CSCE 990 Lecture 9: Designing Kernels*

Stephen D. Scott

March 23, 2006

^{*}Most figures ©2002 MIT Press, Bernhard Schölkopf, and Alex Smola.

Introduction

- We are now very aware of the importance and power of kernels in SVMs
- We also know from Chapter 2 about some basic kernels and simple ways to build new kernels out of old ones
 - Linear scaling, addition, multiplication, etc.
 of existing kernels
- We'll look at other ways to construct new kernels from existing ones, plus other completely different types of kernels
- Some of them might look familiar ...

Outline

- Tricks for constructing kernels
- String kernels
- Spectrum kernels
- Locality-improved kernels
- Kernels defined on graphs
- Sections 13.1–13.3, 13.5, assorted papers

ullet If k_1 and k_2 are kernels, then so are

$$\alpha_1 k_1 + \alpha_2 k_2$$
 for $\alpha_1, \alpha_2 \geq 0$

⇒ If input vectors can be partitioned into subvectors of different types (e.g. strings and real values), can apply <u>direct sum</u>:

$$(k_1 \oplus k_2)(x_1, x_2, x_1', x_2') = k_1(x_1, x_1') + k_2(x_2, x_2')$$

where $x_1, x_1' \in \mathcal{X}_1$ (e.g. \mathbb{R}^n) and $x_2, x_2' \in \mathcal{X}_2$ (e.g. strings)

 k_1k_2

⇒ Similar to application of direct sum, use tensor product:

$$(k_1 \otimes k_2)(x_1, x_2, x_1', x_2') = k_1(x_1, x_1') k_2(x_2, x_2')$$

Conformal Transformations

- For a real-valued function f, k'(x,x') = f(x)f(x') is a kernel
- This leads to <u>conformal transformations</u>:

$$k_f(x, x') = f(x)k(x, x')f(x')$$

- If k is a kernel, then so is k_f
- Recall that if ||x|| = ||x'|| = 1, then $\langle x, x' \rangle = \cos(\angle(x, x'))$; thus

$$\cos(\angle(\Phi_f(x), \Phi_f(x'))) = \frac{f(x)k(x, x')f(x')}{\sqrt{f(x)k(x, x)f(x)}\sqrt{f(x')k(x', x')f(x')}}$$

$$= \frac{k(x, x')}{\sqrt{k(x, x)}\sqrt{k(x', x')}}$$

$$= \cos(\angle(\Phi(x), \Phi(x')))$$

I.e. angles in feature space are preserved in a conformal transformation

Convolution Kernels

- ullet Notions of tensor products and direct sums lead to R-convolution kernels
- E.g. consider partitioning the string x = ATG into two distinct, contiguous, nonemtpy substrings:

$$R_1: \quad x_{1,R_1}=A \quad \underline{\mathsf{AND}} \quad x_{2,R_1}=TG$$

$$R_2: \ x_{1,R_2} = AT \ \underline{\text{AND}} \ \ x_{2,R_2} = G$$
 (similarly, decompose x')

 Now can compute a kernel for each substring of each partitioning and combine:

$$k(x,x') = k_1(x_{1,R_1}, x'_{1,R_1})k_2(x_{2,R_1}, x'_{2,R_1}) + k_1(x_{1,R_2}, x'_{1,R_2})k_2(x_{2,R_2}, x'_{2,R_2})$$

Convolution Kernels (cont'd)

• Generally, define the set of allowed decompositions as a relation $R(x_1, \ldots, x_D, x)$ and define the R-convolution

$$(k_1 \star \cdots \star k_D)(x, x') := \sum_{R} \prod_{d=1}^{D} k_d(x_d, x'_d)$$

(i.e. sum over all allowable decompositions of x into x_1, \ldots, x_D , etc.)

- Based on earlier results, we know this to be a valid kernel
- ullet A special case: ANOVA kernel of order D

$$k_D(x, x') := \sum_{1 \le i_1 < \dots < i_D \le N} \prod_{d=1}^D k^{(i_d)}(x_{i_d}, x'_{i_d})$$

 $(D = N \Rightarrow \text{tensor prod}, D = 1 \Rightarrow \text{direct sum})$

- To apply SVMs to text classification, can map documents to $\frac{\text{bag-of-words}}{\text{use kernels defined on } \mathbb{R}^n$
 - Each dimension is one word, value in that dimension is word frequency
 - Ignores word ordering
- Alternatively, can use a <u>string kernel</u>, which computes similarities between two strings based on their common substrings
- Related to R-convolution kernel

(cont'd)

- Let Σ be a finite alphabet, Σ^n be set of all length-n strings over Σ , and $\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$
- Given $s \in \Sigma^*$, let $\mathbf{i} := (i_1, \dots, i_{|u|})$ be an index sequence with $1 \le i_1 < \dots < i_{|u|} \le |s|$ and $u := s(\mathbf{i}) := s(i_1) \dots s(i_{|u|})$ be a (possibly noncontiguous) subsequence of s
- $l(\mathbf{i}) := i_{|u|} i_1 + 1$ is the length of u in s
 - E.g. if s = ABBA, then l(1,2,3) = 3 (for ABB), l(1,4) = 4 (for AA)
 - $-\Phi_n(s)$ defines one dimension per substring $u \in \Sigma^n$, and the uth component of $\Phi_n(s)$ is

$$[\Phi_n(s)]_u := \sum_{\mathbf{i}: s(\mathbf{i}) = u} \lambda^{l(\mathbf{i})}$$

for $0 < \lambda \le 1$

(cont'd)

- E.g. if s = ABBA, then $[\Phi_2(s)]_{AB} = \lambda^2 + \lambda^3$
- $[\Phi_n(s)]_u$ larger if u (nearly) contiguous and common in s
- The string kernel is then

$$k_n(s,t) = \sum_{u \in \Sigma^n} [\Phi_n(s)]_u [\Phi_n(t)]_u$$
$$= \sum_{u \in \Sigma^n} \sum_{(\mathbf{i},\mathbf{j}):s(\mathbf{i})=t(\mathbf{j})=u} \lambda^{l(\mathbf{i})} \lambda^{l(\mathbf{j})}$$

- If want to vary n, use $k := \sum_{n} c_n k_n$
- Since value of k_n (and therefore k) depend on lengths of s and t, normalize k in feature space

(cont'd)

• To efficiently compute the kernel, define for i = 1, ..., n-1

$$k_i'(s,t) = \sum_{u \in \Sigma^i} \sum_{(\mathbf{i},\mathbf{j}): s(\mathbf{i}) = t(\mathbf{j}) = u} \lambda^{|s| + |t| - i_1 - j_1 + 2}$$

• Then if $x \in \Sigma^1$, can recursively compute $k_n(s,t)$:

$$k'_0(s,t) = 1$$
 for all s,t
 $k'_i(s,t) = 0$ if $\min(|s|,|t|) < i$
 $k_i(s,t) = 0$ if $\min(|s|,|t|) < i$

$$k'_i(sx,t) = \lambda k'_i(s,t) + \sum_{j:t_j=x} k'_{i-1}(s,t[1,\ldots,j-1])\lambda^{|t|-j+2}$$

 $k_n(sx,t) = k_n(s,t) + \sum_{j:t_j=x} k'_{n-1}(s,t[1,\ldots,j-1])\lambda^2$

Spectrum Kernel

- Another type of string kernel
- For a fixed integer $\gamma \geq 1$, define the γ -spectrum of a sequence to be the set of all length- γ contiguous sequences it contains
- Feature map for spectrum kernel is indexed by all possible length- γ subsequences from alphabet Σ (similar to bag of words)
- For each $a \in \Sigma^{\gamma}$, let $\phi_a(x)$ = number of times a occurs in x contiguously
- Now define $\Phi_{\gamma}(x) = (\phi_a(x))_{a \in \Sigma^{\gamma}}$
 - This is a weighted representation of x's γ -spectrum
 - A sparse vector

Spectrum Kernels

(cont'd)

- Can compute $k_{\gamma}(x,x') = \langle \Phi_{\gamma}(x), \Phi_{\gamma}(x') \rangle$ in time O(|x| + |x'|)
 - 1. Collect set of length- γ subsequences of x into array A_x and sort it (same with x')
 - A_x contains non-zero entries of $\Phi_{\gamma}(x)$
 - 2. Scan A_x and $A_{x'}$, multiplying entries that match, and sum the products

- A variation on existing kernels to emphasize local correlations over long-range (global) ones
- ullet E.g. in image processing, replace polynomial kernel $\langle x,x'\rangle^d$ with a variant that focuses on subimages first
- Generally, take the dot product over all corresponding subimages of the two images, raise to the d_1 power, sum these values, then raise to the d_2 power

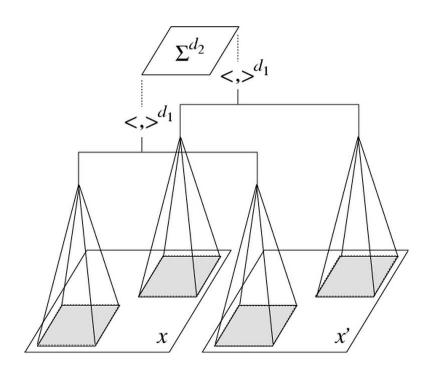


Image Processing (cont'd)

- Specifically:
 - 1. Compute (x.*x'), the pixel-wise product of x and x'
 - 2. Sample (x.*x') with pyramidal receptive fields:

$$z_{ij} := \sum_{i',j'} w(\max(|i-i'|,|j-j'|))(x.*x')_{i'j'}$$

where e.g. weighting function $w(n) = \max(q-n,0)$; i.e. only include pixels in a width-p window (p=2q+1) centered at (i,j)

- 3. Raise each z_{ij} to the d_1 power (this gives local correlations)
- 4. Sum $z_{ij}^{d_1}$ over entire image and raise this sum to the d_2 power (long-range correlations)
- If $d_1=1$, get standard polynomial kernel $\langle x,x' \rangle^{d_2}$

Image Processing (cont'd)

Classifier	Error on MNIST (%)
$k^{1,4}$	4.0
$k_{9}^{2,2}$ $k_{9}^{4,1}$	3.1
$k_{0}^{4,1}$	3.4
Virt SV	2.8
VSV $k_9^{2,2}$	2.0

DNA Start Codon Recognition

- Problem: in a DNA sequence (from alphabet $\{A,C,T,G\}$), identify subsequences that encode genes
 - Typically such a $\frac{\text{coding region}}{ATG}$ begins with
 - But not all ATG occurrences imply a coding region
 - Thus the learning problem is to take a length- 200 window centered at an ATG and predict if it's a coding region
- For this problem, long-range dependencies aren't very important, so use a kernel to emphasize local correlations

DNA Start Codon Recognition (cont'd)

• We'll consider correlations inside small windows of length $2\ell+1$:

$$\operatorname{win}_p(x, x') = \left(\sum_{j=-\ell}^{+\ell} v_j \operatorname{match}_{p+j}(x, x')\right)^{d_1}$$

where $\operatorname{match}_{p+j}(x,x')=1$ if x and x' match at position p+j and 0 otherwise, and v_j is a weight for window position j (larger near 0)

• Now we sum the values of winp:

$$k(x, x') = \left(\sum_{p=1}^{\ell} win_p(x, x')\right)^{d_2}$$

(Should summation really be only to ℓ ?)

Classifier	Error (%)
ANN	15.4
Poly kernel, $d=1$	13.8
L-I kernel, $d_1=4,\ell=4$	11.9
Codon-improved kernel, $d_1 = 2, \ell = 3$	12.2

Kernels on Graphs

- Very general form of structured data
- Can represent many data types, including chemical structures
- Will consider directed graphs with labels on edges and nodes
- ullet Let ${\cal G}$ be the space of all graphs, modulo isomorphism

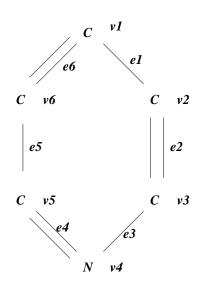
Complete Graph Kernels

- A <u>complete graph kernel</u> k is one whose implicit remapping $\Phi: \mathcal{G} \to \mathcal{H}$ distinguishes all pairs of graphs $(G, G') \in \mathcal{G} \times \mathcal{G}$, i.e. Φ is injective
- Example (Subgraph feature space): Let each dimension in $\Phi(G)$ correspond to a distinct connected graph $H \in \mathcal{G}$. Then $[\Phi(G)]_H =$ number of times an isomorphism of H appears in G.
- Gärtner et al. [2003] showed that for injective Φ , $k(G,G)+k(G',G')-2k(G,G')=\langle \Phi(G)-\Phi(G'),\Phi(G)-\Phi(G')\rangle=0$ iff $G\simeq G'$
 - \Rightarrow Computing k is as hard as graph isomorphism, for which no efficient algorithm is currently known
- Further, the kernel for the subgraph mapping is in fact NP-hard to compute (reduce from Hamiltonian path), even to approximate and/or if H comes from a restricted class of graphs

Kernels Based on Label Pairs

- Now consider more restrictive kernels that can be efficiently considered
- Focus on graphs with labels on nodes but not edges; labels come from $\mathcal{L} = \{\ell_1, \dots, \ell_m\}$
- Let <u>label matrix</u> L be such that $[L]_{ri} = 1$ if node v_i 's label is ℓ_r and $[L]_{ri} = 0$ otherwise
- Let <u>adjacency matrix</u> E be such that $[E]_{ij} = 1$ if directed edge (v_i, v_j) exists in graph G and $[E]_{ij} = 0$ otherwise; $[E^n]_{ij}$ is number of length-n walks from v_i to v_j
- $\left[LL^{\top}\right]_{rr}$ = number of times label ℓ_r is assigned to a vertex in G
- $\left[LE^nL^{\top}\right]_{ij}=$ number of walks of length n between vertices labeled ℓ_i and vertices labeled ℓ_j

Matrix Example



$$Atoms = \{C,N\}, |Atoms| = 2$$

$$Bonds = \{s,d,t,ar\}, |Bonds| = 4$$

$$label{v1-v3,v5-v6} = C$$

 $label{v4} = N$

$$label\{e1-e6\} = ar$$

$$L = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} E = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$LEL^{\top} = \begin{bmatrix} 8 & 2 \\ 2 & 0 \end{bmatrix} LE^{2}L^{\top} = \begin{bmatrix} 18 & 2 \\ 2 & 2 \end{bmatrix}$$

$$LEL^{\top} = \begin{bmatrix} 8 & 2 \\ 2 & 0 \end{bmatrix} LE^{2}L^{\top} = \begin{bmatrix} 18 & 2 \\ 2 & 2 \end{bmatrix}$$

Kernels Based on Label Pairs (cont'd)

- $W_n(G) = \text{set of all } n\text{-edge walks in } G$
- For walk $w \in \mathcal{W}_n(G)$, $l_1(w) = \text{label of first}$ vertex of w and $l_{n+1}(w) = \text{label of last vertex}$
- λ = sequence of nonnegative weights $\lambda_0, \lambda_1, \dots$
- Define mapping $\Phi(G)$ to have one feature per pair of labels (ℓ_i, ℓ_j) : $[\Phi(G)]_{\ell_i, \ell_j} =$

$$\sum_{n=0}^{\infty} \lambda_n \left| \left\{ w \in \mathcal{W}_n(G) : l_1(w) = \ell_i \wedge l_{n+1}(w) = \ell_j \right\} \right|$$

i.e. the weighted sum of the number of length- n walks from an ℓ_i -labeled vertex to an ℓ_j -labeled vertex, weighted by λ_n , summed over all $n\to\infty$

Kernels Based on Label Pairs (cont'd)

• Thus kernel is $\langle \Phi(G), \Phi(G') \rangle =$

$$\left\langle L\left(\sum_{i=0}^{\infty} \lambda_i E^i\right) L^{\top}, L'\left(\sum_{i=0}^{\infty} \lambda_i E'^i\right) L'^{\top} \right\rangle$$

- Under certain conditions, can efficiently compute the matrix power series
- E.g. if $\lambda_i=\beta^i/i!$ for some $\beta>0$ and if E can be diagonalized such that $E=T^{-1}DT$, then $E^n=T^{-1}D^nT$ and $[D^n]_{ii}=[D_{ii}]^n$ since D is diagonal
- Now we can compute

$$\lim_{n \to \infty} \sum_{i=0}^{n} \frac{(\beta E)^{i}}{i!}$$

as

$$T^{-1}\left(\lim_{n\to\infty}\sum_{i=0}^n\frac{\beta^iD^i}{i!}\right)T ,$$

where limits are taken component-wise

Kernels Based on Contiguous Label Sequences

- Previous kernel's mapping Φ has a low-dimensional feature space: $|\mathcal{L}|^2$
 - \Rightarrow E.g. if all node labels are C or N, then feature space has dimension 4
- For a more expressive feature mapping, will use mapping with one dimension per <u>label sequence</u> rather than <u>label pair</u>
- Assume we have labels for both nodes and edges; if nodes or edges are not labeled, use generic symbol '#'

Kernels Based on Contiguous Label Sequences

(cont'd)

- Let S_n be set of all possible label sequences of walks with n edges and let λ , $W_n(G)$, and $l_i(w)$ be as before
- Define mapping $\Phi(G)$ to have one feature per possible label sequence $s \in \bigcup_n S_n$:

$$[\Phi(G)]_s = \sqrt{\lambda_n} |\{w \in \mathcal{W}_n(G) : \forall i \ s_i = l_i(w)\}|$$

i.e. the number of walks in G with n edges whose (vertex and edge) label sequences match $s=s_1,s_2,\ldots,s_{2n+1}\in\mathcal{S}_n$, weighted by $\sqrt{\lambda_n}$

Kernels Based on Contiguous Label Sequences

(cont'd)

• To compute the kernel, use the notion of a product graph: given $G_1 = (\mathcal{V}_1, \mathcal{E}_1)$ and $G_2 = (\mathcal{V}_2, \mathcal{E}_2)$, $G_{\times} = G_1 \times G_2$ is defined as

$$\mathcal{V}_{\times} = \{ (v_1, v_2) \in \mathcal{V}_1 \times \mathcal{V}_2 : label(v_1) = label(v_2) \}$$

$$\mathcal{E}_{\times} = \{ ((u_1, u_2), (v_1, v_2)) \in \mathcal{V}_{\times}^2 : (u_1, v_1) \in \mathcal{E}_1$$

$$\wedge (u_2, v_2) \in \mathcal{E}_2 \wedge label(u_1, v_1) = label(u_2, v_2) \}$$

• One can show that

$$|\{w \in \mathcal{W}_n(G_1 \times G_2) : \forall i \ s_i = l_i(w)\}|$$

= $|\{w \in \mathcal{W}_n(G_1) : \forall i \ s_i = l_i(w)\}|$
 $\cdot |\{w \in \mathcal{W}_n(G_2) : \forall i \ s_i = l_i(w)\}|$

• Since an n-edge walk in $G_1 \times G_2$ corresponds to a walk in each of G_1 and G_2 , each with same label sequence, the dot product $\langle \Phi(G_1), \Phi(G_2) \rangle$ can be computed as

$$k_{\times}(G_1, G_2) = \sum_{i,j=1}^{\mathcal{V}_{\times}} \left[\sum_{n=0}^{\infty} \lambda_n E_{\times}^n \right]_{ij}$$

Topic summary due in 1 week!