Introduction

CSCE 990 Lecture 9: We are now very aware of the importance and
Designing Kernels* power of kernels in SVMs

We also know from Chapter 2 about some ba-
sic kernels and simple ways to build new kernels

Stephen D. Scott out of old ones

— Linear scaling, addition, multiplication, etc.
of existing kernels

March 23, 2006

We'll look at other ways to construct new ker-
nels from existing ones, plus other completely
different types of kernels

Some of them might look familiar ...

*Most figures ©2002 MIT Press, Bernhard Schélkopf, and
Alex Smola.

Tricks for Constructing Kernels
Outline

e If k1 and ko are kernels, then so are

Tricks for constructing kernels
at1k1 + azky for a,a0 >0

= If input vectors can be partitioned into
subvectors of different types (e.g. strings
and real values), can apply direct sum:

String kernels

Spectrum kernels ;. , ,
(k1®k2)(z1, 20,27, 25) = k1 (w1, 27)+ko(20, 23)

where z1,2) € X1 (e.g. R") and zp,a5 €
X5 (e.g. strings)

Locality-improved kernels

k1ko

Kernels defined on graphs

= Similar to application of direct sum, use
tensor product:

Sections 13.1-13.3, 13.5, assorted papers
(k1®k2) (1, w2, 27, 25) = k1 (z1,27) ko(wo, 25)

Tricks for Constructing Kernels
Conformal Transformations

e For a real-valued function f, k'(z,z') = f(z)f(2')
is a kernel

e This leads to conformal transformations:

ki(z,2") = f(2)k(z,2") f(2)

— If k is a kernel, then so is kf

— Recall that if ||z|| = ||2/|| = 1, then (x,2') =
cos(Z(x,2')); thus

f@)k(z,2") f(2")

R N O O NG CR)
k(z,x")

VEk(z,2)\/k(x', x")

= cos(L(P(z),P(2)))

I.e. angles in feature space are preserved in a con-
formal transformation

Tricks for Constructing Kernels
Convolution Kernels

e Notions of tensor products and direct sums
lead to R-convolution kernels

e E.g. consider partitioning the string z = ATG
into two distinct, contiguous, nonemtpy sub-
strings:

Ry : T1.R = A AND T2 Ry = TG

Ry : CCLRQ:AT AND xZRQ:G

(similarly, decompose z')

e Now can compute a kernel for each substring
of each partitioning and combine:

k(z,a') = ki(z1,R,, 2 g k2(22 Ry 75 R)
+k1(%1, Ry, 1 gy k2(22 Rys 75 R,)

Tricks for Constructing Kernels
Convolution Kernels (cont'd)

e Generally, define the set of allowed decompo-
sitions as a relation R(z1,...,zp,x) and define
the R-convolution

D
(ky*---xkp)(z,2) =" [ka(za,z})
R d=1

(i.e. sum over all allowable decompositions of
x into z1,...,xzp, etc.)

e Based on earlier results, we know this to be a
valid kernel

e A special case: ANOVA kernel of order D

D
kD(ac,m/) = Z H k(zd)(x’iwm;d
1<i1<-<ip<N d=1

(D = N = tensor prod, D =1 = direct sum)

String Kernels

e To apply SVMs to text classification, can map
documents to bag-of-words representation and
use kernels defined on R"

— Each dimension is one word, value in that
dimension is word frequency

— Ignores word ordering

e Alternatively, can use a string kernel, which
computes similarities between two strings based
on their common substrings

e Related to R-convolution kernel

String Kernels
(cont'd)

e Let > be a finite alphabet, X" be set of all
length-n strings over X, and Z* = (5"

e Given s € %, let i := (il""’iIU\) be an index
sequence with 1 < 41 < --- < i|u| < |s] and
u = s(i) := s(il)-~~s(z"u|) be a (possibly non-
contiguous) subsequence of s

o [(Q) := ily| — 1 + 1 is the length of w in s

— E.g. if s = ABBA, then 1(1,2,3) = 3 (for
ABB), I1(1,4) = 4 (for AA)

— &, (s) defines one dimension per substring
u € X", and the uth component of ®,(s) is

[Pn()]u = Y AND
i:s(i)=u

forO< <1

String Kernels
(cont'd)

E.g. if s = ABBA, then [®5(s)]ap = A2+ A3

[®,(s)]w larger if u (nearly) contiguous and
common in s

The string kernel is then

kn(s,t) = > [®n(s)]u[®Pn(D)]u

u€Z7L
= ¥ 3 AL@) 1G)
uexX™ (i,j):s(i)=t(j)=u

If want to vary n, use k := 3%, cnkn

Since value of k;, (and therefore k) depend on
lengths of s and t, normalize k in feature space

10

String Kernels
(cont'd)

e To efficiently compute the kernel, define for
i=1,...,n—1

kj(s,t) = >

uex?t (1j):s(D)=t(j)=u

AlslFltl=ii—j1+2

e Thenifz € X1, can recursively compute ky(s,t):

ko(s,t) =1 for all s,t
Ki(s,t) =0 if min(|s|,[t]) <1
k;(s,t) =0 if min(|s],|¢]) < i

Ki(sz,t) = Mj(s,t) + Y Ki_1(s,t[1,...,5 — 1)AM=+2

jiti=x

kn(sz,t) = ka(s,t) + Y Ki_1(s,t[1,...,5— 1DA?

jit=a

11

Spectrum Kernel

Another type of string kernel

For a fixed integer v > 1, define the v-spectrum
of a sequence to be the set of all length-v con-
tiguous sequences it contains

Feature map for spectrum kernel is indexed by
all possible length-+ subsequences from alpha-
bet < (similar to bag of words)

For each a € &7, let ¢q(x) = number of times
a occurs in x contiguously

Now define ®+(z) = (¢a(x))aexy

— This is a weighted representation of z's ~-
spectrum

— A sparse vector

12

Spectrum Kernels
(cont'd)

e Can compute ky(z,z') = (P (z), Py (z)) in time
O(|z| + [='])

1. Collect set of length-v subsequences of =z
into array A, and sort it (same with z/)

— Az contains non-zero entries of ®(x)

2. Scan A, and A,, multiplying entries that
match, and sum the products

13

Locality-Improved Kernels

e A variation on existing kernels to emphasize

local correlations over long-range (global) ones

e E.g. in image processing, replace polynomial

kernel (z,z/)% with a variant that focuses on
subimages first

e Generally, take the dot product over all corre-

sponding subimages of the two images, raise
to the d; power, sum these values, then raise
to the do power

14

Locality-Improved Kernels
Image Processing (cont'd)
e Specifically:

1. Compute (z.*z'), the pixel-wise product of
x and o/

2. Sample (z.xx') with pyramidal receptive fields:

zij o= S w(max(li — |, 17 — 5'D) (. x ")y
i/,j/
where e.g. weighting function w(n) = max(q—
n,0); i.e. only include pixels in a width-p
window (p = 2q + 1) centered at (4,7)

3. Raise each z;; to the d; power (this gives
local correlations)

4. Sum zfjl over entire image and raise this
sum to the do power (long-range correla-
tions)

e If dy = 1, get standard polynomial kernel <x,:1:’>d2

15

Locality-Improved Kernels
Image Processing (cont'd)

Classifier Error on MNIST (%)

k14 4.0
k§72 3.1
kgt 3.4
Virt SV 2.8
VSV k32 2.0

16

Locality-Improved Kernels
DNA Start Codon Recognition

e Problem: in a DNA sequence (from alpha-
bet {A,C,T,G}), identify subsequences that
encode genes

— Typically such a coding region begins with
ATG

— But not all ATG occurrences imply a coding
region

— Thus the learning problem is to take a length-
200 window centered at an AT'G and predict
if it's a coding region

e For this problem, long-range dependencies aren't
very important, so use a kernel to emphasize
local correlations

17

Locality-Improved Kernels
DNA Start Codon Recognition (cont'd)

e We'll consider correlations inside small win-
dows of length 2¢ 4 1:

+0 &
winp(z,z’) = > vjmatchp_i_j(ac,w'))
==

where match, ;(z,2’) = 1 if z and 2’ match
at position p+j and 0 otherwise, and v; is a
weight for window position ;5 (larger near 0)

e Now we sum the values of winy:

¢ d2
k(m,m/) = (Z Winp(;c,a:/))

p=1
(Should summation really be only to £7)

Classifier Error (%)
ANN 15.4
Poly kernel, d =1 13.8
L-I kernel, dy = 4,4 =4 11.9

Codon-improved kernel, di =2,4=3 12.2

18

Kernels on Graphs

e Very general form of structured data

e Can represent many data types, including chem-
ical structures

e Will consider directed graphs with labels on
edges and nodes

e Let G be the space of all graphs, modulo iso-
morphism

19

Complete Graph Kernels

e A complete graph kernel k is one whose im-
plicit remapping ® : G — H distinguishes all
pairs of graphs (G,G’) € G x G, i.e. ® is injec-
tive

e Example (Subgraph feature space): Let each
dimension in ®(G) correspond to a distinct
connected graph H € G. Then [®(G)]ly =
number of times an isomorphism of H appears
in G.

e Gartner et al. [2003] showed that for injective
@, k(G,GQ) + k(G,G") - 2k(G,G") = (P(G) —
PG, P(G) —d(G)) =0 iff G ~ G

= Computing k is as hard as graph isomor-
phism, for which no efficient algorithm is
currently known

e Further, the kernel for the subgraph mapping
is in fact NP-hard to compute (reduce from
Hamiltonian path), even to approximate and/or
if H comes from a restricted class of graphs

20

Kernels Based on Label Pairs

Now consider more restrictive kernels that can
be efficiently considered

Focus on graphs with labels on nodes but not
edges; labels come from £ = {{1,...,¢m}

Let label matrix L be such that [L],; = 1 if
node v;'s label is ¢, and [L],; = 0 otherwise

Let adjacency matrix E be such that [E];; = 1
if directed edge (v;,v;) exists in graph G and
[E];; = 0 otherwise; [E™];; is number of length-
n walks from v; to v;

[LLTLT = number of times label ¢, is assigned
to a vertex in G

[LE"LTLJ, = number of walks of length n be-
tween vertices labeled ¢; and vertices labeled

¢

21

010001
101000
L:{111011}E:010100
000100 001010
000101
100010

8 2 > 1 [18 2

5 }LEL_ 22}

Matrix Example

Atoms = {C,N}, |Atoms| = 2

Bonds = {s,d t,ar}, |Bonds| =4

labe{vl-v3,v5-v6} = C
label{v4} = N

label{e1-e6} = ar

22

Kernels Based on Label Pairs
(cont'd)

Wi (G) = set of all n-edge walks in G

For walk w € Wi(G), l1(w) = label of first
vertex of w and [,,41(w) = label of last vertex

A = sequence of nonnegative weights Ag, A, ...

Define mapping ®(G) to have one feature per
pair of labels (¢;,£;): [CD(G)]@.JZ], =

io: Mo [{w € Wi(G) 11 (w) = € Ay (w) = fj}’
n=0

i.e. the weighted sum of the number of length-
n walks from an /;-labeled vertex to an {;-
labeled vertex, weighted by \,, summed over
all n — oo

23

Kernels Based on Label Pairs
(cont'd)

Thus kernel is (®(G), P(G")) =

OO . o0 .
<L SNEN LT LY NET L’T>

Under certain conditions, can efficiently com-
pute the matrix power series

E.g. if \;, = B%/i! for some g > 0 and if E can
be diagonalized such that E = T—1DT, then
E" = T-1D"T and [D"];; = [Dy]" since D is
diagonal

Now we can compute

as

where limits are taken component-wise

24

Kernels Based on Contiguous Label
Sequences

Previous kernel’s mapping ® has a low-dimensional
feature space: |£|2

= E.g. if all node labels are C or N, then fea-
ture space has dimension 4

For a more expressive feature mapping, will use
mapping with one dimension per label sequence
rather than label pair

Assume we have labels for both nodes and
edges; if nodes or edges are not labeled, use
generic symbol ‘#’

25

Kernels Based on Contiguous Label
Sequences
(cont'd)

e Let S, be set of all possible label sequences
of walks with n edges and let A\, Wy(G), and
l;(w) be as before

e Define mapping ®(G) to have one feature per
possible label sequence s € U, Sn:

[®(G)]s = VAn [{w € Wa(G) : Vi s; = [j(w)}|

i.,e. the number of walks in G with n edges
whose (vertex and edge) label sequences match
8= 51,82,...,82,41 € Sp, weighted by vAp

26

Kernels Based on Contiguous Label
Sequences
(cont'd)

To compute the kernel, use the notion of a
product graph: given G1 = (V1,£1) and G, =
(V2,E2), Gx = G1 x Go is defined as

Vy = {(v1,v2) € V1 X V5 : label(vy) = label(vo)}
Ex = {((u1,u2), (v1,02)) € V5 & (ug,v1) € &1
AN(up,vp) € E5 A label(uy,v1) = label(up,v2)}

One can show that

Hw € Wn(G1 x G2) 1 Vi s; = [i(w)}
= [{w € Wn(G1) 1 Vi s; = lj(w)}]

“Hw € Wh(G2) Vi s; = l;(w)}]

Since an n-edge walk in G1 xGo corresponds to
a walk in each of G1 and G5, each with same la-
bel sequence, the dot product (®(G1), P(G2))
can be computed as

Vx 00
kx(G1,G2) = > | D> MEY
iJ

i,j=1 |n=0

27

Topic summary due in 1 week!

28

