CSCE 990 Lecture 9:	Introduction • We are now very aware of the importance and
Designing Kernels*	power of kernels in SVMs
Stephen D. Scott	 We also know from Chapter 2 about some basic kernels and simple ways to build new kernels out of old ones Linear scaling, addition, multiplication, etc. of existing kernels
March 23, 2006	 We'll look at other ways to construct new ker- nels from existing ones, plus other completely different types of kernels
*Most figures ©2002 MIT Press, Bernhard Schölkopf, and Alex Smola. 1	• Some of them might look familiar 2
Outline	Tricks for Constructing Kernels
 Tricks for constructing kernels 	• If k_1 and k_2 are kernels, then so are $\alpha_1 k_1 + \alpha_2 k_2$ for $\alpha_1, \alpha_2 \ge 0$
• String kernels	⇒ If input vectors can be partitioned into subvectors of different types (e.g. strings and real values), can apply <u>direct sum</u> :
Spectrum kernels	$(k_1 \oplus k_2)(x_1, x_2, x_1', x_2') = k_1(x_1, x_1') + k_2(x_2, x_2')$
Locality-improved kernels	where $x_1, x_1' \in \mathcal{X}_1$ (e.g. \mathbb{R}^n) and $x_2, x_2' \in \mathcal{X}_2$ (e.g. strings)
 Kernels defined on graphs 	$k_{1}k_{2}$
• Sections 13.1–13.3, 13.5, assorted papers	⇒ Similar to application of direct sum, use <u>tensor product</u> : $(k_1 \otimes k_2)(x_1, x_2, x'_1, x'_2) = k_1(x_1, x'_1) k_2(x_2, x'_2)$

Tricks for Constructing Kernels

Conformal Transformations

- For a real-valued function f, k'(x, x') = f(x)f(x') is a kernel
- This leads to <u>conformal transformations</u>:

$$k_f(x, x') = f(x)k(x, x')f(x')$$

- If k is a kernel, then so is k_f
- Recall that if ||x|| = ||x'|| = 1, then $\langle x, x' \rangle = \cos(\angle(x, x'))$; thus

 $\begin{aligned} \cos(\angle(\Phi_f(x), \Phi_f(x'))) &= \frac{f(x)k(x, x')f(x')}{\sqrt{f(x)k(x, x)f(x)}\sqrt{f(x')k(x', x')f(x')}} \\ &= \frac{k(x, x')}{\sqrt{k(x, x)}\sqrt{k(x', x')}} \\ &= \cos(\angle(\Phi(x), \Phi(x'))) \end{aligned}$

I.e. angles in feature space are preserved in a conformal transformation

Tricks for Constructing Kernels

Convolution Kernels (cont'd)

• Generally, define the set of allowed decompositions as a relation $R(x_1,\ldots,x_D,x)$ and define the *R*-convolution

$$(k_1 \star \cdots \star k_D)(x, x') := \sum_R \prod_{d=1}^D k_d(x_d, x'_d)$$

(i.e. sum over all allowable decompositions of x into x_1, \ldots, x_D , etc.)

- Based on earlier results, we know this to be a valid kernel
- A special case: ANOVA kernel of order D

$$k_D(x, x') := \sum_{1 \le i_1 < \dots < i_D \le N} \prod_{d=1}^D k^{(i_d)}(x_{i_d}, x'_{i_d})$$

 $(D = N \Rightarrow \text{tensor prod}, D = 1 \Rightarrow \text{direct sum})$

Tricks for Constructing Kernels Convolution Kernels

- Notions of tensor products and direct sums lead to <u>*R*-convolution kernels</u>
- E.g. consider partitioning the string x = ATG into two distinct, contiguous, nonemtpy substrings:

$$R_1: \quad x_{1,R_1} = A \quad \underline{\text{AND}} \quad x_{2,R_1} = TG$$
$$\underline{OR}$$

 $R_2: x_{1,R_2} = AT \quad \underline{\text{AND}} \quad x_{2,R_2} = G$ (similarly, decompose x')

• Now can compute a kernel for each substring of each partitioning and combine:

$$k(x, x') = k_1(x_{1,R_1}, x'_{1,R_1})k_2(x_{2,R_1}, x'_{2,R_1}) +k_1(x_{1,R_2}, x'_{1,R_2})k_2(x_{2,R_2}, x'_{2,R_2})$$

6

String Kernels

- To apply SVMs to text classification, can map documents to <u>bag-of-words</u> representation and use kernels defined on \mathbb{R}^n
 - Each dimension is one word, value in that dimension is word frequency
 - Ignores word ordering
- Alternatively, can use a <u>string kernel</u>, which computes similarities between two strings based on their common substrings
- Related to *R*-convolution kernel

String Kernels (cont'd)

- Let Σ be a finite alphabet, Σ^n be set of all length-*n* strings over Σ , and $\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$
- Given $s \in \Sigma^*$, let $\mathbf{i} := (i_1, \dots, i_{|u|})$ be an index sequence with $1 \leq i_1 < \dots < i_{|u|} \leq |s|$ and $u := s(\mathbf{i}) := s(i_1) \cdots s(i_{|u|})$ be a (possibly non-contiguous) subsequence of s
- $l(\mathbf{i}) := i_{|u|} i_1 + 1$ is the length of u in s
 - E.g. if s = ABBA, then l(1,2,3) = 3 (for ABB), l(1,4) = 4 (for AA)
 - $\Phi_n(s)$ defines one dimension per substring $u \in \Sigma^n$, and the *u*th component of $\Phi_n(s)$ is

$$[\Phi_n(s)]_u := \sum_{\mathbf{i}:s(\mathbf{i})=u} \lambda^{l(\mathbf{i})}$$

for 0 < $\lambda \leq$ 1

String Kernels

(cont'd)

- To efficiently compute the kernel, define for $i=1,\ldots,n-1$

$$k'_i(s,t) = \sum_{u \in \Sigma^i} \sum_{(\mathbf{i},\mathbf{j}):s(\mathbf{i})=t(\mathbf{j})=u} \lambda^{|s|+|t|-i_1-j_1+2}$$

• Then if $x \in \Sigma^1$, can recursively compute $k_n(s,t)$:

 $\begin{array}{l} k_0'(s,t) = 1 \ \, \text{for all } s,t \\ k_i'(s,t) = 0 \ \, \text{if } \min(|s|,|t|) < i \\ k_i(s,t) = 0 \ \, \text{if } \min(|s|,|t|) < i \end{array}$

$$\begin{aligned} k_i'(sx,t) &= \lambda k_i'(s,t) + \sum_{j:t_j=x} k_{i-1}'(s,t[1,\ldots,j-1])\lambda^{|t|-j+2} \\ k_n(sx,t) &= k_n(s,t) + \sum_{j:t_j=x} k_{n-1}'(s,t[1,\ldots,j-1])\lambda^2 \end{aligned}$$

String Kernels (cont'd)

- E.g. if s = ABBA, then $[\Phi_2(s)]_{AB} = \lambda^2 + \lambda^3$
- $[\Phi_n(s)]_u$ larger if u (nearly) contiguous and common in s
- The string kernel is then

$$k_n(s,t) = \sum_{u \in \Sigma^n} [\Phi_n(s)]_u [\Phi_n(t)]_u$$
$$= \sum_{u \in \Sigma^n} \sum_{(\mathbf{i},\mathbf{j}):s(\mathbf{i})=t(\mathbf{j})=u} \lambda^{l(\mathbf{i})} \lambda^{l(\mathbf{j})}$$

- If want to vary n, use $k := \sum_n c_n k_n$
- Since value of k_n (and therefore k) depend on lengths of s and t, normalize k in feature space

10

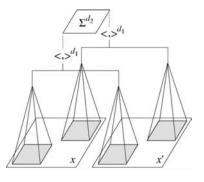
Spectrum Kernel

- Another type of string kernel
- For a fixed integer $\gamma \ge 1$, define the γ -spectrum of a sequence to be the set of all length- γ contiguous sequences it contains
- Feature map for spectrum kernel is indexed by all possible length- γ subsequences from alphabet Σ (similar to bag of words)
- For each $a \in \Sigma^{\gamma}$, let $\phi_a(x) =$ number of times a occurs in x contiguously
- Now define $\Phi_{\gamma}(x) = (\phi_a(x))_{a \in \Sigma^{\gamma}}$
 - This is a weighted representation of x 's $\gamma\text{-}$ spectrum
 - A sparse vector

Locality-Improved Kernels

- Spectrum Kernels (cont'd)
- Can compute $k_{\gamma}(x, x') = \langle \Phi_{\gamma}(x), \Phi_{\gamma}(x') \rangle$ in time O(|x| + |x'|)
 - 1. Collect set of length- γ subsequences of x into array A_x and sort it (same with x')
 - A_x contains non-zero entries of $\Phi_{\gamma}(x)$
 - 2. Scan A_{x} and $A_{x^{\prime}}\text{,}$ multiplying entries that match, and sum the products

- A variation on existing kernels to emphasize local correlations over long-range (global) ones
- E.g. in image processing, replace polynomial kernel $\langle x,x'\rangle^d$ with a variant that focuses on subimages first
- Generally, take the dot product over all corresponding subimages of the two images, raise to the d_1 power, sum these values, then raise to the d_2 power



14

13

Locality-Improved Kernels Image Processing (cont'd)

- Specifically:
 - 1. Compute (x. * x'), the pixel-wise product of x and x'
 - 2. Sample (x.*x') with pyramidal receptive fields:

$$z_{ij} := \sum_{i',j'} w(\max(|i-i'|,|j-j'|))(x_{\cdot} * x')_{i'j'}$$

where e.g. weighting function $w(n) = \max(q-n, 0)$; i.e. only include pixels in a width-p window (p = 2q + 1) centered at (i, j)

- 3. Raise each z_{ij} to the d_1 power (this gives local correlations)
- 4. Sum $z_{ij}^{d_1}$ over entire image and raise this sum to the d_2 power (long-range correlations)
- If $d_1 = 1$, get standard polynomial kernel $\langle x, x' \rangle^{d_2}$

Locality-Improved Kernels Image Processing (cont'd)

Classifier	Error on MNIST (%)
$k^{1,4}$	4.0
$k_{9}^{2,2}$ $k_{9}^{4,1}$	3.1
$k_{9}^{4,1}$	3.4
Virt SV	2.8
VSV $k_9^{2,2}$	2.0

Locality-Improved Kernels DNA Start Codon Recognition

• Problem: in a DNA sequence (from alpha-

- bet $\{A, C, T, G\}$), identify subsequences that encode genes
 - Typically such a coding region begins with $\ensuremath{\mathit{ATG}}$
 - But not all ATG occurrences imply a coding region
 - Thus the learning problem is to take a length-200 window centered at an ATG and predict if it's a coding region
- For this problem, long-range dependencies aren't very important, so use a kernel to emphasize local correlations

Locality-Improved Kernels

DNA Start Codon Recognition (cont'd)

• We'll consider correlations inside small windows of length $2\ell+1$:

$$\operatorname{win}_{p}(x, x') = \left(\sum_{j=-\ell}^{+\ell} v_{j} \operatorname{match}_{p+j}(x, x')\right)^{d_{1}}$$

where $\operatorname{match}_{p+j}(x, x') = 1$ if x and x' match at position p + j and 0 otherwise, and v_j is a weight for window position j (larger near 0)

• Now we sum the values of win_p:

$$k(x, x') = \left(\sum_{p=1}^{\ell} \operatorname{win}_p(x, x')\right)^{d_2}$$

(Should summation really be only to ℓ ?)

Classifier	Error (%)
ANN	15.4
Poly kernel, $d = 1$	13.8
L-I kernel, $d_1 = 4, \ell = 4$	11.9
Codon-improved kernel, $d_1 = 2, \ell = 3$	12.2
	18

Complete Graph Kernels

- A complete graph kernel k is one whose implicit remapping $\Phi : \mathcal{G} \to \mathcal{H}$ distinguishes all pairs of graphs $(G, G') \in \mathcal{G} \times \mathcal{G}$, i.e. Φ is injective
- Example (Subgraph feature space): Let each dimension in $\Phi(G)$ correspond to a distinct connected graph $H \in \mathcal{G}$. Then $[\Phi(G)]_H =$ number of times an isomorphism of H appears in G.
- Gärtner et al. [2003] showed that for injective Φ , $k(G,G) + k(G',G') - 2k(G,G') = \langle \Phi(G) - \Phi(G'), \Phi(G) - \Phi(G') \rangle = 0$ iff $G \simeq G'$
 - \Rightarrow Computing k is as hard as graph isomorphism, for which no efficient algorithm is currently known
- Further, the kernel for the subgraph mapping is in fact NP-hard to compute (reduce from Hamiltonian path), even to approximate and/or if *H* comes from a restricted class of graphs

Kernels on Graphs

- Very general form of structured data
- Can represent many data types, including chemical structures
- Will consider directed graphs with labels on edges and nodes
- Let *G* be the space of all graphs, modulo isomorphism

Kernels Based on Label Pairs

- Now consider more restrictive kernels that can be efficiently considered
- Focus on graphs with labels on nodes but not edges; labels come from \$\mathcal{L} = \{\ell_1, \ldots, \ell_m\}\$
- Let <u>label matrix</u> L be such that $[L]_{ri} = 1$ if node v_i 's label is ℓ_r and $[L]_{ri} = 0$ otherwise
- Let adjacency matrix E be such that $[E]_{ij} = 1$ if directed edge (v_i, v_j) exists in graph G and $[E]_{ij} = 0$ otherwise; $[E^n]_{ij}$ is number of lengthn walks from v_i to v_j
- $\left[LL^{\top}\right]_{rr}$ = number of times label ℓ_r is assigned to a vertex in G
- $\left[LE^nL^\top \right]_{ij}$ = number of walks of length n between vertices labeled ℓ_i and vertices labeled ℓ_j

21

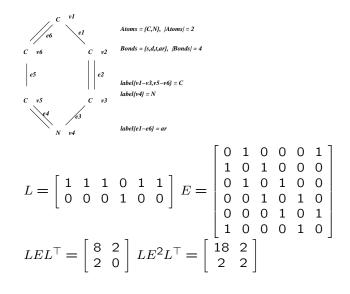
Kernels Based on Label Pairs (cont'd)

- $\mathcal{W}_n(G) = \text{set of all } n\text{-edge walks in } G$
- For walk $w \in W_n(G)$, $l_1(w) =$ label of first vertex of w and $l_{n+1}(w) =$ label of last vertex
- $\lambda =$ sequence of nonnegative weights $\lambda_0, \lambda_1, \dots$
- Define mapping Φ(G) to have one feature per pair of labels (ℓ_i, ℓ_j): [Φ(G)]_{ℓ_i,ℓ_j} =

 $\sum_{n=0}^{\infty} \lambda_n \left| \left\{ w \in \mathcal{W}_n(G) : l_1(w) = \ell_i \wedge l_{n+1}(w) = \ell_j \right\} \right|$

i.e. the weighted sum of the number of lengthn walks from an ℓ_i -labeled vertex to an ℓ_j labeled vertex, weighted by λ_n , summed over all $n\to\infty$

Matrix Example



22

Kernels Based on Label Pairs (cont'd)

• Thus kernel is $\langle \Phi(G), \Phi(G') \rangle =$

$$\left(L\left(\sum_{i=0}^{\infty}\lambda_{i}E^{i}\right)L^{\top},L'\left(\sum_{i=0}^{\infty}\lambda_{i}E'^{i}\right)L'^{\top}\right)$$

- Under certain conditions, can efficiently compute the matrix power series
- E.g. if $\lambda_i = \beta^i/i!$ for some $\beta > 0$ and if E can be diagonalized such that $E = T^{-1}DT$, then $E^n = T^{-1}D^nT$ and $[D^n]_{ii} = [D_{ii}]^n$ since D is diagonal
- Now we can compute

as

$$T^{-1}\left(\lim_{n\to\infty}\sum_{i=0}^n \frac{\beta^i D^i}{i!}\right)T$$
,

 $\lim_{n \to \infty} \sum_{i=0}^{n} \frac{(\beta E)^{i}}{i!}$

where limits are taken component-wise

Kernels Based on Contiguous Label Sequences

- Previous kernel's mapping Φ has a low-dimensional feature space: $|\mathcal{L}|^2$
 - \Rightarrow E.g. if all node labels are C or N, then feature space has dimension 4
- For a more expressive feature mapping, will use mapping with one dimension per <u>label sequence</u> rather than <u>label pair</u>
- Assume we have labels for both nodes and edges; if nodes or edges are not labeled, use generic symbol '#'

Kernels Based on Contiguous Label Sequences

(cont'd)

- Let S_n be set of all possible label sequences of walks with n edges and let λ , $W_n(G)$, and $l_i(w)$ be as before
- Define mapping $\Phi(G)$ to have one feature per possible label sequence $s \in \bigcup_n S_n$:

 $[\Phi(G)]_s = \sqrt{\lambda_n} |\{w \in \mathcal{W}_n(G) : \forall i \ s_i = l_i(w)\}|$

i.e. the number of walks in G with n edges whose (vertex and edge) label sequences match $s = s_1, s_2, \ldots, s_{2n+1} \in S_n$, weighted by $\sqrt{\lambda_n}$

Topic summary due in 1 week!

26

Kernels Based on Contiguous Label Sequences (cont'd)

• To compute the kernel, use the notion of a product graph: given $G_1 = (\mathcal{V}_1, \mathcal{E}_1)$ and $G_2 = (\mathcal{V}_2, \mathcal{E}_2)$, $G_{\times} = G_1 \times G_2$ is defined as

$$\mathcal{V}_{\times} = \{(v_1, v_2) \in \mathcal{V}_1 \times \mathcal{V}_2 : label(v_1) = label(v_2)\}$$

$$\mathcal{E}_{\times} = \{((u_1, u_2), (v_1, v_2)) \in \mathcal{V}_{\times}^2 : (u_1, v_1) \in \mathcal{E}_1$$

 $\wedge (u_2, v_2) \in \mathcal{E}_2 \wedge label(u_1, v_1) = label(u_2, v_2) \}$

• One can show that

$$|\{w \in \mathcal{W}_n(G_1 \times G_2) : \forall i \ s_i = l_i(w)\}|$$
$$= |\{w \in \mathcal{W}_n(G_1) : \forall i \ s_i = l_i(w)\}|$$
$$\cdot |\{w \in \mathcal{W}_n(G_2) : \forall i \ s_i = l_i(w)\}|$$

• Since an *n*-edge walk in $G_1 \times G_2$ corresponds to a walk in each of G_1 and G_2 , each with same label sequence, the dot product $\langle \Phi(G_1), \Phi(G_2) \rangle$ can be computed as

$$k_{\times}(G_1, G_2) = \sum_{i,j=1}^{\mathcal{V}_{\times}} \left[\sum_{n=0}^{\infty} \lambda_n E_{\times}^n \right]_{ij}$$