CSCE 990 Lecture 9:
Designing Kernels*

Stephen D. Scott

March 23, 2006

*Most figures (©2002 MIT Press, Bernhard Scholkopf, and
Alex Smola.

Introduction

e \We are now very aware of the importance and
power of kernels in SVMSs

e \We also know from Chapter 2 about some ba-
sic kernels and simple ways to build new kernels
out of old ones

— Linear scaling, addition, multiplication, etc.

of existing kernels

o We'll look at other ways to construct new ker-
nels from existing ones, plus other completely
different types of kernels

e Some of them might look familiar ...

Outline

Tricks for constructing kernels

String kernels

Spectrum kernels

Locality-improved kernels

Kernels defined on graphs

Sections 13.1-13.3, 13.5, assorted papers

Tricks for Constructing Kernels

e If k1 and ko, are kernels, then so are

a1k + asks for ag,an > 0

= If input vectors can be partitioned into
subvectors of different types (e.g. strings
and real values), can apply direct sum:

(k1®ko) (21, 20,21, 25) = k1(z1,27)+ko(z2, 75)

where z1,27 € X1 (e.g. R") and zp,z, €
X> (e.g. strings)

k1ko

= Similar to application of direct sum, use
tensor product:

(k1®ko)(z1, 20,2, 25) = k1(z1,27) ko(zo, 25)

Tricks for Constructing Kernels
Conformal Transformations

e For a real-valued function f, k'(z,2") = f(z) f(z')
IS a kernel

e [his leads to conformal transformations:

ki(z,2') = f(z)k(z,2") f(2")

— If k is a kernel, then so is kf

— Recall that if ||z]| = ||#/|| = 1, then (z,2/) =
cos(Z(z,z")); thus

f(@)k(z, z") f(2))

cos(£L(®y(z), ®r(2))) = V@, z) f(@)/f@ k(@ o) f (')

k(x,x")
\/k(:c, :c)\/k(:c’, x)
= cos(L(P(x),P(z")))

I.e. angles in feature space are preserved in a con-
formal transformation

Tricks for Constructing Kernels
Convolution Kernels

e Notions of tensor products and direct sums
lead to R-convolution kernels

e E.g. consider partitioning the string x = ATG
into two distinct, contiguous, nonemtpy sub-
strings:

Rl . ajlaRl = A AND $2,R1 = TG
R

RQI CU]_,RQZAT AND $2,R2:G

(similarly, decompose z’)

e Now can compute a kernel for each substring
of each partitioning and combine:

k(x,2") = ki(z1 Rry,*1 g)k2(x2 R, 75 R,)
+k1(21,Rys 1 Ry K2(2 Ry T2 R,)

Tricks for Constructing Kernels
Convolution Kernels (cont'd)

e Generally, define the set of allowed decompo-
sitions as a relation R(xq1,...,zp,x) and define
the R-convolution

D
(k1 x--xkp)(z,2') =Y [kalzg,z)
R d=1

(i.e. sum over all allowable decompositions of
x into z1,...,xp, etc.)

e Based on earlier results, we know this to be a
valid kernel

e A special case: ANOVA kernel of order D

D
kD(iE, SC/) .= Z H k(Zd) (CCid, xéd

1< < <ip<N d=1

(D =N = tensor prod, D =1 = direct sum)

String Kernels

e [0 apply SVMs to text classification, can map
documents to bag-of-words representation and
use kernels defined on R”

— Each dimension is one word, value in that
dimension is word frequency

— Ignores word ordering
e Alternatively, can use a string kernel, which

computes similarities between two strings based
on their common substrings

e Related to R-convolution kernel

String Kernels
(cont'd)

e Let > be a finite alphabet, ™ be set of all
length-n strings over >, and >X* = [J°o__ X"

o Given s € 2%, leti:= (il,...,i|u|) be an index
sequence with 1 < 43 < --- < 4 < [s| and
u = s(i) := s(iq) - --s(zm) be a (possibly non-
contiguous) subsequence of s

o [(i) = iy — %1+ 1 is the length of w in s

— E.qg. if s = ABBA, then (1,2,3) = 3 (for
ABB), I(1,4) = 4 (for AA)

— &, (s) defines one dimension per substring
uw € X", and the uth component of ®,(s) is

[Pr(s)]u = Z Al(i)
i:s(i)=u

forO<A<1

String Kernels
(cont'd)

E.g. if s = ABBA, then [®5(s)]ag = A2+)23

[®n(s)]w larger if w (nearly) contiguous and
common in s

The string kernel is then

kn(s,t) = Z [Pr(8)]u[Pr(t)]u

ue2_n

Y 3 A 1G)

ue2 ™ (i,j):s(i)=t(j)=u

If want to vary n, use k := >, chkn

Since value of k, (and therefore k) depend on
lengths of s and ¢, normalize k in feature space

10

String Kernels
(cont’'d)

e [0 efficiently compute the kernel, define for
r=1,....n—1

ki(s,t) = > 3 NIt —i1—j1+2
ue? (i,j):s(i):t(j):u

e Thenifz € X1, can recursively compute kn(s,t):

ko(s,t) =1 for all s,¢
ki(s,t) =0 if min(|s|,[t]) <1
ki(s,t) =0 if min(|s],|t]) <1

Ki(sz,t) = Mki(s,0) + Y Kiy(s,¢[1,...,5 — 1])Al-3+2
Jiti=x
kn(sz,t) = ka(s,t) 4+ Y Ko q(s,t[1,...,5— 1A

j:tjzx

11

Spectrum Kernel

Another type of string kernel

For a fixed integer v > 1, define the ~-spectrum

of a sequence to be the set of all length-~ con-
tiguous sequences it contains

Feature map for spectrum kernel is indexed by
all possible length-+ subsequences from alpha-
bet X (similar to bag of words)

For each a € X7, let ¢q(x) = number of times
a Occurs in x contiguously

Now define ®~(x) = (¢a(x))ges

— This is a weighted representation of x's ~-
spectrum

— A sparse vector

12

Spectrum Kernels
(cont'd)

e Can compute ky(z,z") = (P~(z), Py(2')) in time
O(|z| + |'])

1. Collect set of length-v subsequences of x
into array A; and sort it (same with /)

— A, contains non-zero entries of ®,(x)

2. Scan Az and A, multiplying entries that
match, and sum the products

13

Locality-Improved Kernels

e A variation on existing kernels to emphasize
local correlations over long-range (global) ones

e E.g. in image processing, replace polynomial
kernel (z,z')¢ with a variant that focuses on
subimages first

e Generally, take the dot product over all corre-
sponding subimages of the two images, raise
to the di power, sum these values, then raise
to the d, power

14

Locality-Improved Kernels
Image Processing (cont’'d)
e Specifically:

1. Compute (z.*z'), the pixel-wise product of
x and &/

2. Sample (z.x2") with pyramidal receptive fields:

zij = Y w(max(li —i'[,[j — 5'D)(@. * x')
,i/)j/
where e.g. weighting function w(n) = max(g—
n,0); i.e. only include pixels in a width-p
window (p = 2q + 1) centered at (4, 5)

3. Raise each z;; to the di power (this gives
local correlations)

4. Sum zgjl over entire image and raise this

sum to the d» power (long-range correla-
tions)

e If d; = 1, get standard polynomial kernel (x, z)%2

15

Locality-Improved Kernels
Image Processing (cont'd)

Classifier Error on MNIST (%)
kL4 4.0
k§’2 3.1
kgt 3.4
Virt SV 2.8
VSV kg 2.0

16

Locality-Improved Kernels
DNA Start Codon Recognition

e Problem: in a DNA sequence (from alpha-

bet {A,C,T,G}), identify subsequences that
encode genes

— Typically such a coding region begins with
ATG

— But not all AT'G occurrences imply a coding
region

— Thus the learning problem is to take a length-
200 window centered at an AT'GG and predict
if it's a coding region

e For this problem, long-range dependencies aren’t
very important, so use a kernel to emphasize
local correlations

17

Locality-Improved Kernels
DNA Start Codon Recognition (cont’'d)

e \We'll consider correlations inside small win-
dows of length 2¢ 4+ 1:

+ “

winp(z,z') = (> vjmatchp+j(:v,:v/))
j=—¢

where match, ;(z,2’) = 1 if z and 2’ match

at position p 4+ 5 and O otherwise, and V; IS a

weight for window position j (larger near 0)

e Now we sum the values of winy:

/ d2
winp(x, m/)>
1

k(z,z)) = (

p:
(Should summation really be only to ¢?)

Classifier Error (%)
ANN 15.4
Poly kernel, d =1 13.8
L-I kernel, di =4,/ =4 11.9

Codon-improved kernel, di =2,/ =3 12.2

18

Kernels on Graphs

Very general form of structured data

Can represent many data types, including chem-
ical structures

Will consider directed graphs with labels on
edges and nodes

Let ¢ be the space of all graphs, modulo iso-
morphism

19

Complete Graph Kernels

A complete graph kernel k is one whose im-
plicit remapping ® : G — H distinguishes all
pairs of graphs (G,G") € G x G, i.e. @ is injec-
tive

Example (Subgraph feature space): Let each
dimension in ®(G) correspond to a distinct
connected graph H € G. Then [®(G)]ly =
number of times an isomorphism of H appears
in GG.

Gartner et al. [2003] showed that for injective
d, k(G,G) + k(G",G") — 2k(G,G") = (P(G) —
PG, P(G) —P(G")) =0 iff G~ G’

= Computing k is as hard as graph isomor-
phism, for which no efficient algorithm is
currently known

Further, the kernel for the subgraph mapping
is in fact NP-hard to compute (reduce from
Hamiltonian path), even to approximate and/or
if H comes from a restricted class of graphs

20

Kernels Based on Label Pairs

Now consider more restrictive kernels that can
be efficiently considered

Focus on graphs with labels on nodes but not
edges; labels come from £ = {¢1,...,¢m}

Let label matrix L be such that [L],; = 1 if
node v;’'s label is ¢, and [L],;, = O otherwise

Let adjacency matrix E be such that [E];; =1
if directed edge (v;,v;) exists in graph G and
[E];; = 0 otherwise; [E"];; is number of length-
n walks from v; to v;

[LLTLT — number of times label ¢, is assigned

to a vertex in G

[LE’”LT], — number of walks of length n be-
iJ
tween vertices labeled ¢; and vertices labeled

2

21

Matrix Example

AG el Atoms = {C,N}, |Atoms| =2
C { \ cC 2 Bonds ={s,d,t,ar}, |Bonds| =4
es e2
labe{v1-v3,v5-v6} = C
C 5 c label{v4} = N
ed &3
\ N { label{el-e6} = ar
0
1
111011 0
L_[0001oo]E— 0
O
1
T_ |8 2 > | 18
LEL'" = > O]LEL =1 5

NN ocooor O~

OO RrORrO

Orr O+ OO

= O~ OOO

OrrOOO0O-Hr

22

Kernels Based on Label Pairs
(cont'd)

Whn(G) = set of all n-edge walks in G

For walk w € Wi(G), l{(w) = label of first
vertex of w and [, 4 1(w) = label of last vertex

A = sequence of nonnegative weights A\g, A1, ...

Define mapping ©(G) to have one feature per
pair of labels (¢;,£;): [(D(G)]gi’gj =

i M [{w € Wi(@) 1 11 (w) = £ A lpgr (w) = &5}

n=0

i.e. the weighted sum of the number of length-
n walks from an {;-labeled vertex to an /£;-
labeled vertex, weighted by \,, summed over

all n — oo

23

Kernels Based on Label Pairs
(cont’'d)

Thus kernel is (®(G), P(G")) =

<L SSNEY LT LY NE L’T>
1=0 =0

Under certain conditions, can efficiently com-
pute the matrix power series

E.g. if \; = B*/i! for some 8 > 0 and if E can
be diagonalized such that E = T—1DT, then
E" = T-1D"T and [D"™];; = [Dy;]™ since D is
diagonal

Now we can compute

Jim, 3 O

I
i=0 v

n iDi
T1<Iim §j5,)T,
n—oo =5

where limits are taken component-wise

as

24

Kernels Based on Contiguous Label
Sequences

e Previous kernel’'s mapping ® has a low-dimensional
feature space: |£|?

= E.qg. if all node labels are C or N, then fea-
ture space has dimension 4

e FOor a more expressive feature mapping, will use
mapping with one dimension per label sequence
rather than label pair

e Assume we have labels for both nodes and
edges; if nodes or edges are not labeled, use
generic symbol ‘#’

25

Kernels Based on Contiguous Label
Sequences
(cont'd)

e Let S, be set of all possible label sequences
of walks with n edges and let A\, W, (G), and
[;(w) be as before

e Define mapping ®(G) to have one feature per
possible label sequence s € UJ,, Sn:

[P(@)]s = VAn|{w € Wa(G) 1 Vi s; = l;(w)}]

i.e. the number of walks in G with n edges
whose (vertex and edge) label sequences match

S =81,82,.--,82p41 € Sn, weighted by v An,

26

Kernels Based on Contiguous Label
Sequences
(cont’'d)

To compute the kernel, use the notion of a
product graph: given G1 = (V1,€1) and G, =
Vs, E5), Gx = G1 x G5 is defined as

Vy = {(v1,v2) € V1 X Vo : label(vy) = label(vy)}
Ex = {((u1,u2), (v1,v2)) € V% : (u1,v1) € &1

A(uo,vp) € Eo A label(uq,v1) = label(up, vo)}

One can show that
{w € Wp(G1 x Gp) : Vi s; = 1;(w)}
= |[{w € Wn(G1) : Vi s; = [;(w) }]

' |{w € Wn(Gs) : Vi s; = lz(w)}|

Since an n-edge walk in G1 x G5 corresponds to
a walk in each of G; and G», each with same la-
bel sequence, the dot product (P(G1), P(Go))
can be computed as

Vx 00
kx(G1,G2) = Z {Z AREQ
]

1,7=1 [n=0

27

Topic summary due in 1 week!

28

