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Introduction

¢ We know that the convex quadratic program
representing our SVM optimization problem has
a unique global optimum

e How do we efficiently find it?

e Unlike “classical’ optimization problems, we
sometimes must deal with extremely large, dense
matrices

Outline

e Tricks of the trade: stopping criteria, restart-
ing, caching, shrinking the training set

e Sparse greedy matrix approximation (SGMA)

e Interior point algorithms

e Subset selection methods: Chunking, working
set algorithms

e Sequential minimal optimization (SMO)

e Sections 6.2.5, 6.4, 10.1-10.5, 10.7

Tricks of the Trade
Stopping Criteria

e Recall that one property of the dual is that its
optimum equals the primal's optimum

e KKT-Gap is difference between primal and dual
objective functions at a feasible solution

e Theorem 6.27 can bound KKT-Gap for SVMs

P10.1 Let f be feasible soln to problem of minimizing
regularized risk functional Rreg[f]. Then

Rreg[f] > Rreg[f*] > Rreg[f] — Gap[f]/(Cm)
where f* is optimal feasible solution and
Gaplf] = Y- Cmax{0,1-y;f(z;)}+a(u;f ;) -1)
for C-SVI\]/I_alnd
Gaplf] = . max{O, p—y;F(a))}+a; (4 (2)—p)

Jj=1
for v-SVM




Stopping Criteria
(cont'd)

e Can halt if gap is relatively smaller than e:

|Rreg| + |Rreg[f] — Gap[f]|
Gap[f] < e( 5 >

i.e. the gap is small compared to its “mid-
point”

e Alternatively, can see that if f; is solution at
iteration i,

miin {Rreglfil} > Rregl[f*] > max {Rreglfi] — Gap[fi]}

which is useful since Gap can increase when f;
improves

Tricks of the Trade
Restarting with Different Parameters

Recall the C-SV classifier:

N 2

wer;ll,l?el%jlézeeRm T(w, &) = Z|lwl|“ + — Zfz

s.t. v (x4, W) + b) >1- fza i=1,.
£ >0,1=1,.

This can be thought of as minimizing the reg-
ularized risk functional

m
Rreglf,C) :=C Y (@i, yi, f () + Q[f]
i=1
where c(-) measures the average margin error
of the training set

How do we set C7

Restarting with Different Parameters
(cont'd)

e If fo minimzes Rreg[f,C], then for all C' > C

Rreglfc, C'l > Rreglfcr, C'] > Rreglfcr, C1 > Rreglfe, Cl

e Thus

Rreglfcr,C'l < Rreglfe,C']
= 'Y clxi, i folz) + QL]

=1

(C Z c(xi, yi, fo(x)) + Q[fC’])

i=1

Q\Q

|
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C
6) Rreg[fc, C]

Restarting with Different Parameters
(cont'd)

Finally,

C
(C’) Rreg [fcl C] < Rreg [va C] < Rreg [fC’ C]

I.e. changes in Rreg[fc, C] are bounded by changes
in C, so fo is reasonable starting point for
search for fen

Thus can start with large C (i.e. focus on min-
imizing margin errors) and steadily decrease C
to increase regularization

By scaling parameters appropriately, can dra-
matically speed up training




Tricks of the Trade
Caching

e If kernel matrix K is too large to store in mem-
ory, may need to store most on disk, caching
a relatively small amount in memory

1. Row cache: cache m¢ rows, each with m
entries, and replace with LRU. Works well
with e.g. SMO

2. Element cache: store individual elements of
K. Works well if most a; = 0, but signifi-
cant overhead involved

3. Function cache: Cheap way to update f(z;)
(prediction of classifier on z;). If e.g. first
n alphas are changed in current update:

m
") = > af®k(zy, i) + b
i=1
n

— f0|d($j) + Z (a?ew — a?|d> k‘(afz‘,ﬂfj)

=1

Tricks of the Trade
Shrinking the Training Set

Recall that only z; for which «; > 0 affect the
solution

Thus can speed up training by dropping non-
SVs from training set

Don’'t want to do this too early, but at various
points during optimization, can discard parts
of training set

Will cover subset selection schemes later
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Sparse Greedy Matrix Approximation

e Cost of computing/storing/using for optimiza-
tion entire m x m Gram matrix K is ©(m?2)

e Problematic when m (size of training set) is
large, e.g. 10°

e SGMA builds a sparse approximation K of K

— K still m x m, but represented by matrix
a € R™X™ for n < m

e Recall that for z; € X, we can think of k(z;,-) =
k;(-) as a function that computes the dot prod-
uct in feature space of ®(z;) and ®(+)

e SGMA approximates k;(-) with

k() = i a;jk(x,-)

Jj=1
(w.l.0.g. assume that we use the first n training
patterns z1,...,xy, in the approximation)
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Sparse Greedy Matrix Approximation
(cont'd)

Goodness of the approximation will be the squared
norm between the functions in feature space:

ki) = RO, = (ki) = Fal), i) = B,

Let's hark back to Section 2.2.2, where if f(-) =
Zgnzl ajk:(a:j, ~), then

£ = >, ajok(zj zy)

j =1

If we let o/o =1, ag- = —ayj, acg =z; and 136 =
x;, then

FC) = k() — k() =k, ) — Y aijk(zy,-)

Jj=1
n
= Y a;-k(:cg, 2
Jj=0
and

n n
(L =Ki—2) ojKij+ Y ajjaKjy
=1 ji=1

12




Sparse Greedy Matrix Approximation
(cont'd)
e Given basis functions k;(-), goal is to find a €
R™X™ to minimize

Err(@) == 3 [ - KO,
i=1

m n n

= > [Ki—2Y ayKi+ Y ajjaygKy

i=1 j=1 j0=1

e Differentiating wrt a and setting to O yields
Qopt = Kmn (Knn)—l

where K™" js first n columns of K and K™" is
upper left submatrix of K

T10.2 The approximation K of K is PD,
Err(aopt) = tr (K) —tr (I?) and

K =aK™Mq "
e Thus given K and basis functions, can easily

compute agpt, Err(acpt), and K
e How do we choose basis functions?
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Sparse Greedy Matrix Approximation
(cont'd)
e In general, it is intractable to choose as a ba-
sis the proper subset of the m functions that
minimizes the objective function

e Alternative approach: given current set of n
basis functions k1(-), ..., kn(-), consider adding
one more function

— Random

— Greedy: best out of all m —n remaining

— “Semi-greedy” : best out of a subset of size
N (e.g. N =59)

e Given that ™" is the optimal matrix for the
n chosen basis functions, and consider adding
kn-i—l() Then

Err(a™" 1) = Err(a™™) — n~ Y| K™y — k||?

wherek = (K1 41, Kppnt1): 1= (K1 np1—
kT (K")~1k), v = ((K™)~1k), and

k=EKpr1,1- Kngin)

e Use the above to compute Err for each of the
N new candidates and take the best; repeat
until Err sufficiently small

e Can update « in O(n?) time
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Sparse Greedy Matrix Approximation
Experiments

e Gaussian kernel, USPS data

e First ten basis functions correspond to 9 of the
10 digits

10176
g§302 4
01650

e Results (Fig. 10.3, p. 294) comparable to PCA,
which requires computation of all m basis func-
tions
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Predictor-Corrector Methods
e Considers lower-order approximations when do-
ing optimization of complex functions

e Predict update from lower-order approx, then
correct it with higher-order version

e E.g. solving f(z) = fo+ ax + bz2/2 = 0:

1. Start with fo 4+ axz = 0, giving update of
2P = o /a

2. Substitute zP™9 into original equation and
solve:

b 2
fo+az®" 4 = <@) =0
2\a
SO
corr. term

corr fo bfo
= —->==11 T
:c a + 2a2

3. Use z°'" as update

e Algorithm 6.5, p. 165

16




Interior Point Methods

An interior point is a (z, ) pair satisfying both
primal and dual constraints

In general, start with a quadratic optimization
problem:

S 1.7 T
mlnlzmlze 5T Kr+c'x (1)
s.t. Ar+d+£=0,£>0

where K is m x m PD matrix, z,c € R™, A €
R™®»*™M and d,£& € R?

Apply Theorem 6.26 to get KKT conditions:

Kx—|—ATa+c = 0
Ar+d+€ = 0
ale =0

a,é > 0

First two constraints are linear, but third is
not, so we'll use predictor-corrector method

First change third constraint to aT§ =u>0
and decrease p over time
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Interior Point Methods
Linearization

e Start with initial values of z, «, &, and u

e We'll compute updates Az, etc. by expanding
ed. z tox+ Ax:

KAa:—I—ATAa —Kz—Ala—c

AAx + A = —Ar—d—-¢ =! pg
o 1A+ A = pogt - & - TAaAEG = pRiT,

e Thus we get A = prkT, — &/, and
AAz — EAaj/a = pg — prKT!

K AT Az | _ | pp
A -D || A« Pd — PKKT
where D := diag(ay ¢y, ..., a5 ten)

e We've eliminated A¢, so we can solve for AgPred
and AqPred

e Now update pxkT With AaP™®d (p,, py are un-
changed) and solve again to get Az and
AaC'" then solve for A¢

18

Interior Point Methods
(cont'd)

Need to ensure that updates are not too large
and negative to make the variables negative

Shrink length of (Az, Aa, A¢) by X such that
a1tAAa; | ant+AAap

GARE et AAR <

1 1 ... n n

o R e P
for e.g. e = 0.05

min

To update p, after getting new values of a and
£, set

19

Interior Point Methods
Application to SVMs

e Recall the dual optimization problem for C-

SVMs:
L m 1
maximize W (o) = z; o — 5%%%%%’6(%%)
s.t. 0<a;<C,i=1,...,m
m
> iy =0
i=1

e Can put into the form of (1):

1
minimize EaTQa + cla

o, teR™
s.t. Aa =20 (2)
at+t=u
a,t >0
where QZ] = yiyjk(mi,mj), c=(-1,...,-1) €

R™, UZ(C,...,C)ERm, Az(yla”-aym)

e Then dualize, linearize, and derive updates (Sec-
tion 10.3.1)

e For large m, can use SGMA in optimization
algorithm rather than all of @

20




Subset Selection Methods
Working Set Algorithms

e A way of dealing with large data sets

Focus on only a subset of the training patterns
at any time, freezing the « variables for the
other patterns

Let Sw C [m] = {1,...,m} be working set and
Sy =[m]\ Sw be fixed set

Now split the problem (2) into Q = { Quuw Qfuw }
Quf Qff

c= (cw,cf), A= (Aw, Ay), and u = (uw, uy):

R ’
minimize Eagwaaw + [Cw + wao‘f} w

Qo tw 1
+ {Ea}erfozf + c}raf}

o + tw = uw
Oéw,tw Z O

e Minimizing this also decreases (2)
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Subset Selection Methods
(cont'd)

When choosing the working set, want to base
choice on what will speed up convergence

Pick patterns whose Lagrange multipliers vio-
late KKT conditions

Want generally small working set (< 100), and
balanced number of +1 and —1 labels
In addition, can choose:

1. those with largest contribution to KKT gap
(P10.1)

2. those with largest negative gradient of ob-
jective function at current solution
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Sequential Minimal Optimization

e Extreme case of subset selection, with working
set of size 2

e With only two active variables «; and «;, can
analytically solve optimization problem
minimize = [agQii + a2Q.:; 4 20;0Q; } + ciay; + ;o
o, 2 73] 1)) 1G4 1Oy
S.t. sa; +a; =1
0<<C;0<a; <

where Q;; = yiy;Kij, s = yiyj, 7 = yiyjaf'd + a9,
c; = yi(f(zy) —b—y;) — Ky — ajsK;j, C;, Cj pa-
rameters weighting Tj, T

e Above values come from working set version
of (2)
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Sequential Minimal Optimization
(cont'd)

Let E =scj—¢ + ’ystj — ’YQij and
X = Qi + Q55 — 25Q;;

If y; = y;, let L = max{0,y - C;} and H =
min{C;, v}

If y; # yj, let L =max{0,~v} and H = min{C;,C;—
7}

1.If x =0,seta; =L if¢>0and oy = H
otherwise

2. If x >0, set a; = min{max{L,§/x}, H}

3. Set a; = v — sqy

24




Sequential Minimal Optimization
Updating b

e \When choosing patterns to bring in, need to
know our prediction on them, i.e. we need a
current value of b

e When all as optimal, can apply KKT condi-
tions to sove for b; choose some «; € (0,C;)
and solve: y;({w,®(z)) +b) =1

— But the as aren’t yet optimall

e Thus we will estimate b by choosing the mid-
point of a range of possible values
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Sequential Minimal Optimization
Updating b (cont'd)

Partition set of training patterns X into

Io={i]a; € (0,C)}

Iy o={ila;=0,y; =+1}
Iy c={i|lai=0Cjy; = +1}
I_o={ila;=0,y; = -1}
I_oc={ilay=0Cy; = -1}

Now define
i = min i) — Yi
€hij iGIOUI_i_’OUI,’C{f(xZ) yz}
e = min {f(z) — i}

1€lpUl_ pUI4 o
(f is based on setting b with a SV)

Using KKT conditions (see Keerthi et al.), can
show that optimality occurs iff eqj > 0 > ¢o

Further, using as a bias term bp; = b — ep; for
the “hi"” sets and b = b— ¢, for the “l0" sets
will yield optimality

Thus can update b as (bni + bjg)/2
Complete SMO pseudocode on p. 313
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Topic summary due in 1 week!
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