
CSCE 990 Lecture 7:
SVMs for Classification∗

Stephen D. Scott

February 14, 2006

∗Most figures c©2002 MIT Press, Bernhard Schölkopf, and
Alex Smola.

1

Introduction

• Finally, we get to put everything together!

• Much of this lecture is material we’ve covered

previously, but now we’ll make it specific to

SVMs

• We’ll also formalize the notion of the margin,

introduce soft margin, and argue why we want

to minimize ‖w‖2

2

Outline

• Canonical hyperplanes

• The (geometrical) margin and the margin error

bound

• Optimal margin hyperplanes

• Adding kernels

• Soft margin hyperplanes

• Multi-class classification

• Application: handwritten digit recognition

• Sections 7.1–7.6, 7.8–7.9

3

Canonical Hyperplanes

• Any hyperplane in a dot product space H can

be written as

H = {x ∈ H | 〈w,x〉 + b = 0},w ∈ H, b ∈ R

• 〈w,x〉 is the length of x in the direction of w,

multiplied by ‖w‖, i.e. each x ∈ H has the same

length in the direction of w

4

Canonical Hyperplanes

(cont’d)

• Note that if both w and b are multiplied by the

same non-zero constant, H is unchanged

D7.1 The pair (w, b) ∈ H is called a canonical form of

the hyperplane H wrt a set of patterns x1, . . . ,xm ∈

H if it is scaled such that

min
i=1,...,m

|〈w,xi〉 + b| = 1

• Given a canonical hyperplane (w, b), the corre-

sponding decision function is

f
w,b(x) := sgn(〈w,x〉 + b)

5

The Margin

D7.2 For a hyperplane {x ∈ H | 〈w,x〉 + b = 0},

define

ρ
w,b(x, y) := y(〈w,x〉 + b)/‖w‖

as the geometrical margin (or simply margin)

of the point (x, y) ∈ H× {−1, +1}. Further,

ρ
w,b := min

i=1,...,m
ρ
w,b(xi, yi)

is the (geometrical) margin of (x1, y1), . . . , (xm, ym)

(typically the training set)

• In D7.2, we are really using the hyperplane

(ŵ, b̂) := (w/‖w‖, b/‖w‖), which has unit length

• Further, 〈ŵ,x〉 + b̂ is x’s distance to this hy-

perplane, and multiplying by y implies that the

margin is positive if (x, y) is correctly classified

• Since canonical hyperplanes have minimum dis-

tance 1 to data points, the margin of a canon-

ical hyperplane is ρ
w,b = 1/‖w‖

• I.e. decreasing ‖w‖ increases the margin!

6

Justifications for Large Margin

• Why do we want large margin hyperplanes (that

separate the training data)?

• Insensitivity to pattern noise

– E.g. if each (noisy) test point (x+∆x, y) is

near some (noisy) training point (x, y) with

‖∆x‖ < r, then if ρ > r we correctly classify

all test points

7

Justifications for Large Margin

(cont’d)

• Insensitivity to parameter noise

– If all patterns are at least ρ from H = (w, b)

and all patterns are bounded in length by

R, then small changes in the parameters of

H will not change classification

– I.e. can encode H with fewer bits than if we

precisely encoded it and still be correct on

training set

⇒ minimum description length/compression

of data

8

Justifications for Large Margin

(cont’d)

T7.3 For decision functions f(x) = sgn〈w,x〉, let

‖w‖ ≤ Λ, ‖x‖ ≤ R, ρ > 0, and ν be the margin error,

i.e. the fraction of training examples with mar-

gin < ρ/‖w‖. Then if all training and test pat-

terns are drawn iid, with probability at least

1 − δ the test error is upper bounded by

ν +

√
√
√
√

c

m

(

R2Λ2

ρ2
ln2 m + ln(1/δ)

)

where c is a constant and m is the training set

size

• Related to VC dimension of large-margin clas-

sifiers, but not exactly what we covered in

Chapter 5; e.g. Remp, which was a prediction

error rate, is replaced with ν, which is a margin

error rate

9

Justifications for Large Margin

Margin Error Bound

(cont’d)

• Increasing ρ decreases the square root term,

but can increase ν

– Thus we want to maximize ρ while simulta-

neously minimizing ν

– Can instead fix ρ = 1 (canonical hyper-

planes) and minimize ‖w‖ while minimizing

margin errors

– In our first quadratic program, we’ll set con-

straints to make ν = 0

10

Optimal Margin Hyperplanes

• Want hyperplane that correctly classifies all

training patters with maximum margin

• When using canonical hyperplanes, implies that
we want yi(〈xi,w〉 + b) ≥ 1 for all i = 1, . . . , m

• We know that we want to minimize the weight

vector’s length to maximize the margin, so this
yields the following constrained quadratic op-

timization problem:

minimize
w∈H,b∈R

τ(w) = ‖w‖2/2

s.t. yi(〈xi,w〉 + b) ≥ 1, i = 1, . . . , m
(1)

• Another optimization problem. Hey! I have a
great idea! Let’s derive the dual!

• Langrangian:

L(w, b,α) = ‖w‖2/2−
m∑

i=1

αi(yi(〈xi,w〉+ b)−1)

with αi ≥ 0

11

The Dual Optimization Problem

(cont’d)

• Recall that at the saddle point, the partial

derivatives of L wrt the primal variables must

each go to 0:

∂

∂b
L(w, b,α) = −

m∑

i=1

αiyi = 0

∂

∂w

L(w, b, α) = w −
m∑

i=1

αiyixi = 0

which imply
∑m

i=1 αiyi = 0 and w =
∑m

i=1 αiyixi

• Recall from Chapter 6 that for an optimal fea-

sible solution w̄, αici(w̄, b̄) = 0 for all con-

straints ci, so

αi(yi(〈xi, w̄〉 + b̄) − 1) = 0

for all i = 1, . . . , m

12

The Dual Optimization Problem

(cont’d)

• The xi for which αi > 0 are the support vectors,

and are the vectors that lie on the margin, i.e.

those for which the constraints are tight

– Other vectors (where αi = 0) are irrelevant

to determining the hyperplane w

– Will be useful later in classification

– See Prop. 7.8 for relationship between ex-

pected number of SVs and test error bound

13

The Dual Optimization Problem

(cont’d)

• Now substitute the saddle point conditions into

the Lagrangian

• The kth component of the weight vector is

wk =
∑m

i=1 αiyixik, so

w2
k =





m∑

i=1

αiyixik









m∑

i=1

αiyixik





• Thus

‖w‖2 =
∑

k





m∑

i=1

αiyixik









m∑

i=1

αiyixik





=
∑

k

∑

i,j

αiαjyiyjxikxjk

=
∑

i,j

αiαjyiyj

∑

k

xikxjk

=
∑

i,j

αiαjyiyj〈xi,xj〉

14

The Dual Optimization Problem

(cont’d)

• Further,

m∑

i=1

αi(yi(〈xi,w〉 + b) − 1)

=
m∑

i=1

αiyi




∑

k

xikwk



−
m∑

i=1

αi

=
m∑

i=1

αiyi




∑

k

xik

m∑

j=1

αjyjxjk



−
m∑

i=1

αi

=
∑

i,j

αiαjyiyj〈xi,xj〉 −
m∑

i=1

αi

• Combine them:

L(w, b, α) =
m∑

i=1

αi −
1

2

∑

i,j

αiαjyiyj〈xi,xj〉

15

The Dual Optimization Problem

(cont’d)

• Maximizing the Lagrangian wrt α yields the

dual optimization problem:

maximize
α∈Rm

m∑

i=1

αi −
1

2

∑

i,j

αiαjyiyj〈xi,xj〉

s.t. αi ≥ 0, i = 1, . . . , m
m∑

i=1

αiyi = 0

(2)

• After optimization, we can label new vectors

with the decision function:

f(x) = sgn





m∑

i=1

αiyi〈x,xi〉 + b





(later we’ll discuss finding b)

16

Adding Kernels

• As discussed before, using kernels is an effec-

tive way to introduce nonlinearities to the data

– Nonlinear remapping might make data (al-

most) linearly separable in the new space

– Cover’s theorem implies that simply increas-

ing the dimension improves the probability
of linear separability

• For given remapping Φ, simply replace x with

Φ(x)

• Thus in dual optimization problem and in deci-

sion function, replace 〈x,xi〉 with k(x, xi), where
k is the PD kernel corresponding to Φ

• If k is PD, then we still have a convex opti-

mization problem

• Once α is found, can e.g. set b to be the av-

erage over all αj > 0 of yj −
∑m

i=1 yiαik(xj, xi)
(derived from KKT conditions)

17

Soft Margin Hyperplanes

• Under a given mapping Φ, the data might not

be linearly separable

• There always exists a Φ that will yield separa-

bility, but is it a good idea to find one just for

the sake of separating?

• If we choose to keep the mapping that cor-

responds to our favorite kernel, what are our

options?

– Instead of finding a hyperplane that is per-

fect on the training set, find one that min-

imizes training errors

∗ Computationally intractable to even ap-

proximate

– Instead, we’ll soften the margin, allowing

for some vectors to get too close to the

hyperplane (i.e. margin errors)

18

Soft Margin Hyperplanes

(cont’d)

• To relax each constraint from (1), add slack

variable ξi ≥ 0:

yi(〈xi,w〉 + b) ≥ 1 − ξi, i = 1, . . . , m

• Also need to penalize large ξi in the objective

function to prevent trivial solutions

– C-SV classifier

– ν-SV classifier

19

Soft Margin Hyperplanes

C-SV Classifier

• Weight with C > 0 (e.g. C = 10m) the impor-

tance of minimizing sum of ξ variables:

minimize
w∈H,b∈R,ξ∈Rm

τ(w, ξ) =
1

2
‖w‖2 +

C

m

m∑

i=1

ξi

s.t. yi(〈xi,w〉 + b) ≥ 1 − ξi, i = 1, . . . , m
ξi ≥ 0, i = 1, . . . , m

• First term of τ decreases ‖w‖, second term

focuses on margin error rate ν, thus together

they focus on T7.3

• The dual is similar to that for hard margin:

maximize
α∈Rm

W (α) =
m∑

i=1

αi −
1

2

∑

i,j

αiαjyiyjk(xi, xj)

s.t. 0 ≤ αi ≤ C/m, i = 1, . . . , m
m∑

i=1

αiyi = 0

• Once α is found, can e.g. set b to be the aver-

age over all αj ∈ (0, C) of yj−
∑m

i=1 yiαik(xj, xi)

20

Soft Margin Hyperplanes

ν-SV Classifier

• A more intuitable way to weight the emphasis

on reducing margin errors

• Primal:

minimize
w∈H,ρ,b∈R,ξ∈Rm

τ(w, ξ, ρ) =
1

2
‖w‖2 − νρ +

1

m

m∑

i=1

ξi

s.t. yi(〈xi,w〉 + b) ≥ ρ − ξi, i = 1, . . . , m
ρ ≥ 0, ξi ≥ 0, i = 1, . . . , m

• ρ is similar to that in T7.3: for ξ to be 0,

all vectors must be at least ρ/‖w‖ from the

hyperplane

21

Soft Margin Hyperplanes

ν-SV Classifier

(cont’d)

P7.5 If ν-SVC yields a solution with ρ > 0, then

1. ν is an upper bound on the fraction of mar-

gin errors

2. ν is a lower bound on the fraction of support

vectors

• See Table 7.1, p. 207

22

Soft Margin Hyperplanes

ν-SV Classifier

(cont’d)

• Derivation of dual form (details omitted) yields:

maximize
α∈Rm

W (α) = −
1

2

m∑

i,j=1

αiαjyiyjk(xi, xj)

s.t. 0 ≤ αi ≤ 1/m,
m∑

i=1

αiyi = 0

m∑

i=1

αi ≥ ν

• Let S+ and S− be sets of SVs xi with labels

yi = +1 and −1, 0 < αi < 1, and |S+| = |S−| =

s > 0, then set

b = −
1

2s

∑

x∈S+∪S−

m∑

i=1

yiαik(x, xi)

23

Multi-Class Classification

• What if we want to go beyond binary labels

±1 to M classes?

• Most methods decompose a multi-class prob-

lem into a set of binary ones

– One vs. rest

– Error-correcting output codes

– Pairwise classification

– Kessler’s construction/multi-class objective

function (doesn’t need to decompose into

binary cases)

24

Multi-Class Classification

One vs. the Rest

• To handle M classes, train a set of M binary

classifiers f1, . . . , fM , where f i is trained to dis-

tinguish patterns from class i from those not

in class i

• If (αi, bi) is the classifier learned for class i,
then a new pattern x is classified as

argmax
j=1,...,M







m∑

i=1

yiα
j
ik(x, xi) + bj






,

i.e. the class with the most confident predic-

tion among the binary classifiers

• Applicable even if the number of classifiers pre-

dicting +1 is not exactly 1

• Note that the set of SVs can be different for

each class

• Can also let the classifier “punt” if the differ-

ence between the top two predictions is small

25

Multi-Class Classification

Error-Correcting Output Codes (ECOC)

• One vs. rest requires M classifiers to represent

M classes

• Is this the minimum amount required?

• E.g. M = 4, so use two linear classifiers:

Class Binary Encoding
Classifier 1 Classifier 2

Class 1 −1 −1
Class 2 −1 +1
Class 3 +1 −1
Class 4 +1 +1

and train simultaneously

• Problem: Sensitive to individual classifier er-

rors, so use a set of encodings per class to

improve robustness

26

Multi-Class Classification

Error-Correcting Output Codes (ECOC)

(cont’d)

• Similar to principle of error-correcting output

codes used in communication networks

– After all classifiers make their predictions,

find the code that is nearest to the bit string

returned and use that for the predicted class

• Can provably tolerate some mispredictions by

individual classifiers, but doesn’t use the mar-

gin

27

Multi-Class Classification

Pairwise Classification

• Instead of training one classifier per class as in

one vs. rest, train a classifier for each pair of

classes

• Now have
(
M
2

)

classifiers to train rather than

⌈log2 M⌉ up to M , but each training set is

smaller

– Number of SVs smaller for each classifier

due to smaller training set and easier learn-

ing problem

• To classify new pattern, evaluate it on all clas-

sifiers and choose the class that gets the most

votes

– Can avoid running on all classifiers if votes

so far imply that some classes are guaran-

teed to not win

28

Multiclass learning

Kessler’s Construction

= class 1

= class 2

= class 3

class 2’s line

class 3’s line

[2,2]

class 1’s line

• For∗ x = [2,2,1]T of class 1, want

ℓ+1
∑

i=1

w1ixi >
ℓ+1
∑

i=1

w2ixi AND
ℓ+1
∑

i=1

w1ixi >
ℓ+1
∑

i=1

w3ixi

∗The extra 1 is added so threshold can be placed in w.

29

Multiclass learning

Kessler’s Construction (cont’d)

• So map x to

x1 = [

orig.
︷ ︸︸ ︷

2,2,1,

neg
︷ ︸︸ ︷

−2,−2,−1,

pad
︷ ︸︸ ︷

0,0,0]

x2 = [2,2,1,0,0,0,−2,−2,−1]

(all labels = +1) and let

w = [
w1

︷ ︸︸ ︷
w11, w12, w10,

w2
︷ ︸︸ ︷
w21, w22, w20,

w3
︷ ︸︸ ︷
w31, w32, w30]

• Now if 〈w∗,x1〉 > 0 and 〈w∗,x2〉 > 0, then

ℓ+1
∑

i=1

w∗
1ixi >

ℓ+1
∑

i=1

w∗
2ixi AND

ℓ+1
∑

i=1

w∗
1ixi >

ℓ+1
∑

i=1

w∗
3ixi

• In general, map (ℓ +1)× 1 feature vector x to

x1, . . .xM−1, each of size (ℓ + 1)M × 1

• x ∈ ωi ⇒ x in ith block and −x in jth block,

(rest are 0s). Repeat for all j 6= i

• Now train to find weights for new vector space

via e.g. Perceptron

30

Multi-Class Classification

Multi-Class Objective Functions

• From the idea of Kessler’s construction, can

develop a quadratic program for an SVM (C-

SV in this case):

minimize
wr∈H,br∈R,ξr

∈Rm

1

2

M∑

r=1

‖wr‖
2 +

C

m

m∑

i=1

∑

r 6=yi

ξr
i

s.t. 〈xi,wyi〉 + byi ≥ 〈xi,wr〉 + br + 2 − ξr
i ,

r 6= yi, i = 1, . . . , m
ξr
i ≥ 0, ∀i, r

• Here yi ∈ {1, . . . , M} is an integer specifying

the class label

31

Application: Handwritten Digit Recognition

• Experiments using C-SVC on US Postal Ser-

vice (USPS) database of handwritten digits

– Human error rate: 2.5%

• Kernels scaled to help avoid over/underflow

poly: k(x, x′) = (
〈

x, x′
〉

/256)d

d 1 2 3 4 5 6 7

error (%) 8.9 4.7 4.0 4.2 4.5 4.5 4.7

avg # SVs 282 237 274 321 374 422 491

Gaussian: k(x, x′) = exp
(

−‖x − x′‖2/(256c)
)

c 4.0 2.0 1.2 0.8 0.5 0.2 0.1

error (%) 5.3 5.0 4.9 4.3 4.4 4.4 4.5

avg # SVs 266 240 233 235 251 366 722

sigmoid: k(x, x′) = tanh
(

2
〈

x, x′
〉

/256 + Θ
)

−Θ 0.8 0.9 1.0 1.1 1.2 1.3 1.4

error (%) 6.3 4.8 4.1 4.3 4.3 4.4 4.8

avg # SVs 206 242 254 267 278 289 296

• All have comparable min error rates, but sen-

sitive to parameter setting

32

Parameter Setting

• Gaussian kernel: low, med, high values of c

• How to choose parameter settings?

– Cross validation

– Settings that work well for similar problems

(rescaled)

– For ν-SVCs, set ν to e.g. test error from

other classifiers

∗ ν ≥ margin error ≥ train error, which is

also ≤ test error

– For C-SVCs, C ∝ 1/R2, where R measures

range of data in H

∗ E.g. R = radius of smallest sphere, max

or mean length k(xi, xi), or std dev of dis-

tance of points to their mean

33

Overlap of SV Sets

• In the handwritten digit classification experi-

ments, the three kernels typically had 80–93%

of their SV sets in common (Table 7.6, p. 220)

• In fact, each kernel got similar error rates when

training on SVs of a different kernel rather

than the entire training set (Table 7.7)

• Basically, these kernels (dot products) mostly

found the same regularities in the data

• Results might vary depending on learning prob-

lem/data set

34

Topic summary due in 1 week!

35

