CSCE 990 Lecture 7:
SVMs for Classification*

Stephen D. Scott

February 14, 2006

*Most figures (©2002 MIT Press, Bernhard Schélkopf, and
Alex Smola.

Introduction

e Finally, we get to put everything together!

e Much of this lecture is material we've covered
previously, but now we'll make it specific to
SVMs

e We'll also formalize the notion of the margin,
introduce soft margin, and argue why we want
to minimize |w/||2

Outline

e Canonical hyperplanes

e The (geometrical) margin and the margin error
bound

e Optimal margin hyperplanes

e Adding kernels

e Soft margin hyperplanes

e Multi-class classification

e Application: handwritten digit recognition

e Sections 7.1-7.6, 7.8—-7.9

Canonical Hyperplanes

e Any hyperplane in a dot product space H can
be written as

H={xeH|(w,x)+b=0},weH,beR

e (w,x) is the length of x in the direction of w,
multiplied by ||w]|, i.e. each x € H has the same
length in the direction of w

<w,x>+b <0




Canonical Hyperplanes
(cont'd)
e Note that if both w and b are multiplied by the
same non-zero constant, H is unchanged

D7.1 The pair (w,b) € H is called a canonical form of
the hyperplane H wrt a set of patterns x1,...,xm €
‘H if it is scaled such that

r{]in [{(w,x;) +b =1

i=1,...m
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e Given a canonical hyperplane (w,b), the corre-
sponding decision function is
fwp(x) 1= sgn((w,x) +b)

The Margin
D7.2 For a hyperplane {x € H | (w,x) +b = 0},
define
Pwb(%,y) = y((w,x) +b) /|| W]

as the geometrical margin (or simply margin)
of the point (x,y) € H x {—1,41}. Further,

Pw.b = ._min pw,b(xiyyi)
i=1,...m

is the (geometrical) margin of (x1,%1),---, (Xm, ym)
(typically the training set)

e In D7.2, we are really using the hyperplane
(w,b) := (w/|lw|,b/|lw|]), which has unit length

e Further, (W,x) 4+ b is x's distance to this hy-
perplane, and multiplying by y implies that the
margin is positive if (x,y) is correctly classified

e Since canonical hyperplanes have minimum dis-
tance 1 to data points, the margin of a canon-
ical hyperplane is py;, = 1/[|w||

I.e. decreasing ||w]| increases the margin!

Justifications for Large Margin

e Why do we want large margin hyperplanes (that
separate the training data)?

e Insensitivity to pattern noise

— E.g. if each (noisy) test point (x+ Ax,y) is
near some (noisy) training point (x,y) with
||Ax|| < r, then if p > r we correctly classify
all test points

Justifications for Large Margin
(cont'd)

e Insensitivity to parameter noise

— If all patterns are at least p from H = (w,b)
and all patterns are bounded in length by
R, then small changes in the parameters of
H will not change classification

— I.e. can encode H with fewer bits than if we
precisely encoded it and still be correct on
training set

= minimum description length/compression
of data
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Justifications for Large Margin
(cont'd)

T7.3 For decision functions f(x) = sgn(w,x), let
[lw]] <A, ||x|| <R, p>0, and v be the margin error,
i.e. the fraction of training examples with mar-
gin < p/||lwl||. Then if all training and test pat-
terns are drawn iid, with probability at least
1 — 6 the test error is upper bounded by

272
v+ $i (Rp;\ In2m + In(1/6)>

m

where ¢ is a constant and m is the training set
size

e Related to VC dimension of large-margin clas-
sifiers, but not exactly what we covered in
Chapter 5; e.g. Remp, Which was a prediction
error rate, is replaced with v, which is a margin
error rate

Justifications for Large Margin
Margin Error Bound
(cont'd)

e Increasing p decreases the square root term,
but can increase v

— Thus we want to maximize p while simulta-
neously minimizing v

— Can instead fix p = 1 (canonical hyper-
planes) and minimize ||w|| while minimizing
margin errors

— In our first quadratic program, we'll set con-
straints to make v =20
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Optimal Margin Hyperplanes

e Want hyperplane that correctly classifies all
training patters with maximum margin

e When using canonical hyperplanes, implies that
we want y;({(x;,w)+b)>1foralli=1,...,m

e We know that we want to minimize the weight
vector’s length to maximize the margin, so this
yields the following constrained quadratic op-
timization problem:

minimize T(w) = |lw[|</2
s.t. yi((x;, W) +b)>1,i=1,...,m
(1)

e Another optimization problem. Hey! I have a
great idea! Let's derive the dual!

e Langrangian:

m

L(w,b,e) = [[w[?/2 = Y a;(yi((x;, w) +b) — 1)
=1

with a; > 0
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The Dual Optimization Problem
(cont'd)

e Recall that at the saddle point, the partial
derivatives of L wrt the primal variables must
each go to 0O:

a m
b i=1

8 m
%L(W, bya) =w — 1;1 a;yx; =0

which imply Z;n:]_ a;y; = 0and w = Zzn:l ;Y X,

e Recall from Chapter 6 that for an optimal fea-
sible solution w, «;c;(W,b) = 0 for all con-
straints ¢;, so

a;(yi((x;, W) +b) —1) =0

foralli=1,...,m
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The Dual Optimization Problem
(cont'd)

e Thex; for which «; > 0 are the support vectors,

and are the vectors that lie on the margin, i.e.
those for which the constraints are tight

— Other vectors (where a; = 0) are irrelevant
to determining the hyperplane w

— Will be useful later in classification

— See Prop. 7.8 for relationship between ex-
pected number of SVs and test error bound
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The Dual Optimization Problem
(cont'd)

e Now substitute the saddle point conditions into
the Lagrangian

e The kth component of the weight vector is
wy = 3L YTk, SO

m m

e Thus
> m m
Iwll* = D 1Y awimip | | Y awizik
E \i=1 i=1
= Zzaiajyiyjmikxjk
k 4,
Z QG 5YY g Z LikT ik

7]
> oy, <Xi7 Xj)
1,7

14

The Dual Optimization Problem
(cont'd)

e Further,

> ai(yi((x4, w) +b) — 1)
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e Combine them:

m
1
L(w,b,o) = ) a; — Ezaz‘%‘yiyﬂxi,xﬁ
i=1 i
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The Dual Optimization Problem
(cont'd)

e Maximizing the Lagrangian wrt a yields the
dual optimization problem:

m?lxellr@lze 2:1% z]:aza]yzy_](Xw ]>

s.t. a;>0,i=1,...,m (2)

m

> ay; =0
i=1

e After optimization, we can label new vectors
with the decision function:

=1

f(x) =sgn (i ayi(X, X;) + b)

(later we'll discuss finding b)
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Adding Kernels

e As discussed before, using kernels is an effec-
tive way to introduce nonlinearities to the data

— Nonlinear remapping might make data (al-
most) linearly separable in the new space

— Cover’'s theorem implies that simply increas-
ing the dimension improves the probability
of linear separability

e For given remapping P, simply replace x with
®(z)

e Thus in dual optimization problem and in deci-
sion function, replace (x, x;) with k(z, z;), where
k is the PD kernel corresponding to &

o If k is PD, then we still have a convex opti-
mization problem

e Once a is found, can e.g. set b to be the av-
erage over all a; > 0 of y; — X 4 y;a;k(xj, ;)
(derived from KKT conditions)
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Soft Margin Hyperplanes

e Under a given mapping &, the data might not
be linearly separable

e There always exists a ® that will yield separa-
bility, but is it a good idea to find one just for
the sake of separating?

e If we choose to keep the mapping that cor-
responds to our favorite kernel, what are our
options?

— Instead of finding a hyperplane that is per-
fect on the training set, find one that min-
imizes training errors

x Computationally intractable to even ap-
proximate

— Instead, we'll soften the margin, allowing
for some vectors to get too close to the
hyperplane (i.e. margin errors)
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Soft Margin Hyperplanes
(cont’d)

e To relax each constraint from (1), add slack
variable &; > O:

yl(<xl7w>+b) Z 1_5’” 1= 1a)m

e Also need to penalize large &; in the objective
function to prevent trivial solutions

— (C-SV classifier

— v-SV classifier
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Soft Margin Hyperplanes
C-SV Classifier

Weight with C > 0 (e.g. C = 10m) the impor-
tance of minimizing sum of £ variables:

o 1, 5 O™

minimize  T(w, &) =Z|w|*+=> &

weH,beR ER™ 2 mi=

s.t. yi((x;,w) +b0) >1-§,i=1,....,m
£>0,i=1,....m

First term of 7 decreases ||w||, second term
focuses on margin error rate v, thus together
they focus on T7.3

The dual is similar to that for hard margin:

m
L 1
mgxelRméze W)= > o;— > E ;o yyk (g, 5)

=1 ]
s.t. 0<a;<C/m,i=1,....,m
m
> @iy =0
=1

e Once « is found, can e.g. set b to be the aver-
age over all a; € (0,C) of y; — X1 1 y;a;k(xj, ;)
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Soft Margin Hyperplanes
v-SV Classifier

e A more intuitable way to weight the emphasis
on reducing margin errors

e Primal:
N 1, 2 1 &
minimize T(w,&,p) =Z|wl[l*—vp+— > &
wEH,p,beR,ECRM 2 i=1
s.t. yi((xi Wy +b) > p—€&i=1,...,m

PZQ‘S@ZO, i=1,...,m

e p is similar to that in T7.3: for £ to be O,
all vectors must be at least p/||w| from the
hyperplane
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Soft Margin Hyperplanes
v-SV Classifier
(cont'd)

P7.5 If »-SVC yields a solution with p > 0, then

1. v is an upper bound on the fraction of mar-
gin errors

2. vis alower bound on the fraction of support
vectors

e See Table 7.1, p. 207
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Soft Margin Hyperplanes
v-SV Classifier
(cont'd)

e Derivation of dual form (details omitted) yields:

1 m
maximize W(a) = —= a;oyiyik (g, x5
SR () 2ij221 105YiY; (x4, j)

s.t. 0<a;<1/m,

m

Z a;y; =0

i=1

m

Z o > v

=1

e Let Sy and S_ be sets of SVs z; with labels
yy=-+1land -1, 0 < a; <1, and |S+| =1|5_| =
s > 0, then set

1 m
b= 5 S yiok(, x;)

xES+U57 i=1
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Multi-Class Classification

e What if we want to go beyond binary labels
+1 to M classes?

e Most methods decompose a multi-class prob-
lem into a set of binary ones
— One vs. rest
— Error-correcting output codes
— Pairwise classification

— Kessler's construction/multi-class objective
function (doesn't need to decompose into
binary cases)
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Multi-Class Classification
One vs. the Rest

e To handle M classes, train a set of M binary
classifiers f1,..., fM where fiis trained to dis-
tinguish patterns from class i from those not
in class i

e If (a,b") is the classifier learned for class 4,
then a new pattern «x is classified as

m ) )
argmax < > yiolk(z, x;) + 07 5
j:].,...,M i=1

i.e. the class with the most confident predic-
tion among the binary classifiers

e Applicable even if the number of classifiers pre-
dicting 41 is not exactly 1

e Note that the set of SVs can be different for
each class

e Can also let the classifier “punt” if the differ-
ence between the top two predictions is small
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Multi-Class Classification
Error-Correcting Output Codes (ECOCQC)

e One vs. rest requires M classifiers to represent
M classes

e Is this the minimum amount required?

e E.g. M = 4, so use two linear classifiers:

Class Binary Encoding
Classifier 1 Classifier 2
Class 1 -1 -1
Class 2 -1 +1
Class 3 +1 -1
Class 4 +1 +1

and train simultaneously

e Problem: Sensitive to individual classifier er-
rors, so use a set of encodings per class to
improve robustness
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Multi-Class Classification
Error-Correcting Output Codes (ECOCQC)
(cont'd)

e Similar to principle of error-correcting output
codes used in communication networks

— After all classifiers make their predictions,
find the code that is nearest to the bit string
returned and use that for the predicted class

e Can provably tolerate some mispredictions by
individual classifiers, but doesn’'t use the mar-
gin
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Multi-Class Classification
Pairwise Classification

e Instead of training one classifier per class as in
one vs. rest, train a classifier for each pair of
classes

e Now have <A24> classifiers to train rather than

[logp M| up to M, but each training set is
smaller

— Number of SVs smaller for each classifier
due to smaller training set and easier learn-
ing problem

e To classify new pattern, evaluate it on all clas-
sifiers and choose the class that gets the most
votes

— Can avoid running on all classifiers if votes
so far imply that some classes are guaran-
teed to not win

28




Multiclass learning
Kessler's Construction

dass'sline™ ! class3sline
N 12
X ;
v
X X NG .
,,,,,,,,,,,,,,,,,,,,,,,,,,, class2'sline
O =cdass1
-+ =class2 /
X =class3 n

e For* x = [2,2,1]T of class 1, want

+1 +1 41 41
S owim > Y woir; AND Y wym > Y waw
i=1 i=1 i=1 i=1

*The extra 1 is added so threshold can be placed in w.
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Multiclass learning
Kessler's Construction (cont'd)

e SO map x to

orig. neg pad
x1=[2,2,1,-2,-2,-1,0,0,0]
x5 = [2,2,1,0,0,0, -2, -2, —1]
(all labels = +1) and let
w1 w2 w3
w = [W171, w12, W10, Wa1, W22, W20, W31, W32, W3Q)

e Now if (w*,x3) > 0 and (w*,x2) > 0O, then

41 /+1 41 /41
S wiw > Y whiz; AND S wia > Y whiay
=1 =1 =1 i=1

e In general, map (¢4 1) x 1 feature vector x to
X1,...Xp/—1, €ach of size ({+1)M x 1

® X € w; = x in ¢th block and —x in jth block,
(rest are 0s). Repeat for all j #1

e Now train to find weights for new vector space
via e.g. Perceptron
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Multi-Class Classification
Multi-Class Objective Functions

e From the idea of Kessler's construction, can
develop a quadratic program for an SVM (C-
SV in this case):

minimize
wr€H,breR,E ER™
s.t.

M cm

SolwellP+=3 Y &

r=1 M i=1r#y;

Xz‘ywyi> +byi > <Xi7Wr> +b7‘+2_£;7
r#Ey,i=1,...,m

& >0, Vi,r

N =

—~

e Here y; € {1,...,M} is an integer specifying
the class label
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Application: Handwritten Digit Recognition

e Experiments using C-SVC on US Postal Ser-
vice (USPS) database of handwritten digits

— Human error rate: 2.5%

e Kernels scaled to help avoid over/underflow

poly: k(z,z') = ((x,z') /256)¢

d 1 2 3 4 5 6 7

error (%) 89| 47| 40| 42| 45| 45| 4.7

avg # SVs | 282 | 237 | 274 | 321 | 374 | 422 | 491

Gaussian: k(z,z') = exp <—||x — x’||2/(256c)>

c 40| 20| 12 08| 05| 0.2] 0.1

error (%) 53| 50| 49| 43| 44| 44| 45

avg # SVs | 266 | 240 | 233 | 235 | 251 | 366 | 722

sigmoid: k(z,z’) = tanh (2 (z,2') /256 + ©)

) 080910111213 14

error (%) | 6.3 48| 41| 43| 43| 4.4 48

avg # SVs | 206 | 242 | 254 | 267 | 278 | 289 | 296

e All have comparable min error rates, but sen-
sitive to parameter setting
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Parameter Setting

e Gaussian kernel: low, med, high values of ¢

e How to choose parameter settings?
— Cross validation

— Settings that work well for similar problems
(rescaled)

— For v-SVCs, set v to e.g. test error from
other classifiers

% v > margin error > train error, which is
also < test error

— For C-SVCs, C « 1/R?, where R measures
range of data in 'H

*+ E.g. R = radius of smallest sphere, max
or mean length k(z;,z;), or std dev of dis-
tance of points to their mean
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Overlap of SV Sets

In the handwritten digit classification experi-
ments, the three kernels typically had 80—93%
of their SV sets in common (Table 7.6, p. 220)

In fact, each kernel got similar error rates when
training on SVs of a different kernel rather
than the entire training set (Table 7.7)

Basically, these kernels (dot products) mostly
found the same regularities in the data

Results might vary depending on learning prob-
lem/data set
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Topic summary due in 1 week!
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