
CSCE 990 Lecture 9:
Designing Kernels∗

Stephen D. Scott

March 23, 2006

∗Most figures c©2002 MIT Press, Bernhard Schölkopf, and
Alex Smola.

1

Introduction

• We are now very aware of the importance and

power of kernels in SVMs

• We also know from Chapter 2 about some ba-

sic kernels and simple ways to build new kernels

out of old ones

– Linear scaling, addition, multiplication, etc.

of existing kernels

• We’ll look at other ways to construct new ker-

nels from existing ones, plus other completely

different types of kernels

• Some of them might look familiar ...

2

Outline

• Tricks for constructing kernels

• String kernels

• Spectrum kernels

• Locality-improved kernels

• Kernels defined on graphs

• Sections 13.1–13.3, 13.5, assorted papers

3

Tricks for Constructing Kernels

• If k1 and k2 are kernels, then so are

α1k1 + α2k2 for α1, α2 ≥ 0

⇒ If input vectors can be partitioned into

subvectors of different types (e.g. strings

and real values), can apply direct sum:

(k1⊕k2)(x1, x2, x′1, x′2) = k1(x1, x′1)+k2(x2, x′2)

where x1, x′1 ∈ X1 (e.g. Rn) and x2, x′2 ∈
X2 (e.g. strings)

k1k2

⇒ Similar to application of direct sum, use

tensor product:

(k1⊗k2)(x1, x2, x′1, x′2) = k1(x1, x′1) k2(x2, x′2)

4

Tricks for Constructing Kernels

Conformal Transformations

• For a real-valued function f , k′(x, x′) = f(x)f(x′)
is a kernel

• This leads to conformal transformations:

kf(x, x′) = f(x)k(x, x′)f(x′)

– If k is a kernel, then so is kf

– Recall that if ‖x‖ = ‖x′‖ = 1, then 〈x, x′〉 =

cos(∠(x, x′)); thus

cos(∠(Φf(x),Φf(x
′))) =

f(x)k(x, x′)f(x′)
√

f(x)k(x, x)f(x)
√

f(x′)k(x′, x′)f(x′)

=
k(x, x′)

√

k(x, x)
√

k(x′, x′)

= cos(∠(Φ(x), Φ(x′)))

I.e. angles in feature space are preserved in a con-

formal transformation

5

Tricks for Constructing Kernels

Convolution Kernels

• Notions of tensor products and direct sums

lead to R-convolution kernels

• E.g. consider partitioning the string x = ATG

into two distinct, contiguous, nonemtpy sub-

strings:

R1 : x1,R1
= A AND x2,R1

= TG

OR

R2 : x1,R2
= AT AND x2,R2

= G

(similarly, decompose x′)

• Now can compute a kernel for each substring

of each partitioning and combine:

k(x, x′) = k1(x1,R1
, x′1,R1

)k2(x2,R1
, x′2,R1

)

+k1(x1,R2
, x′1,R2

)k2(x2,R2
, x′2,R2

)

6

Tricks for Constructing Kernels

Convolution Kernels (cont’d)

• Generally, define the set of allowed decompo-

sitions as a relation R(x1, . . . , xD, x) and define

the R-convolution

(k1 ⋆ · · · ⋆ kD)(x, x′) :=
∑

R

D
∏

d=1

kd(xd, x
′
d)

(i.e. sum over all allowable decompositions of

x into x1, . . . , xD, etc.)

• Based on earlier results, we know this to be a

valid kernel

• A special case: ANOVA kernel of order D

kD(x, x′) :=
∑

1≤i1<···<iD≤N

D
∏

d=1

k(id)(xid, x
′
id
)

(D = N ⇒ tensor prod, D = 1 ⇒ direct sum)

7

String Kernels

• To apply SVMs to text classification, can map

documents to bag-of-words representation and

use kernels defined on Rn

– Each dimension is one word, value in that

dimension is word frequency

– Ignores word ordering

• Alternatively, can use a string kernel, which

computes similarities between two strings based

on their common substrings

• Related to R-convolution kernel

8

String Kernels

(cont’d)

• Let Σ be a finite alphabet, Σn be set of all

length-n strings over Σ, and Σ∗ =
⋃∞

n=0 Σn

• Given s ∈ Σ∗, let i := (i1, . . . , i|u|) be an index

sequence with 1 ≤ i1 < · · · < i|u| ≤ |s| and

u := s(i) := s(i1) · · · s(i|u|) be a (possibly non-

contiguous) subsequence of s

• l(i) := i|u| − i1 + 1 is the length of u in s

– E.g. if s = ABBA, then l(1, 2,3) = 3 (for

ABB), l(1, 4) = 4 (for AA)

– Φn(s) defines one dimension per substring

u ∈ Σn, and the uth component of Φn(s) is

[Φn(s)]u :=
∑

i:s(i)=u

λl(i)

for 0 < λ ≤ 1

9

String Kernels

(cont’d)

• E.g. if s = ABBA, then [Φ2(s)]AB = λ2 + λ3

• [Φn(s)]u larger if u (nearly) contiguous and

common in s

• The string kernel is then

kn(s, t) =
∑

u∈Σn

[Φn(s)]u[Φn(t)]u

=
∑

u∈Σn

∑

(i,j):s(i)=t(j)=u

λl(i)λl(j)

• If want to vary n, use k :=
∑

n cnkn

• Since value of kn (and therefore k) depend on

lengths of s and t, normalize k in feature space

10

String Kernels

(cont’d)

• To efficiently compute the kernel, define for

i = 1, . . . , n − 1

k′i(s, t) =
∑

u∈Σi

∑

(i,j):s(i)=t(j)=u

λ|s|+|t|−i1−j1+2

• Then if x ∈ Σ1, can recursively compute kn(s, t):

k′0(s, t) = 1 for all s, t
k′i(s, t) = 0 if min(|s|, |t|) < i
ki(s, t) = 0 if min(|s|, |t|) < i

k′
i(sx, t) = λk′

i(s, t) +
∑

j:tj=x

k′
i−1(s, t[1, . . . , j − 1])λ|t|−j+2

kn(sx, t) = kn(s, t) +
∑

j:tj=x

k′
n−1(s, t[1, . . . , j − 1])λ2

11

Spectrum Kernel

• Another type of string kernel

• For a fixed integer γ ≥ 1, define the γ-spectrum

of a sequence to be the set of all length-γ con-

tiguous sequences it contains

• Feature map for spectrum kernel is indexed by

all possible length-γ subsequences from alpha-

bet Σ (similar to bag of words)

• For each a ∈ Σγ, let φa(x) = number of times

a occurs in x contiguously

• Now define Φγ(x) = (φa(x))a∈Σγ

– This is a weighted representation of x’s γ-

spectrum

– A sparse vector

12

Spectrum Kernels

(cont’d)

• Can compute kγ(x, x′) = 〈Φγ(x),Φγ(x′)〉 in time

O(|x| + |x′|)

1. Collect set of length-γ subsequences of x

into array Ax and sort it (same with x′)

– Ax contains non-zero entries of Φγ(x)

2. Scan Ax and Ax′, multiplying entries that

match, and sum the products

13

Locality-Improved Kernels

• A variation on existing kernels to emphasize

local correlations over long-range (global) ones

• E.g. in image processing, replace polynomial

kernel 〈x, x′〉d with a variant that focuses on

subimages first

• Generally, take the dot product over all corre-

sponding subimages of the two images, raise

to the d1 power, sum these values, then raise

to the d2 power

14

Locality-Improved Kernels

Image Processing (cont’d)

• Specifically:

1. Compute (x. ∗ x′), the pixel-wise product of

x and x′

2. Sample (x.∗x′) with pyramidal receptive fields:

zij :=
∑

i′,j′
w(max(|i − i′|, |j − j′|))(x. ∗ x′)i′j′

where e.g. weighting function w(n) = max(q−
n,0); i.e. only include pixels in a width-p

window (p = 2q + 1) centered at (i, j)

3. Raise each zij to the d1 power (this gives

local correlations)

4. Sum z
d1
ij over entire image and raise this

sum to the d2 power (long-range correla-

tions)

• If d1 = 1, get standard polynomial kernel 〈x, x′〉d2

15

Locality-Improved Kernels

Image Processing (cont’d)

Classifier Error on MNIST (%)

k1,4 4.0

k
2,2
9 3.1

k
4,1
9 3.4

Virt SV 2.8

VSV k
2,2
9 2.0

16

Locality-Improved Kernels

DNA Start Codon Recognition

• Problem: in a DNA sequence (from alpha-

bet {A, C, T, G}), identify subsequences that

encode genes

– Typically such a coding region begins with

ATG

– But not all ATG occurrences imply a coding

region

– Thus the learning problem is to take a length-

200 window centered at an ATG and predict

if it’s a coding region

• For this problem, long-range dependencies aren’t

very important, so use a kernel to emphasize

local correlations

17

Locality-Improved Kernels

DNA Start Codon Recognition (cont’d)

• We’ll consider correlations inside small win-

dows of length 2ℓ + 1:

winp(x, x′) =





+ℓ
∑

j=−ℓ

vjmatchp+j(x, x′)





d1

where matchp+j(x, x′) = 1 if x and x′ match

at position p + j and 0 otherwise, and vj is a

weight for window position j (larger near 0)

• Now we sum the values of winp:

k(x, x′) =





ℓ
∑

p=1

winp(x, x′)





d2

(Should summation really be only to ℓ?)

Classifier Error (%)

ANN 15.4
Poly kernel, d = 1 13.8
L-I kernel, d1 = 4, ℓ = 4 11.9
Codon-improved kernel, d1 = 2, ℓ = 3 12.2

18

Kernels on Graphs

• Very general form of structured data

• Can represent many data types, including chem-

ical structures

• Will consider directed graphs with labels on

edges and nodes

• Let G be the space of all graphs, modulo iso-

morphism

19

Complete Graph Kernels

• A complete graph kernel k is one whose im-

plicit remapping Φ : G → H distinguishes all

pairs of graphs (G, G′) ∈ G × G, i.e. Φ is injec-

tive

• Example (Subgraph feature space): Let each

dimension in Φ(G) correspond to a distinct

connected graph H ∈ G. Then [Φ(G)]H =

number of times an isomorphism of H appears

in G.

• Gärtner et al. [2003] showed that for injective

Φ, k(G, G) + k(G′, G′) − 2k(G, G′) = 〈Φ(G) −
Φ(G′),Φ(G) − Φ(G′)〉 = 0 iff G ≃ G′

⇒ Computing k is as hard as graph isomor-

phism, for which no efficient algorithm is

currently known

• Further, the kernel for the subgraph mapping

is in fact NP-hard to compute (reduce from

Hamiltonian path), even to approximate and/or

if H comes from a restricted class of graphs

20

Kernels Based on Label Pairs

• Now consider more restrictive kernels that can

be efficiently considered

• Focus on graphs with labels on nodes but not

edges; labels come from L = {ℓ1, . . . , ℓm}

• Let label matrix L be such that [L]ri = 1 if

node vi’s label is ℓr and [L]ri = 0 otherwise

• Let adjacency matrix E be such that [E]ij = 1

if directed edge (vi, vj) exists in graph G and

[E]ij = 0 otherwise; [En]ij is number of length-

n walks from vi to vj

•
[

LL⊤
]

rr
= number of times label ℓr is assigned

to a vertex in G

•
[

LEnL⊤
]

ij
= number of walks of length n be-

tween vertices labeled ℓi and vertices labeled

ℓj

21

Matrix Example

Bonds = {s,d,t,ar}, |Bonds| = 4

N

v1C

C

CC

C v2

v3

v4

v5

v6

e1

e2

e3e4

e5

e6
Atoms = {C,N}, |Atoms| = 2

label{v1−v3,v5−v6} = C

label{v4} = N

label{e1−e6} = ar

L =

[

1 1 1 0 1 1
0 0 0 1 0 0

]

E =





















0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0





















LEL⊤ =

[

8 2
2 0

]

LE2L⊤ =

[

18 2
2 2

]

22

Kernels Based on Label Pairs

(cont’d)

• Wn(G) = set of all n-edge walks in G

• For walk w ∈ Wn(G), l1(w) = label of first

vertex of w and ln+1(w) = label of last vertex

• λ = sequence of nonnegative weights λ0, λ1, . . .

• Define mapping Φ(G) to have one feature per

pair of labels (ℓi, ℓj): [Φ(G)]ℓi,ℓj =

∞
∑

n=0

λn

∣

∣

∣

{

w ∈ Wn(G) : l1(w) = ℓi ∧ ln+1(w) = ℓj

}∣

∣

∣

i.e. the weighted sum of the number of length-

n walks from an ℓi-labeled vertex to an ℓj-

labeled vertex, weighted by λn, summed over

all n → ∞

23

Kernels Based on Label Pairs

(cont’d)

• Thus kernel is 〈Φ(G),Φ(G′)〉 =

〈

L





∞
∑

i=0

λiE
i



 L⊤, L′




∞
∑

i=0

λiE
′i


 L′⊤
〉

• Under certain conditions, can efficiently com-

pute the matrix power series

• E.g. if λi = βi/i! for some β > 0 and if E can

be diagonalized such that E = T−1DT , then

En = T−1DnT and [Dn]ii = [Dii]
n since D is

diagonal

• Now we can compute

lim
n→∞

n
∑

i=0

(βE)i

i!

as

T−1



 lim
n→∞

n
∑

i=0

βiDi

i!



 T ,

where limits are taken component-wise

24

Kernels Based on Contiguous Label

Sequences

• Previous kernel’s mapping Φ has a low-dimensional

feature space: |L|2

⇒ E.g. if all node labels are C or N, then fea-

ture space has dimension 4

• For a more expressive feature mapping, will use

mapping with one dimension per label sequence

rather than label pair

• Assume we have labels for both nodes and

edges; if nodes or edges are not labeled, use

generic symbol ‘#’

25

Kernels Based on Contiguous Label

Sequences

(cont’d)

• Let Sn be set of all possible label sequences

of walks with n edges and let λ, Wn(G), and

li(w) be as before

• Define mapping Φ(G) to have one feature per

possible label sequence s ∈ ⋃

n Sn:

[Φ(G)]s =
√

λn |{w ∈ Wn(G) : ∀ i si = li(w)}|

i.e. the number of walks in G with n edges

whose (vertex and edge) label sequences match

s = s1, s2, . . . , s2n+1 ∈ Sn, weighted by
√

λn

26

Kernels Based on Contiguous Label

Sequences

(cont’d)

• To compute the kernel, use the notion of a

product graph: given G1 = (V1, E1) and G2 =

(V2, E2), G× = G1 × G2 is defined as

V× = {(v1, v2) ∈ V1 × V2 : label(v1) = label(v2)}

E× = {((u1, u2), (v1, v2)) ∈ V2
× : (u1, v1) ∈ E1

∧(u2, v2) ∈ E2 ∧ label(u1, v1) = label(u2, v2)}
• One can show that

|{w ∈ Wn(G1 × G2) : ∀ i si = li(w)}|

= |{w ∈ Wn(G1) : ∀ i si = li(w)}|

· |{w ∈ Wn(G2) : ∀ i si = li(w)}|
• Since an n-edge walk in G1×G2 corresponds to

a walk in each of G1 and G2, each with same la-

bel sequence, the dot product 〈Φ(G1),Φ(G2)〉
can be computed as

k×(G1, G2) =

V×
∑

i,j=1





∞
∑

n=0

λnEn
×





ij

27

Topic summary due in 1 week!

28

