
CSCE 990 Lecture 8:
Implementation∗

Stephen D. Scott

February 28, 2006

∗Most figures c©2002 MIT Press, Bernhard Schölkopf, and
Alex Smola.

1

Introduction

• We know that the convex quadratic program

representing our SVM optimization problem has

a unique global optimum

• How do we efficiently find it?

• Unlike “classical” optimization problems, we

sometimes must deal with extremely large, dense

matrices

2

Outline

• Tricks of the trade: stopping criteria, restart-

ing, caching, shrinking the training set

• Sparse greedy matrix approximation (SGMA)

• Interior point algorithms

• Subset selection methods: Chunking, working

set algorithms

• Sequential minimal optimization (SMO)

• Sections 6.2.5, 6.4, 10.1–10.5, 10.7

3

Tricks of the Trade

Stopping Criteria

• Recall that one property of the dual is that its

optimum equals the primal’s optimum

• KKT-Gap is difference between primal and dual

objective functions at a feasible solution

• Theorem 6.27 can bound KKT-Gap for SVMs

P10.1 Let f be feasible soln to problem of minimizing

regularized risk functional Rreg[f]. Then

Rreg[f] ≥ Rreg[f
∗] ≥ Rreg[f] − Gap[f]/(Cm)

where f∗ is optimal feasible solution and

Gap[f] =
m∑

j=1

C max{0,1−yjf(xj)}+αj(yjf(xj)−1)

for C-SVM and

Gap[f] =
m∑

j=1

max{0, ρ−yjf(xj)}+αj(yjf(xj)−ρ)

for ν-SVM

4

Stopping Criteria

(cont’d)

• Can halt if gap is relatively smaller than ǫ:

Gap[f] ≤ ǫ

(

|Rreg| + |Rreg[f] − Gap[f]|

2

)

i.e. the gap is small compared to its “mid-

point”

• Alternatively, can see that if fi is solution at

iteration i,

min
i

{Rreg[fi]} ≥ Rreg[f
∗] ≥ max

i
{Rreg[fi] − Gap[fi]}

which is useful since Gap can increase when fi

improves

5

Tricks of the Trade

Restarting with Different Parameters

• Recall the C-SV classifier:

minimize
w∈H,b∈R,ξ∈Rm

τ(w, ξ) =
1

2
‖w‖2 +

C

m

m∑

i=1

ξi

s.t. yi(〈xi,w〉 + b) ≥ 1 − ξi, i = 1, . . . , m
ξi ≥ 0, i = 1, . . . , m

• This can be thought of as minimizing the reg-

ularized risk functional

Rreg[f, C] := C
m∑

i=1

c(xi, yi, f(xi)) + Ω[f]

where c(·) measures the average margin error

of the training set

• How do we set C?

6

Restarting with Different Parameters

(cont’d)

• If fC minimzes Rreg[f, C], then for all C ′ > C

Rreg[fC, C ′] ≥ Rreg[fC ′, C ′] ≥ Rreg[fC ′, C] ≥ Rreg[fC , C]

• Thus

Rreg[fC ′, C ′] ≤ Rreg[fC, C ′]

= C ′
m∑

i=1

c(xi, yi, fC(xi)) + Ω[fC]

=
C ′

C



C
m∑

i=1

c(xi, yi, fC(xi)) + Ω[fC]





=

(

C ′

C

)

Rreg[fC, C]

7

Restarting with Different Parameters

(cont’d)

• Finally,
(

C

C ′

)

Rreg[fC ′, C ′] ≤ Rreg[fC, C] ≤ Rreg[fC ′, C ′]

• I.e. changes in Rreg[fC , C] are bounded by changes

in C, so fC is reasonable starting point for

search for fC ′

• Thus can start with large C (i.e. focus on min-

imizing margin errors) and steadily decrease C

to increase regularization

• By scaling parameters appropriately, can dra-

matically speed up training

8

Tricks of the Trade

Caching

• If kernel matrix K is too large to store in mem-

ory, may need to store most on disk, caching

a relatively small amount in memory

1. Row cache: cache mc rows, each with m

entries, and replace with LRU. Works well

with e.g. SMO

2. Element cache: store individual elements of

K. Works well if most αi = 0, but signifi-

cant overhead involved

3. Function cache: Cheap way to update f(xj)

(prediction of classifier on xj). If e.g. first

n alphas are changed in current update:

fnew(xj) =
m∑

i=1

αnew
i k(xi, xj) + b

= fold(xj) +





n∑

i=1

(

αnew
i − αold

i

)

k(xi, xj)





9

Tricks of the Trade

Shrinking the Training Set

• Recall that only xi for which αi > 0 affect the

solution

• Thus can speed up training by dropping non-

SVs from training set

• Don’t want to do this too early, but at various

points during optimization, can discard parts

of training set

• Will cover subset selection schemes later

10

Sparse Greedy Matrix Approximation

• Cost of computing/storing/using for optimiza-

tion entire m × m Gram matrix K is Θ(m2)

• Problematic when m (size of training set) is

large, e.g. 105

• SGMA builds a sparse approximation K̃ of K

– K̃ still m × m, but represented by matrix

α ∈ Rm×n for n ≪ m

• Recall that for xi ∈ X , we can think of k(xi, ·) =

ki(·) as a function that computes the dot prod-

uct in feature space of Φ(xi) and Φ(·)

– So Kij = ki(xj)

• SGMA approximates ki(·) with

k̃i(·) :=
n∑

j=1

αijk(xj, ·)

(w.l.o.g. assume that we use the first n training

patterns x1, . . . , xn in the approximation)

11

Sparse Greedy Matrix Approximation

(cont’d)

• Goodness of the approximation will be the squared

norm between the functions in feature space:
∥
∥
∥ki(·) − k̃i(·)

∥
∥
∥
2

H
=
〈

ki(·) − k̃i(·), ki(·) − k̃i(·)
〉

H

• Let’s hark back to Section 2.2.2, where if f(·) =
∑m

j=1 αjk(xj, ·), then

〈f, f〉H =
m∑

j,ℓ=1

αjαℓk(xj, xℓ)

• If we let α′
0 = 1, α′

j = −αij, x′j = xj and x′0 =

xi, then

f(·) = ki(·) − k̃i(·) = k(xi, ·) −
n∑

j=1

αijk(xj, ·)

=
n∑

j=0

α′
jk(x

′
j, ·)

and

〈f, f〉H = Kii − 2
n∑

j=1

αijKij +
n∑

j,ℓ=1

αijαiℓKjℓ

12

Sparse Greedy Matrix Approximation

(cont’d)

• Given basis functions ki(·), goal is to find α ∈

R
m×n to minimize

Err(α) :=
m∑

i=1

∥
∥
∥ki(·) − k̃i(·)

∥
∥
∥
2

H

=
m∑

i=1



Kii − 2
n∑

j=1

αijKij +
n∑

j,ℓ=1

αijαiℓKjℓ





• Differentiating wrt α and setting to 0 yields

αopt = Kmn (Knn)−1

where Kmn is first n columns of K and Knn is

upper left submatrix of K

T10.2 The approximation K̃ of K is PD,

Err(αopt) = tr (K) − tr
(

K̃
)

, and

K̃ = αKnnα⊤

• Thus given K and basis functions, can easily

compute αopt, Err(αopt), and K̃

• How do we choose basis functions?

13

Sparse Greedy Matrix Approximation

(cont’d)

• In general, it is intractable to choose as a ba-

sis the proper subset of the m functions that

minimizes the objective function

• Alternative approach: given current set of n
basis functions k1(·), . . . , kn(·), consider adding

one more function

– Random

– Greedy: best out of all m − n remaining

– “Semi-greedy”: best out of a subset of size

N (e.g. N = 59)

• Given that αm,n is the optimal matrix for the

n chosen basis functions, and consider adding

kn+1(·). Then

Err(αm,n+1) = Err(αm,n) − η−1‖Kmn
v − k̄‖2

where k̄ = (K1,n+1, . . . , Km,n+1), η = (Kn+1,n+1−
k⊤(Knn)−1k), v = ((Knn)−1k), and

k = (Kn+1,1, . . . , Kn+1,n)

• Use the above to compute Err for each of the

N new candidates and take the best; repeat

until Err sufficiently small

• Can update α in O(n2) time

14

Sparse Greedy Matrix Approximation

Experiments

• Gaussian kernel, USPS data

• First ten basis functions correspond to 9 of the

10 digits

• Results (Fig. 10.3, p. 294) comparable to PCA,

which requires computation of all m basis func-

tions

15

Predictor-Corrector Methods

• Considers lower-order approximations when do-

ing optimization of complex functions

• Predict update from lower-order approx, then

correct it with higher-order version

• E.g. solving f(x) = f0 + ax + bx2/2 = 0:

1. Start with f0 + ax = 0, giving update of

xpred = −f0/a

2. Substitute xpred into original equation and

solve:

f0 + axcorr +
b

2

(
f0
a

)2

= 0

so

xcorr = −
f0
a







1 +

corr. term
︷ ︸︸ ︷

bf0
2a2








3. Use xcorr as update

• Algorithm 6.5, p. 165

16

Interior Point Methods

• An interior point is a (x, α) pair satisfying both

primal and dual constraints

• In general, start with a quadratic optimization

problem:

minimize
x

1
2x⊤Kx + c⊤x

s.t. Ax + d + ξ = 0, ξ ≥ 0
(1)

where K is m × m PD matrix, x, c ∈ Rm, A ∈
Rn×m, and d, ξ ∈ Rn

• Apply Theorem 6.26 to get KKT conditions:

Kx + A⊤α + c = 0

Ax + d + ξ = 0

α⊤ξ = 0

α, ξ ≥ 0

• First two constraints are linear, but third is

not, so we’ll use predictor-corrector method

• First change third constraint to α⊤ξ = µ > 0

and decrease µ over time

17

Interior Point Methods

Linearization

• Start with initial values of x, α, ξ, and µ

• We’ll compute updates ∆x, etc. by expanding

e.g. x to x + ∆x:

K∆x + A⊤∆α = −Kx − A⊤α − c =: ρp

A∆x + ∆ξ = −Ax − d − ξ =: ρd

α−1
i ξi∆αi + ∆ξi = µα−1

i − ξi − α−1
i ∆αi∆ξi =: ρKKTi

• Thus we get ∆ξi = ρKKTi
− ξi∆αi/αi, and

A∆x − ξ∆α/α = ρd − ρKKT:
[

K A⊤

A −D

] [

∆x
∆α

]

=

[

ρp

ρd − ρKKT

]

where D := diag(α−1
1 ξ1, . . . , α−1

n ξn)

• We’ve eliminated ∆ξ, so we can solve for ∆xpred

and ∆αpred

• Now update ρKKT with ∆αpred (ρp, ρd are un-

changed) and solve again to get ∆xcorr and

∆αcorr, then solve for ∆ξ

18

Interior Point Methods

(cont’d)

• Need to ensure that updates are not too large

and negative to make the variables negative

• Shrink length of (∆x, ∆α,∆ξ) by λ such that

min
{

α1+λ∆α1
α1

, · · · , αn+λ∆αn
αn

,
ξ1+λ∆ξ1

ξ1
, · · · , ξn+λ∆ξn

ξn

}

≥ ǫ

for e.g. ǫ = 0.05

• To update µ, after getting new values of α and

ξ, set

µ =
α⊤ξ

n

(
1 − λ

10 + λ

)2

19

Interior Point Methods

Application to SVMs

• Recall the dual optimization problem for C-

SVMs:

maximize
α∈Rm

W (α) =
m∑

i=1

αi −
1

2

∑

i,j

αiαjyiyjk(xi, xj)

s.t. 0 ≤ αi ≤ C, i = 1, . . . , m
m∑

i=1

αiyi = 0

• Can put into the form of (1):

minimize
α,t∈Rm

1

2
α⊤Qα + c⊤α

s.t. Aα = 0
α + t = u
α, t ≥ 0

(2)

where Qij = yiyjk(xi, xj), c = (−1, . . . ,−1) ∈

Rm, u = (C, . . . , C) ∈ Rm, A = (y1, . . . , ym)

• Then dualize, linearize, and derive updates (Sec-

tion 10.3.1)

• For large m, can use SGMA in optimization

algorithm rather than all of Q

20

Subset Selection Methods

Working Set Algorithms

• A way of dealing with large data sets

• Focus on only a subset of the training patterns

at any time, freezing the α variables for the

other patterns

• Let Sw ⊂ [m] = {1, . . . , m} be working set and

Sf = [m] \ Sw be fixed set

• Now split the problem (2) into Q =

[

Qww Qfw
Qwf Qff

]

,

c = (cw, cf), A = (Aw, Af), and u = (uw, uf):

minimize
αw,tw

1

2
α⊤

wQwwαw +
[

cw + Qwfαf

]⊤
αw

+

[
1

2
α⊤

f Qffαf + c⊤f αf

]

s.t. Awαw = −Afαf
αw + tw = uw

αw, tw ≥ 0

• Minimizing this also decreases (2)

21

Subset Selection Methods

(cont’d)

• When choosing the working set, want to base

choice on what will speed up convergence

• Pick patterns whose Lagrange multipliers vio-

late KKT conditions

• Want generally small working set (< 100), and

balanced number of +1 and −1 labels

• In addition, can choose:

1. those with largest contribution to KKT gap

(P10.1)

2. those with largest negative gradient of ob-

jective function at current solution

22

Sequential Minimal Optimization

• Extreme case of subset selection, with working

set of size 2

• With only two active variables αi and αj, can

analytically solve optimization problem

minimize
αi,αj

1

2

[

α2
i Qii + α2

j Qjj + 2αiαjQij

]

+ ciαi + cjαj

s.t. sαi + αj = γ
0 ≤ αi ≤ Ci,0 ≤ αj ≤ Cj

where Qij = yiyjKij, s = yiyj, γ = yiyjα
old
i + αold

j ,

ci = yi(f(xi) − b − yi) − αiKii − αjsKij, Ci, Cj pa-

rameters weighting xi, xj

• Above values come from working set version

of (2)

23

Sequential Minimal Optimization

(cont’d)

• Let ξ = scj − ci + γsQjj − γQij and

χ = Qii + Qjj − 2sQij

• If yi = yj, let L = max{0, γ − Cj} and H =

min{Ci, γ}

• If yi 6= yj, let L = max{0, γ} and H = min{Ci, Cj−

γ}

1. If χ = 0, set αi = L if ξ > 0 and αi = H

otherwise

2. If χ > 0, set αi = min{max{L, ξ/χ}, H}

3. Set αj = γ − sαi

24

Sequential Minimal Optimization

Updating b

• When choosing patterns to bring in, need to

know our prediction on them, i.e. we need a

current value of b

• When all αs optimal, can apply KKT condi-

tions to sove for b; choose some αi ∈ (0, Ci)

and solve: yi(〈w,Φ(x)〉 + b) = 1

– But the αs aren’t yet optimal!

• Thus we will estimate b by choosing the mid-

point of a range of possible values

25

Sequential Minimal Optimization

Updating b (cont’d)

• Partition set of training patterns X into

I0 = {i | αi ∈ (0, Ci)}
I+,0 = {i | αi = 0, yi = +1}

I+,C = {i | αi = Ci, yi = +1}

I−,0 = {i | αi = 0, yi = −1}
I−,C = {i | αi = Ci, yi = −1}

• Now define

ehi := min
i∈I0∪I+,0∪I−,C

{f(xi) − yi}

elo := min
i∈I0∪I−,0∪I+,C

{f(xi) − yi}

(f is based on setting b with a SV)

• Using KKT conditions (see Keerthi et al.), can

show that optimality occurs iff ehi ≥ 0 ≥ elo

• Further, using as a bias term bhi = b − ehi for

the “hi” sets and blo = b− elo for the “lo” sets

will yield optimality

• Thus can update b as (bhi + blo)/2

• Complete SMO pseudocode on p. 313

26

Topic summary due in 1 week!

27

