 0 0x01 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–51
Instruction Set Reference
flushd flush data cache line

Operation: Flushes the data cache line associated with address rA + σ (IMM16).

Assembler Syntax: flushd IMM16(rA)

Example: flushd -100(r6)

Description: If the Nios II processor implements a direct mapped data cache, flushd writes the data cache
line that is mapped to the specified address back to memory if the line is dirty, and then clears
the data cache line. Unlike flushda, flushd writes the dirty data back to memory even
when the addressed data is not currently in the cache. This process comprises the following
steps:

■ Compute the effective address specified by the sum of rA and the signed 16-bit immediate
value.

■ Identify the data cache line associated with the computed effective address. Each data cache
effective address comprises a tag field and a line field. When identifying the data cache
line, flushd ignores the tag field and only uses the line field to select the data cache
line to clear.

■ Skip comparing the cache line tag with the effective address to determine if the addressed
data is currently cached. Because flushd ignores the cache line tag, flushd flushes the
cache line regardless of whether the specified data location is currently cached.

■ If the data cache line is dirty, write the line back to memory. A cache line is dirty when one or
more words of the cache line have been modified by the processor, but are not yet written to
memory.

■ Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the flushd instruction performs no
operation.

Usage: Use flushd to write dirty lines back to memory even if the addressed memory location is not
in the cache, and then flush the cache line. By contrast, refer to “flushda flush data cache
address” on page 8–52, “initd initialize data cache line” on page 8–55, and “initda initialize data
cache address” on page 8–56 for other cache-clearing options.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x3b
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

8–52 Chapter 8: Instruction Set Reference
Instruction Set Reference
flushda flush data cache address

Operation: Flushes the data cache line currently caching address rA + σ (IMM16)

Assembler Syntax: flushda IMM16(rA)

Example: flushda -100(r6)

Description: If the Nios II processor implements a direct mapped data cache, flushda writes the data
cache line that is mapped to the specified address back to memory if the line is dirty, and then
clears the data cache line. Unlike flushd, flushda writes the dirty data back to memory
only when the addressed data is currently in the cache. This process comprises the following
steps:

■ Compute the effective address specified by the sum of rA and the signed 16-bit immediate
value.

■ Identify the data cache line associated with the computed effective address. Each data cache
effective address comprises a tag field and a line field. When identifying the line,
flushda uses both the tag field and the line field.

■ Compare the cache line tag with the effective address to determine if the addressed data is
currently cached. If the tag fields do not match, the effective address is not currently
cached, so the instruction does nothing.

■ If the data cache line is dirty and the tag fields match, write the dirty cache line back to
memory. A cache line is dirty when one or more words of the cache line have been modified
by the processor, but are not yet written to memory.

■ Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the flushda instruction performs no
operation.

Usage: Use flushda to write dirty lines back to memory only if the addressed memory location is
currently in the cache, and then flush the cache line. By contrast, refer to “flushd flush data
cache line” on page 8–51, “initd initialize data cache line” on page 8–55, and “initda initialize
data cache address” on page 8–56 for other cache-clearing options.

For more information on the Nios II data cache, refer to the Cache and Tightly Coupled Memory
chapter of the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x1b
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Chapter 8: Instruction Set Reference 8–53
Instruction Set Reference
flushi flush instruction cache line

Operation: Flushes the instruction cache line associated with address rA.

Assembler Syntax: flushi rA

Example: flushi r6

Description: Ignoring the tag, flushi identifies the instruction cache line associated with the byte address
in rA, and invalidates that line.

If the Nios II processor core does not have an instruction cache, the flushi instruction
performs no operation.

For more information about the data cache, refer to the Cache and Tightly Coupled Memory
chapter of the Nios II Software Developer’s Handbook.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x0c 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

8–54 Chapter 8: Instruction Set Reference
Instruction Set Reference
flushp flush pipeline

Operation: Flushes the processor pipeline of any prefetched instructions.

Assembler Syntax: flushp

Example: flushp

Description: Ensures that any instructions prefetched after the flushp instruction are removed from the
pipeline.

Usage: Use flushp before transferring control to newly updated instruction memory.

Exceptions: None

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0x04 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–55
Instruction Set Reference
initd initialize data cache line

Operation: Initializes the data cache line associated with address rA + σ (IMM16).

Assembler Syntax: initd IMM16(rA)

Example: initd 0(r6)

Description: If the Nios II processor implements a direct mapped data cache, initd clears the data cache
line without checking for (or writing) a dirty data cache line that is mapped to the specified
address back to memory. Unlike initda, initd clears the cache line regardless of whether
the addressed data is currently cached. This process comprises the following steps:

■ Compute the effective address specified by the sum of rA and the signed 16-bit immediate
value.

■ Identify the data cache line associated with the computed effective address. Each data cache
effective address comprises a tag field and a line field. When identifying the line, initd
ignores the tag field and only uses the line field to select the data cache line to clear.

■ Skip comparing the cache line tag with the effective address to determine if the addressed
data is currently cached. Because initd ignores the cache line tag, initd flushes the
cache line regardless of whether the specified data location is currently cached.

■ Skip checking if the data cache line is dirty. Because initd skips the dirty cache line check,
data that has been modified by the processor, but not yet written to memory is lost.

■ Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the initd instruction performs no
operation.

Usage: Use initd after processor reset and before accessing data memory to initialize the
processor’s data cache. Use initd with caution because it does not write back dirty data. By
contrast, refer to “flushd flush data cache line” on page 8–51, “flushda flush data cache
address” on page 8–52, and “initda initialize data cache address” on page 8–56 for other
cache-clearing options. Altera recommends using initd only when the processor comes out
of reset.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only instruction

Instruction Type: I

Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x33
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

8–56 Chapter 8: Instruction Set Reference
Instruction Set Reference
initda initialize data cache address

Operation: Initializes the data cache line currently caching address rA + σ (IMM16)

Assembler Syntax: initda IMM16(rA)

Example: initda -100(r6)

Description: If the Nios II processor implements a direct mapped data cache, initda clears the data cache
line without checking for (or writing) a dirty data cache line that is mapped to the specified
address back to memory. Unlike initd, initda clears the cache line only when the
addressed data is currently cached. This process comprises the following steps:

■ Compute the effective address specified by the sum of rA and the signed 16-bit immediate
value.

■ Identify the data cache line associated with the computed effective address. Each data cache
effective address comprises a tag field and a line field. When identifying the line,
initda uses both the tag field and the line field.

■ Compare the cache line tag with the effective address to determine if the addressed data is
currently cached. If the tag fields do not match, the effective address is not currently
cached, so the instruction does nothing.

■ Skip checking if the data cache line is dirty. Because initd skips the dirty cache line check,
data that has been modified by the processor, but not yet written to memory is lost.

■ Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the initda instruction performs no
operation.

Usage: Use initda to skip writing dirty lines back to memory and to flush the cache line only if the
addressed memory location is currently in the cache. By contrast, refer to “flushd flush data
cache line” on page 8–51, “flushda flush data cache address” on page 8–52, and “initd initialize
data cache line” on page 8–55 for other cache-clearing options. Use initda with caution
because it does not write back dirty data.

For more information on the Nios II data cache, refer to the Cache and Tightly Coupled Memory
chapter of the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Unimplemented instruction

Instruction Type: I

Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x13
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Chapter 8: Instruction Set Reference 8–57
Instruction Set Reference
initi initialize instruction cache line

Operation: Initializes the instruction cache line associated with address rA.

Assembler Syntax: initi rA

Example: initi r6

Description: Ignoring the tag, initi identifies the instruction cache line associated with the byte address
in ra, and initi invalidates that line.

If the Nios II processor core does not have an instruction cache, the initi instruction
performs no operation.

Usage: This instruction is used to initialize the processor’s instruction cache. Immediately after
processor reset, use initi to invalidate each line of the instruction cache.

For more information on instruction cache, refer to the Cache and Tightly Coupled Memory
chapter of the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x29 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

8–58 Chapter 8: Instruction Set Reference
Instruction Set Reference
jmp computed jump

Operation: PC ← rA

Assembler Syntax: jmp rA

Example: jmp r12

Description: Transfers execution to the address contained in register rA.

Usage: It is illegal to jump to the address contained in register r31. To return from subroutines called
by call or callr, use ret instead of jmp.

Exceptions: Misaligned destination address

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x0d 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–59
Instruction Set Reference
jmpi jump immediate

Operation: PC ← (PC31..28 : IMM26 × 4)

Assembler Syntax: jmpi label

Example: jmpi write_char

Description: Transfers execution to the instruction at address (PC31..28 : IMM26 × 4).

Usage: jmpi is a low-overhead local jump. jmpi can transfer execution anywhere within the 256-MB
range determined by PC31..28. The Nios II GNU linker does not automatically handle cases in
which the address is out of this range.

Exceptions: None

Instruction Type: J

Instruction Fields: IMM26 = 26-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 0x01
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–60 Chapter 8: Instruction Set Reference
Instruction Set Reference
ldb / ldbio load byte from memory or I/O peripheral

Operation: rB ←σ (Mem8[rA + σ (IMM16)])

Assembler Syntax: ldb rB, byte_offset(rA)

ldbio rB, byte_offset(rA)

Example: ldb r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Loads register rB with the desired memory byte, sign extending the
8-bit value to 32 bits. In Nios II processor cores with a data cache, this instruction may retrieve
the desired data from the cache instead of from memory.

Usage: Use the ldbio instruction for peripheral I/O. In processors with a data cache, ldbio
bypasses the cache and is guaranteed to generate an Avalon-MM data transfer. In processors
without a data cache, ldbio acts like ldb.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x07

Instruction format for ldb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x27

Instruction format for ldbio
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Chapter 8: Instruction Set Reference 8–61
Instruction Set Reference
ldbu / ldbuio load unsigned byte from memory or I/O peripheral

Operation: rB ←0x000000 : Mem8[rA + σ (IMM16)]

Assembler Syntax: ldbu rB, byte_offset(rA)

ldbuio rB, byte_offset(rA)

Example: ldbu r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Loads register rB with the desired memory byte, zero extending the
8-bit value to 32 bits.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the cache
instead of from memory. Use the ldbuio instruction for peripheral I/O. In processors with a
data cache, ldbuio bypasses the cache and is guaranteed to generate an Avalon-MM data
transfer. In processors without a data cache, ldbuio acts like ldbu.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Exceptions: ■ Supervisor-only data address

■ Misaligned data address

■ TLB permission violation (read)

■ Fast TLB miss (data)

■ Double TLB miss (data)

■ MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x03

Instruction format for ldbu

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x23

Instruction format for ldbuio
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

8–62 Chapter 8: Instruction Set Reference
Instruction Set Reference
ldh / ldhio load halfword from memory or I/O peripheral

Operation: rB ←σ (Mem16[rA + σ (IMM16)])

Assembler Syntax: ldh rB, byte_offset(rA)

ldhio rB, byte_offset(rA)

Example: ldh r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Loads register rB with the memory halfword located at the effective byte
address, sign extending the 16-bit value to 32 bits. The effective byte address must be halfword
aligned. If the byte address is not a multiple of 2, the operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the cache
instead of from memory. Use the ldhio instruction for peripheral I/O. In processors with a
data cache, ldhio bypasses the cache and is guaranteed to generate an Avalon-MM data
transfer. In processors without a data cache, ldhio acts like ldh.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Exceptions: ■ Supervisor-only data address

■ Misaligned data address

■ TLB permission violation (read)

■ Fast TLB miss (data)

■ Double TLB miss (data)

■ MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0f

Instruction format for ldh

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2f

Instruction format for ldhio
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Chapter 8: Instruction Set Reference 8–63
Instruction Set Reference
ldhu / ldhuio load unsigned halfword from memory or I/O peripheral

Operation: rB ←0x0000 : Mem16[rA + σ (IMM16)]

Assembler Syntax: ldhu rB, byte_offset(rA)

ldhuio rB, byte_offset(rA)

Example: ldhu r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Loads register rB with the memory halfword located at the effective
byte address, zero extending the 16-bit value to 32 bits. The effective byte address must be
halfword aligned. If the byte address is not a multiple of 2, the operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the cache
instead of from memory. Use the ldhuio instruction for peripheral I/O. In processors with a
data cache, ldhuio bypasses the cache and is guaranteed to generate an Avalon-MM data
transfer. In processors without a data cache, ldhuio acts like ldhu.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0b

Instruction format for ldhu

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2b

Instruction format for ldhuio
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

8–64 Chapter 8: Instruction Set Reference
Instruction Set Reference
ldw / ldwio load 32-bit word from memory or I/O peripheral

Operation: rB ←Mem32[rA + σ (IMM14)]

Assembler Syntax: ldw rB, byte_offset(rA)

ldwio rB, byte_offset(rA)

Example: ldw r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Loads register rB with the memory word located at the effective byte
address. The effective byte address must be word aligned. If the byte address is not a multiple
of 4, the operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the cache
instead of from memory. Use the ldwio instruction for peripheral I/O. In processors with a
data cache, ldwio bypasses the cache and memory. Use the ldwio instruction for peripheral
I/O. In processors with a data cache, ldwio bypasses the cache and is guaranteed to generate
an Avalon-MM data transfer. In processors without a data cache, ldwio acts like ldw.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x17

Instruction format for ldw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x37

Instruction format for ldwio
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Chapter 8: Instruction Set Reference 8–65
Instruction Set Reference
mov move register to register

Operation: rC ← rA

Assembler Syntax: mov rC, rA

Example: mov r6, r7

Description: Moves the contents of rA to rC.

Pseudo-instruction: mov is implemented as add rC, rA, r0.
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–66 Chapter 8: Instruction Set Reference
Instruction Set Reference
movhi move immediate into high halfword

Operation: rB ← (IMMED : 0x0000)

Assembler Syntax: movhi rB, IMMED

Example: movhi r6, 0x8000

Description: Writes the immediate value IMMED into the high halfword of rB, and clears the lower halfword
of rB to 0x0000.

Usage: The maximum allowed value of IMMED is 65535. The minimum allowed value is 0. To load a
32-bit constant into a register, first load the upper 16 bits using a movhi pseudo-instruction.
The %hi() macro can be used to extract the upper 16 bits of a constant or a label. Then, load
the lower 16 bits with an ori instruction. The %lo() macro can be used to extract the lower
16 bits of a constant or label as shown below.

movhi rB, %hi(value)

ori rB, rB, %lo(value)

An alternative method to load a 32-bit constant into a register uses the %hiadj() macro and the
addi instruction as shown below.

movhi rB, %hiadj(value)

addi rB, rB, %lo(value)

Pseudo-instruction: movhi is implemented as orhi rB, r0, IMMED.
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–67
Instruction Set Reference
movi move signed immediate into word

Operation: rB ←σ (IMMED)

Assembler Syntax: movi rB, IMMED

Example: movi r6, -30

Description: Sign-extends the immediate value IMMED to 32 bits and writes it to rB.

Usage: The maximum allowed value of IMMED is 32767. The minimum allowed value is

–32768. To load a 32-bit constant into a register, refer to the movhi instruction.

Pseudo-instruction: movi is implemented as addi rB, r0, IMMED.
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–68 Chapter 8: Instruction Set Reference
Instruction Set Reference
movia move immediate address into word

Operation: rB ← label

Assembler Syntax: movia rB, label

Example: movia r6, function_address

Description: Writes the address of label to rB.

Pseudo-instruction: movia is implemented as:

orhi rB, r0, %hiadj(label)

addi rB, rB, %lo(label)
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–69
Instruction Set Reference
movui move unsigned immediate into word

Operation: rB ← (0x0000 : IMMED)

Assembler Syntax: movui rB, IMMED

Example: movui r6, 100

Description: Zero-extends the immediate value IMMED to 32 bits and writes it to rB.

Usage: The maximum allowed value of IMMED is 65535. The minimum allowed value is 0. To load a
32-bit constant into a register, refer to the movhi instruction.

Pseudo-instruction: movui is implemented as ori rB, r0, IMMED.
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–70 Chapter 8: Instruction Set Reference
Instruction Set Reference
mul multiply

Operation: rC ← (rA × rB) 31..0

Assembler Syntax: mul rC, rA, rB

Example: mul r6, r7, r8

Description: Multiplies rA times rB and stores the 32 low-order bits of the product to rC. The result is the
same whether the operands are treated as signed or unsigned integers.

Nios II processors that do not implement the mul instruction cause an unimplemented
instruction exception.

Usage: Carry Detection (unsigned operands):

Before or after the multiply operation, the carry out of the MSB of rC can be detected using the
following instruction sequence:

mul rC, rA, rB

mulxuu rD, rA, rB

cmpne rD, rD, r0

; The mul operation (optional)

; rD is nonzero if carry occurred

; rD is 1 if carry occurred, 0 if not

The mulxuu instruction writes a nonzero value into rD if the multiplication of unsigned
numbers generates a carry (unsigned overflow). If a 0/1 result is desired, follow the mulxuu
with the cmpne instruction.

Overflow Detection (signed operands):

After the multiply operation, overflow can be detected using the following instruction sequence:

mul rC, rA, rB

cmplt rD, rC, r0

mulxss rE, rA, rB

add rD, rD, rE

cmpne rD, rD, r0

; The original mul operation

; rD is nonzero if overflow

; rD is 1 if overflow, 0 if not

The cmplt–mulxss–add instruction sequence writes a nonzero value into rD if the product
in rC cannot be represented in 32 bits (signed overflow). If a 0/1 result is desired, follow the
instruction sequence with the cmpne instruction.

Exceptions: Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x27 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–71
Instruction Set Reference
muli multiply immediate

Operation: rB ← (rA × σ(IMM16)) 31..0

Assembler Syntax: muli rB, rA, IMM16

Example: muli r6, r7, -100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and multiplies it by the value of rA.
Stores the 32 low-order bits of the product to rB. The result is independent of whether rA is
treated as a signed or unsigned number.

Nios II processors that do not implement the muli instruction cause an unimplemented
instruction exception.

Carry Detection and Overflow Detection:

For a discussion of carry and overflow detection, refer to the mul instruction.

Exceptions: Unimplemented instruction

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x24
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–72 Chapter 8: Instruction Set Reference
Instruction Set Reference
mulxss multiply extended signed/signed

Operation: rC ← ((signed) rA) × ((signed) rB)) 63..32

Assembler Syntax: mulxss rC, rA, rB

Example: mulxss r6, r7, r8

Description: Treating rA and rB as signed integers, mulxss multiplies rA times rB, and stores the 32
high-order bits of the product to rC.

Nios II processors that do not implement the mulxss instruction cause an unimplemented
instruction exception.

Usage: Use mulxss and mul to compute the full 64-bit product of two 32-bit signed integers.
Furthermore, mulxss can be used as part of the calculation of a 128-bit product of two 64-bit
signed integers. Given two 64-bit integers, each contained in a pair of 32-bit registers,
(S1 : U1) and (S2 : U2), their 128-bit product is (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2) <<
32) + ((S1 × S2) << 64). The mulxss and mul instructions are used to calculate the 64-bit
product S1 × S2.

Exceptions: Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1f 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–73
Instruction Set Reference
mulxsu multiply extended signed/unsigned

Operation: rC ← ((signed) rA) × ((unsigned) rB)) 63..32

Assembler Syntax: mulxsu rC, rA, rB

Example: mulxsu r6, r7, r8

Description: Treating rA as a signed integer and rB as an unsigned integer, mulxsu multiplies rA times rB,
and stores the 32 high-order bits of the product to rC.

Nios II processors that do not implement the mulxsu instruction cause an unimplemented
instruction exception.

Usage: mulxsu can be used as part of the calculation of a 128-bit product of two 64-bit signed
integers. Given two 64-bit integers, each contained in a pair of 32-bit registers, (S1 : U1) and
(S2 : U2), their 128-bit product is: (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2) << 32) + ((S1
× S2) << 64). The mulxsu and mul instructions are used to calculate the two 64-bit products
S1 × U2 and U1 × S2.

Exceptions: Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x17 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–74 Chapter 8: Instruction Set Reference
Instruction Set Reference
mulxuu multiply extended unsigned/unsigned

Operation: rC ← ((unsigned) rA) × ((unsigned) rB)) 63..32

Assembler Syntax: mulxuu rC, rA, rB

Example: mulxuu r6, r7, r8

Description: Treating rA and rB as unsigned integers, mulxuu multiplies rA times rB and stores the 32
high-order bits of the product to rC.

Nios II processors that do not implement the mulxuu instruction cause an unimplemented
instruction exception.

Usage: Use mulxuu and mul to compute the 64-bit product of two 32-bit unsigned integers.
Furthermore, mulxuu can be used as part of the calculation of a 128-bit product of two 64-bit
signed integers. Given two 64-bit signed integers, each contained in a pair of 32-bit registers,
(S1 : U1) and (S2 : U2), their 128-bit product is (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2) <<
32) + ((S1 × S2) << 64). The mulxuu and mul instructions are used to calculate the 64-bit
product U1 × U2.

mulxuu also can be used as part of the calculation of a 128-bit product of two 64-bit unsigned
integers. Given two 64-bit unsigned integers, each contained in a pair of 32-bit registers, (T1 :
U1) and (T2 : U2), their 128-bit product is (U1 × U2) + ((U1 × T2) << 32) + ((T1 × U2) << 32)
+ ((T1 × T2) << 64). The mulxuu and mul instructions are used to calculate the four 64-bit
products U1 × U2, U1 × T2, T1 × U2, and T1 × T2.

Exceptions: Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x07 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–75
Instruction Set Reference
nextpc get address of following instruction

Operation: rC ←PC + 4

Assembler Syntax: nextpc rC

Example: nextpc r6

Description: Stores the address of the next instruction to register rC.

Usage: A relocatable code fragment can use nextpc to calculate the address of its data segment.
nextpc is the only way to access the PC directly.

Exceptions: None

Instruction Type: R

Instruction Fields: C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 C 0x1c 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–76 Chapter 8: Instruction Set Reference
Instruction Set Reference
nop no operation

Operation: None

Assembler Syntax: nop

Example: nop

Description: nop does nothing.

Pseudo-instruction: nop is implemented as add r0, r0, r0.
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–77
Instruction Set Reference
nor bitwise logical nor

Operation: rC ←~(rA | rB)

Assembler Syntax: nor rC, rA, rB

Example: nor r6, r7, r8

Description: Calculates the bitwise logical NOR of rA and rB and stores the result in rC.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x06 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–78 Chapter 8: Instruction Set Reference
Instruction Set Reference
or bitwise logical or

Operation: rC ← rA | rB

Assembler Syntax: or rC, rA, rB

Example: or r6, r7, r8

Description: Calculates the bitwise logical OR of rA and rB and stores the result in rC.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x16 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–79
Instruction Set Reference
orhi bitwise logical or immediate into high halfword

Operation: rB ← rA | (IMM16 : 0x0000)

Assembler Syntax: orhi rB, rA, IMM16

Example: orhi r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (IMM16 : 0x0000) and stores the result in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x34
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–80 Chapter 8: Instruction Set Reference
Instruction Set Reference
ori bitwise logical or immediate

Operation: rB ← rA | (0x0000 : IMM16)

Assembler Syntax: ori rB, rA, IMM16

Example: ori r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (0x0000 : IMM16) and stores the result in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x14
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–81
Instruction Set Reference
rdctl read from control register

Operation: rC ←ctlN

Assembler Syntax: rdctl rC, ctlN

Example: rdctl r3, ctl31

Description: Reads the value contained in control register ctlN and writes it to register rC.

Exceptions: Supervisor-only instruction

Instruction Type: R

Instruction Fields: C = Register index of operand rC

N = Control register index of operand ctlN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 C 0x26 N 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–82 Chapter 8: Instruction Set Reference
Instruction Set Reference
rdprs read from previous register set

Operation: rB ←prs.rA + σ (IMM16)

Assembler Syntax: rdprs rB, rA, IMM16

Example: rdprs r6, r7, 0

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits, and adds it to the value of rA from
the previous register set. Places the result in rB in the current register set.

Usage: The previous register set is specified by status.PRS. By default, status.PRS indicates
the register set in use before an exception, such as an external interrupt, caused a register set
change.

To read from an arbitrary register set, software can insert the desired register set number in
status.PRS prior to executing rdprs.

If shadow register sets are not implemented on the Nios II core, rdprs is an illegal
instruction.

Exceptions: Supervisor-only instruction

Illegal instruction

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x38
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–83
Instruction Set Reference
ret return from subroutine

Operation: PC ←ra

Assembler Syntax: ret

Example: ret

Description: Transfers execution to the address in ra.

Usage: Any subroutine called by call or callr must use ret to return.

Exceptions: Misaligned destination address

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1f 0 0 0x05 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–84 Chapter 8: Instruction Set Reference
Instruction Set Reference
rol rotate left

Operation: rC ← rA rotated left rB4..0 bit positions

Assembler Syntax: rol rC, rA, rB

Example: rol r6, r7, r8

Description: Rotates rA left by the number of bits specified in rB4..0 and stores the result in rC. The bits that
shift out of the register rotate into the least-significant bit positions. Bits 31–5 of rB are
ignored.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x03 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–85
Instruction Set Reference
roli rotate left immediate

Operation: rC ← rA rotated left IMM5 bit positions

Assembler Syntax: roli rC, rA, IMM5

Example: roli r6, r7, 3

Description: Rotates rA left by the number of bits specified in IMM5 and stores the result in rC. The bits that
shift out of the register rotate into the least-significant bit positions.

Usage: In addition to the rotate-left operation, roli can be used to implement a rotate-right operation.
Rotating left by (32 – IMM5) bits is the equivalent of rotating right by IMM5 bits.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x02 IMM5 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–86 Chapter 8: Instruction Set Reference
Instruction Set Reference
ror rotate right

Operation: rC ← rA rotated right rB4..0 bit positions

Assembler Syntax: ror rC, rA, rB

Example: ror r6, r7, r8

Description: Rotates rA right by the number of bits specified in rB4..0 and stores the result in rC. The bits that
shift out of the register rotate into the most-significant bit positions. Bits 31– 5 of rB are
ignored.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x0b 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–87
Instruction Set Reference
sll shift left logical

Operation: rC ← rA << (rB4..0)

Assembler Syntax: sll rC, rA, rB

Example: sll r6, r7, r8

Description: Shifts rA left by the number of bits specified in rB4..0 (inserting zeroes), and then stores the
result in rC. sll performs the << operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x13 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–88 Chapter 8: Instruction Set Reference
Instruction Set Reference
slli shift left logical immediate

Operation: rC ← rA << IMM5

Assembler Syntax: slli rC, rA, IMM5

Example: slli r6, r7, 3

Description: Shifts rA left by the number of bits specified in IMM5 (inserting zeroes), and then stores the
result in rC.

Usage: slli performs the << operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x12 IMM5 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–89
Instruction Set Reference
sra shift right arithmetic

Operation: rC ← (signed) rA >> ((unsigned) rB4..0)

Assembler Syntax: sra rC, rA, rB

Example: sra r6, r7, r8

Description: Shifts rA right by the number of bits specified in rB4..0 (duplicating the sign bit), and then stores
the result in rC. Bits 31–5 are ignored.

Usage: sra performs the signed >> operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x3b 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–90 Chapter 8: Instruction Set Reference
Instruction Set Reference
srai shift right arithmetic immediate

Operation: rC ← (signed) rA >> ((unsigned) IMM5)

Assembler Syntax: srai rC, rA, IMM5

Example: srai r6, r7, 3

Description: Shifts rA right by the number of bits specified in IMM5 (duplicating the sign bit), and then
stores the result in rC.

Usage: srai performs the signed >> operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x3a IMM5 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–91
Instruction Set Reference
srl shift right logical

Operation: rC ← (unsigned) rA >> ((unsigned) rB4..0)

Assembler Syntax: srl rC, rA, rB

Example: srl r6, r7, r8

Description: Shifts rA right by the number of bits specified in rB4..0 (inserting zeroes), and then stores the
result in rC. Bits 31–5 are ignored.

Usage: srl performs the unsigned >> operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1b 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–92 Chapter 8: Instruction Set Reference
Instruction Set Reference
srli shift right logical immediate

Operation: rC ← (unsigned) rA >> ((unsigned) IMM5)

Assembler Syntax: srli rC, rA, IMM5

Example: srli r6, r7, 3

Description: Shifts rA right by the number of bits specified in IMM5 (inserting zeroes), and then stores the
result in rC.

Usage: srli performs the unsigned >> operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x1a IMM5 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–93
Instruction Set Reference
stb / stbio store byte to memory or I/O peripheral

Operation: Mem8[rA + σ (IMM16)] ← rB7..0

Assembler Syntax: stb rB, byte_offset(rA)

stbio rB, byte_offset(rA)

Example: stb r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Stores the low byte of rB to the memory byte specified by the effective
address.

Usage: In processors with a data cache, this instruction may not generate an Avalon-MM bus cycle to
noncache data memory immediately. Use the stbio instruction for peripheral I/O. In
processors with a data cache, stbio bypasses the cache and is guaranteed to generate an
Avalon-MM data transfer. In processors without a data cache, stbio acts like stb.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x05

Instruction format for stb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x25

Instruction format for stbio
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–94 Chapter 8: Instruction Set Reference
Instruction Set Reference
sth / sthio store halfword to memory or I/O peripheral

Operation: Mem16[rA + σ (IMM16)] ← rB15..0

Assembler Syntax: sth rB, byte_offset(rA)

sthio rB, byte_offset(rA)

Example: sth r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Stores the low halfword of rB to the memory location specified by the
effective byte address. The effective byte address must be halfword aligned. If the byte address
is not a multiple of 2, the operation is undefined.

Usage: In processors with a data cache, this instruction may not generate an Avalon-MM data transfer
immediately. Use the sthio instruction for peripheral I/O. In processors with a data cache,
sthio bypasses the cache and is guaranteed to generate an Avalon-MM data transfer. In
processors without a data cache, sthio acts like sth.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0d

Instruction format for sth

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2d

Instruction format for sthio
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–95
Instruction Set Reference
stw / stwio store word to memory or I/O peripheral

Operation: Mem32[rA + σ (IMM16)] ← rB

Assembler Syntax: stw rB, byte_offset(rA)

stwio rB, byte_offset(rA)

Example: stw r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Stores rB to the memory location specified by the effective byte
address. The effective byte address must be word aligned. If the byte address is not a multiple
of 4, the operation is undefined.

Usage: In processors with a data cache, this instruction may not generate an Avalon-MM data transfer
immediately. Use the stwio instruction for peripheral I/O. In processors with a data cache,
stwio bypasses the cache and is guaranteed to generate an Avalon-MM bus cycle. In
processors without a data cache, stwio acts like stw.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x15

Instruction format for stw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x35

Instruction format for stwio
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–96 Chapter 8: Instruction Set Reference
Instruction Set Reference
sub subtract

Operation: rC ← rA – rB

Assembler Syntax: sub rC, rA, rB

Example: sub r6, r7, r8

Description: Subtract rB from rA and store the result in rC.

Usage: Carry Detection (unsigned operands):

The carry bit indicates an unsigned overflow. Before or after a sub operation, a carry out of
the MSB can be detected by checking whether the first operand is less than the second
operand. The carry bit can be written to a register, or a conditional branch can be taken based
on the carry condition. Both cases are shown below.

sub rC, rA, rB

cmpltu rD, rA, rB

sub rC, rA, rB

bltu rA, rB, label

; The original sub operation (optional)

; rD is written with the carry bit

; The original sub operation (optional)

; Branch if carry generated

Overflow Detection (signed operands):

Detect overflow of signed subtraction by comparing the sign of the difference that is written
to rC with the signs of the operands. If rA and rB have different signs, and the sign of rC is
different than the sign of rA, an overflow occurred. The overflow condition can control a
conditional branch, as shown below.

sub rC, rA, rB

xor rD, rA, rB

xor rE, rA, rC

and rD, rD, rE

blt rD, r0, label

; The original sub operation

; Compare signs of rA and rB

; Compare signs of rA and rC

; Combine comparisons

; Branch if overflow occurred

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x39 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–97
Instruction Set Reference
subi subtract immediate

Operation: rB ← rA – σ (IMMED)

Assembler Syntax: subi rB, rA, IMMED

Example: subi r8, r8, 4

Description: Sign-extends the immediate value IMMED to 32 bits, subtracts it from the value of rA and then
stores the result in rB.

Usage: The maximum allowed value of IMMED is 32768. The minimum allowed value is

–32767.

Pseudo-instruction: subi is implemented as addi rB, rA, -IMMED
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–98 Chapter 8: Instruction Set Reference
Instruction Set Reference
sync memory synchronization

Operation: None

Assembler Syntax: sync

Example: sync

Description: Forces all pending memory accesses to complete before allowing execution of subsequent
instructions. In processor cores that support in-order memory accesses only, this instruction
performs no operation.

Exceptions: None

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0x36 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–99
Instruction Set Reference
trap trap

Operation: estatus ←status

PIE ←0

U ←0

ea ←PC + 4

PC ←exception handler address

Assembler Syntax: trap

trap imm5

Example: trap

Description: Saves the address of the next instruction in register ea, saves the contents of the status
register in estatus, disables interrupts, and transfers execution to the exception handler.
The address of the exception handler is specified at system generation time.

The 5-bit immediate field imm5 is ignored by the processor, but it can be used by the
debugger.

trap with no argument is the same as trap 0.

Usage: To return from the exception handler, execute an eret instruction.

Exceptions: Trap

Instruction Type: R

Instruction Fields: IMM5 = Type of breakpoint

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0x1d 0x2d IMM5 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–100 Chapter 8: Instruction Set Reference
Instruction Set Reference
wrctl write to control register

Operation: ctlN ← rA

Assembler Syntax: wrctl ctlN, rA

Example: wrctl ctl6, r3

Description: Writes the value contained in register rA to the control register ctlN.

Exceptions: Supervisor-only instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

N = Control register index of operand ctlN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x2e N 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–101
Instruction Set Reference
wrprs write to previous register set

Operation: prs.rC ← rA

Assembler Syntax: wrprs rC, rA

Example: wrprs r6, r7

Description: Copies the value of rA in the current register set to rC in the previous register set. This
instruction can set r0 to 0 in a shadow register set.

Usage: The previous register set is specified by status.PRS. By default, status.PRS indicates
the register set in use before an exception, such as an external interrupt, caused a register set
change.

To write to an arbitrary register set, software can insert the desired register set number in
status.PRS prior to executing wrprs.

System software must use wrprs to initialize r0 to 0 in each shadow register set before using
that register set.

If shadow register sets are not implemented on the Nios II core, wrprs is an illegal
instruction.

Exceptions: Supervisor-only instruction

Illegal instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0x0 C 0x14 0 0x3a
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–102 Chapter 8: Instruction Set Reference
Instruction Set Reference
xor bitwise logical exclusive or

Operation: rC ← rA ^ rB

Assembler Syntax: xor rC, rA, rB

Example: xor r6, r7, r8

Description: Calculates the bitwise logical exclusive-or of rA and rB and stores the result in rC.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1e 0 0x3a
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–103
Instruction Set Reference
xorhi bitwise logical exclusive or immediate into high halfword

Operation: rB ← rA ^ (IMM16 : 0x0000)

Assembler Syntax: xorhi rB, rA, IMM16

Example: xorhi r6, r7, 100

Description: Calculates the bitwise logical exclusive XOR of rA and (IMM16 : 0x0000) and stores the result
in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x3c
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–104 Chapter 8: Instruction Set Reference
Instruction Set Reference
xori bitwise logical exclusive or immediate

Operation: rB ← rA ^ (0x0000 : IMM16)

Assembler Syntax: xori rB, rA, IMM16

Example: xori r6, r7, 100

Description: Calculates the bitwise logical exclusive OR of rA and (0x0000 : IMM16) and stores the result in
rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x1c
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–105
Referenced Documents
Referenced Documents
This chapter references the following documents:

■ Programming Model chapter of the Nios II Processor Reference Handbook

■ Application Binary Interface chapter of the Nios II Processor Reference Handbook

■ Cache and Tightly Coupled Memory chapter of the Nios II Software Developer’s
Handbook

Document Revision History
Table 8–6 shows the revision history for this document.

Table 8–6. Document Revision History (Part 1 of 2)

Date & Document
Version Changes Made Summary of Changes

July 2010

v10.0.0

Correct typographical error in cmpgei instruction type. —

November 2009

v.9.1.0

rdprs and wrprs instructions. Added shadow register sets
and external interrupt

controller support

March 2009

v9.0.0

Backwards-compatible change to the eret instruction B field
encoding.

—

November 2008

v8.1.0

Maintenance release. —

May 2008

v8.0.0

Added an Exceptions section to all instructions. Added MMU.

October 2007

v7.2.0

Added jmpi instruction. —

May 2007

v7.1.0

■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

—

March 2007

v7.0.0

Maintenance release. —

November 2006

v6.1.0

Maintenance release. —

May 2006

v6.0.0

Maintenance release. —

October 2005

v5.1.0

■ Correction to the blt instruction.

■ Added U bit operation for break and trap instructions.

—

July 2005

v5.0.1

■ Added new flushda instruction.

■ Updated flushd instruction.

■ Instruction Opcode table updated with flushda instruction.

—

May 2005

v5.0.0

Maintenance release. —
© July 2010 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

8–106 Chapter 8: Instruction Set Reference
Document Revision History
December 2004

v1.2

■ break instruction update.

■ srli instruction correction.

—

September 2004

v1.1

Updates for Nios II 1.01 release. —

May 2004

v1.0

Initial release. —

Table 8–6. Document Revision History (Part 2 of 2)

Date & Document
Version Changes Made Summary of Changes
Nios II Processor Reference Handbook © July 2010 Altera Corporation
Preliminary

	8. Instruction Set Reference
	Introduction
	Word Formats
	I-Type
	R-Type
	J-Type

	Instruction Opcodes
	Assembler Pseudo-Instructions
	Assembler Macros
	Instruction Set Reference
	add add
	addi add immediate
	and bitwise logical and
	andhi bitwise logical and immediate into high halfword
	andi bitwise logical and immediate
	beq branch if equal
	bge branch if greater than or equal signed
	bgeu branch if greater than or equal unsigned
	bgt branch if greater than signed
	bgtu branch if greater than unsigned
	ble branch if less than or equal signed
	bleu branch if less than or equal to unsigned
	blt branch if less than signed
	bltu branch if less than unsigned
	bne branch if not equal
	br unconditional branch
	break debugging breakpoint
	bret breakpoint return
	call call subroutine
	callr call subroutine in register
	cmpeq compare equal
	cmpeqi compare equal immediate
	cmpge compare greater than or equal signed
	cmpgei compare greater than or equal signed immediate
	cmpgeu compare greater than or equal unsigned
	cmpgeui compare greater than or equal unsigned immediate
	cmpgt compare greater than signed
	cmpgti compare greater than signed immediate
	cmpgtu compare greater than unsigned
	cmpgtui compare greater than unsigned immediate
	cmple compare less than or equal signed
	cmplei compare less than or equal signed immediate
	cmpleu compare less than or equal unsigned
	cmpleui compare less than or equal unsigned immediate
	cmplt compare less than signed
	cmplti compare less than signed immediate
	cmpltu compare less than unsigned
	cmpltui compare less than unsigned immediate
	cmpne compare not equal
	cmpnei compare not equal immediate
	custom custom instruction
	div divide
	divu divide unsigned
	eret exception return
	flushd flush data cache line
	flushda flush data cache address
	flushi flush instruction cache line
	flushp flush pipeline
	initd initialize data cache line
	initda initialize data cache address
	initi initialize instruction cache line
	jmp computed jump
	jmpi jump immediate
	ldb / ldbio load byte from memory or I/O peripheral
	ldbu / ldbuio load unsigned byte from memory or I/O peripheral
	ldh / ldhio load halfword from memory or I/O peripheral
	ldhu / ldhuio load unsigned halfword from memory or I/O peripheral
	ldw / ldwio load 32-bit word from memory or I/O peripheral
	mov move register to register
	movhi move immediate into high halfword
	movi move signed immediate into word
	movia move immediate address into word
	movui move unsigned immediate into word
	mul multiply
	muli multiply immediate
	mulxss multiply extended signed/signed
	mulxsu multiply extended signed/unsigned
	mulxuu multiply extended unsigned/unsigned
	nextpc get address of following instruction
	nop no operation
	nor bitwise logical nor
	or bitwise logical or
	orhi bitwise logical or immediate into high halfword
	ori bitwise logical or immediate
	rdctl read from control register
	rdprs read from previous register set
	ret return from subroutine
	rol rotate left
	roli rotate left immediate
	ror rotate right
	sll shift left logical
	slli shift left logical immediate
	sra shift right arithmetic
	srai shift right arithmetic immediate
	srl shift right logical
	srli shift right logical immediate
	stb / stbio store byte to memory or I/O peripheral
	sth / sthio store halfword to memory or I/O peripheral
	stw / stwio store word to memory or I/O peripheral
	sub subtract
	subi subtract immediate
	sync memory synchronization
	trap trap
	wrctl write to control register
	wrprs write to previous register set
	xor bitwise logical exclusive or
	xorhi bitwise logical exclusive or immediate into high halfword
	xori bitwise logical exclusive or immediate

	Referenced Documents
	Document Revision History

