| CSCE 990 Lecture 7:                                                                                                                                                                                                                                             | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SVMs for Classification*                                                                                                                                                                                                                                        | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                 | • Finally, we get to put everything together!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Stephen D. Scott                                                                                                                                                                                                                                                | <ul> <li>Much of this lecture is material we've covered<br/>previously, but now we'll make it specific to<br/>SVMs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                           |
| February 14, 2006                                                                                                                                                                                                                                               | • We'll also formalize the notion of the margin, introduce soft margin, and argue why we want to minimize $\ \mathbf{w}\ ^2$                                                                                                                                                                                                                                                                                                                                                                                                            |
| *Most figures ©2002 MIT Press, Bernhard Schölkopf, and<br>Alex Smola.<br>1                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Outline                                                                                                                                                                                                                                                         | Canonical Hyperplanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Outline<br>• Canonical hyperplanes                                                                                                                                                                                                                              | <ul> <li>Canonical Hyperplanes</li> <li>Any hyperplane in a dot product space H can be written as</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Outline <ul> <li>Canonical hyperplanes</li> <li>The (geometrical) margin and the margin error bound</li> </ul>                                                                                                                                                  | <b>Canonical Hyperplanes</b><br>• Any hyperplane in a dot product space $\mathcal{H}$ can<br>be written as<br>$H = \{\mathbf{x} \in \mathcal{H} \mid \langle \mathbf{w}, \mathbf{x} \rangle + b = 0\}, \mathbf{w} \in \mathcal{H}, b \in \mathbb{R}$                                                                                                                                                                                                                                                                                    |
| Outline<br>• Canonical hyperplanes<br>• The (geometrical) margin and the margin error<br>bound<br>• Optimal margin hyperplanes                                                                                                                                  | <b>Canonical Hyperplanes</b><br>• Any hyperplane in a dot product space $\mathcal{H}$ can<br>be written as<br>$H = \{\mathbf{x} \in \mathcal{H} \mid \langle \mathbf{w}, \mathbf{x} \rangle + b = 0\}, \mathbf{w} \in \mathcal{H}, b \in \mathbb{R}$<br>• $\langle \mathbf{w}, \mathbf{x} \rangle$ is the length of $\mathbf{x}$ in the direction of $\mathbf{w}$ ,<br>multiplied by $\ \mathbf{w}\ $ , i.e. each $\mathbf{x} \in H$ has the same<br>length in the direction of $\mathbf{w}$                                            |
| Outline<br>• Canonical hyperplanes<br>• The (geometrical) margin and the margin error<br>bound<br>• Optimal margin hyperplanes<br>• Adding kernels                                                                                                              | <b>Canonical Hyperplanes</b><br>• Any hyperplane in a dot product space $\mathcal{H}$ can<br>be written as<br>$H = \{\mathbf{x} \in \mathcal{H} \mid \langle \mathbf{w}, \mathbf{x} \rangle + b = 0\}, \mathbf{w} \in \mathcal{H}, b \in \mathbb{R}$<br>• $\langle \mathbf{w}, \mathbf{x} \rangle$ is the length of $\mathbf{x}$ in the direction of $\mathbf{w}$ ,<br>multiplied by $  \mathbf{w}  $ , i.e. each $\mathbf{x} \in H$ has the same<br>length in the direction of $\mathbf{w}$                                            |
| Outline<br>• Canonical hyperplanes<br>• The (geometrical) margin and the margin error<br>bound<br>• Optimal margin hyperplanes<br>• Adding kernels<br>• Soft margin hyperplanes                                                                                 | <b>Canonical Hyperplanes</b><br>• Any hyperplane in a dot product space $\mathcal{H}$ can be written as<br>$H = \{\mathbf{x} \in \mathcal{H} \mid \langle \mathbf{w}, \mathbf{x} \rangle + b = 0\}, \mathbf{w} \in \mathcal{H}, b \in \mathbb{R}$<br>• $\langle \mathbf{w}, \mathbf{x} \rangle$ is the length of $\mathbf{x}$ in the direction of $\mathbf{w}$ , multiplied by $\ \mathbf{w}\ $ , i.e. each $\mathbf{x} \in H$ has the same length in the direction of $\mathbf{w}$                                                     |
| Outline<br>• Canonical hyperplanes<br>• The (geometrical) margin and the margin error<br>bound<br>• Optimal margin hyperplanes<br>• Adding kernels<br>• Soft margin hyperplanes                                                                                 | <b>Canonical Hyperplanes</b><br>• Any hyperplane in a dot product space $\mathcal{H}$ can be written as<br>$H = \{\mathbf{x} \in \mathcal{H} \mid \langle \mathbf{w}, \mathbf{x} \rangle + b = 0\}, \mathbf{w} \in \mathcal{H}, b \in \mathbb{R}$<br>• $\langle \mathbf{w}, \mathbf{x} \rangle$ is the length of $\mathbf{x}$ in the direction of $\mathbf{w}$ , multiplied by $  \mathbf{w}  $ , i.e. each $\mathbf{x} \in H$ has the same length in the direction of $\mathbf{w}$<br>• $\mathbf{w}, \mathbf{x} + b < 0$               |
| Outine<br>• Canonical hyperplanes<br>• The (geometrical) margin and the margin error<br>bound<br>• Optimal margin hyperplanes<br>• Adding kernels<br>• Soft margin hyperplanes<br>• Multi-class classification<br>• Application: handwritten digit recognition  | <b>Canonical Hyperplanes</b><br>• Any hyperplane in a dot product space $\mathcal{H}$ can be written as<br>$H = \{x \in \mathcal{H} \mid \langle w, x \rangle + b = 0\}, w \in \mathcal{H}, b \in \mathbb{R}$<br>• $\langle w, x \rangle$ is the length of x in the direction of w, multiplied by $  w  $ , i.e. each $x \in H$ has the same length in the direction of w<br>• $(w, x) + b < 0$                                                                                                                                         |
| Outline<br>• Canonical hyperplanes<br>• The (geometrical) margin and the margin error<br>bound<br>• Optimal margin hyperplanes<br>• Adding kernels<br>• Soft margin hyperplanes<br>• Multi-class classification<br>• Application: handwritten digit recognition | <b>Canonical Hyperplanes</b><br>• Any hyperplane in a dot product space $\mathcal{H}$ can be written as<br>$\mathcal{H} = \{ \mathbf{x} \in \mathcal{H} \mid \langle \mathbf{w}, \mathbf{x} \rangle + b = 0 \}, \mathbf{w} \in \mathcal{H}, b \in \mathbb{R}$<br>• $\langle \mathbf{w}, \mathbf{x} \rangle$ is the length of $\mathbf{x}$ in the direction of $\mathbf{w}$ , multiplied by $\ \mathbf{w}\ $ , i.e. each $\mathbf{x} \in H$ has the same length in the direction of $\mathbf{w}$<br>• $(\mathbf{w}, \mathbf{x} + b < 0)$ |

### **Canonical Hyperplanes**

(cont'd)

- Note that if both w and b are multiplied by the same non-zero constant, H is unchanged
- **D7.1** The pair  $(\mathbf{w}, b) \in \mathcal{H}$  is called a <u>canonical</u> form of the hyperplane H wrt a set of patterns  $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathcal{H}$  if it is scaled such that

$$\min_{i=1,\dots,m} |\langle \mathbf{w}, \mathbf{x}_i \rangle + b| = 1$$



• Given a canonical hyperplane  $(\mathbf{w}, b)$ , the corresponding <u>decision function</u> is  $f_{\mathbf{w},b}(\mathbf{x}) := \operatorname{sgn}(\langle \mathbf{w}, \mathbf{x} \rangle + b)$ 

5

7

## Justifications for Large Margin

- Why do we want large margin hyperplanes (that separate the training data)?
- Insensitivity to pattern noise
  - E.g. if each (noisy) test point  $(\mathbf{x} + \Delta \mathbf{x}, y)$  is near some (noisy) training point  $(\mathbf{x}, y)$  with  $\|\Delta \mathbf{x}\| < r$ , then if  $\rho > r$  we correctly classify all test points



The Margin

**D7.2** For a hyperplane  $\{\mathbf{x} \in \mathcal{H} \mid \langle \mathbf{w}, \mathbf{x} \rangle + b = 0\}$ , define

$$\rho_{\mathbf{w},b}(\mathbf{x},y) := y(\langle \mathbf{w}, \mathbf{x} \rangle + b) / \|\mathbf{w}\|$$

as the geometrical margin (or simply margin) of the point  $(x, y) \in \mathcal{H} \times \{-1, +1\}$ . Further,

$$\rho_{\mathbf{w},b} := \min_{i=1,\dots,m} \rho_{\mathbf{w},b}(\mathbf{x}_i, y_i)$$

is the (geometrical) margin of  $(x_1, y_1), \ldots, (x_m, y_m)$ (typically the training set)

- In D7.2, we are really using the hyperplane  $(\hat{\mathbf{w}}, \hat{b}) := (\mathbf{w}/||\mathbf{w}||, b/||\mathbf{w}||)$ , which has unit length
- Further,  $\langle \hat{\mathbf{w}}, \mathbf{x} \rangle + \hat{b}$  is x's distance to this hyperplane, and multiplying by y implies that the margin is positive if  $(\mathbf{x}, y)$  is correctly classified
- Since canonical hyperplanes have minimum distance 1 to data points, the margin of a canonical hyperplane is  $\rho_{{\bf w},b}=1/\|{\bf w}\|$
- $\bullet$  I.e. decreasing  $\|\mathbf{w}\|$  increases the margin!

6

# Justifications for Large Margin (cont'd)

- Insensitivity to parameter noise
  - If all patterns are at least  $\rho$  from  $H = (\mathbf{w}, b)$ and all patterns are bounded in length by R, then small changes in the parameters of H will not change classification
  - I.e. can encode H with fewer bits than if we precisely encoded it and still be correct on training set
  - $\Rightarrow$  minimum description length/compression of data



# Justifications for Large Margin (cont'd)

**T7.3** For decision functions  $f(\mathbf{x}) = \operatorname{sgn}\langle \mathbf{w}, \mathbf{x} \rangle$ , let  $\|\mathbf{w}\| \leq \Lambda$ ,  $\|\mathbf{x}\| \leq R$ ,  $\rho > 0$ , and  $\nu$  be the margin error, i.e. the fraction of training examples with margin  $< \rho/\|\mathbf{w}\|$ . Then if all training and test patterns are drawn iid, with probability at least  $1 - \delta$  the test error is upper bounded by

$$\nu + \sqrt{\frac{c}{m} \left(\frac{R^2 \Lambda^2}{\rho^2} \ln^2 m + \ln(1/\delta)\right)}$$

where  $\boldsymbol{c}$  is a constant and  $\boldsymbol{m}$  is the training set size

• Related to VC dimension of large-margin classifiers, but not exactly what we covered in Chapter 5; e.g.  $R_{emp}$ , which was a prediction error rate, is replaced with  $\nu$ , which is a margin error rate

## **Optimal Margin Hyperplanes**

- Want hyperplane that correctly classifies all training patters with maximum margin
- When using canonical hyperplanes, implies that we want  $y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) \ge 1$  for all i = 1, ..., m
- We know that we want to minimize the weight vector's length to maximize the margin, so this yields the following constrained quadratic optimization problem:

 $\begin{array}{ll} \underset{\mathbf{w}\in\mathcal{H},b\in\mathbb{R}}{\text{minimize}} & \tau(\mathbf{w}) = \|\mathbf{w}\|^2/2 \\ \text{s.t.} & y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) \ge 1, i = 1, \dots, m \end{array}$ (1)

- Another optimization problem. Hey! I have a great idea! Let's derive the dual!
- Langrangian:

$$L(\mathbf{w}, b, \alpha) = \|\mathbf{w}\|^2 / 2 - \sum_{i=1}^m \alpha_i (y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) - 1)$$
  
with  $\alpha_i \ge 0$ 

### Justifications for Large Margin Margin Error Bound (cont'd)

- Increasing  $\rho$  decreases the square root term, but can increase  $\nu$ 
  - Thus we want to maximize  $\rho$  while simultaneously minimizing  $\nu$
  - Can instead fix  $\rho = 1$  (canonical hyperplanes) and minimize ||w|| while minimizing margin errors
  - In our first quadratic program, we'll set constraints to make  $\nu = 0$

10

# The Dual Optimization Problem (cont'd)

• Recall that at the saddle point, the partial derivatives of *L* wrt the primal variables must each go to 0:

$$\frac{\partial}{\partial b} L(\mathbf{w}, b, \alpha) = -\sum_{i=1}^{m} \alpha_i y_i = 0$$
$$\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha) = \mathbf{w} - \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i = 0$$

which imply  $\sum_{i=1}^{m} \alpha_i y_i = 0$  and  $\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i$ 

• Recall from Chapter 6 that for an optimal feasible solution  $\bar{\mathbf{w}}$ ,  $\alpha_i c_i(\bar{\mathbf{w}}, \bar{b}) = 0$  for all constraints  $c_i$ , so

$$\alpha_i(y_i(\langle \mathbf{x}_i, \bar{\mathbf{w}} \rangle + \bar{b}) - 1) = 0$$

for all  $i = 1, \ldots, m$ 

The Dual Optimization Problem (cont'd)

# The Dual Optimization Problem (cont'd)

- The  $x_i$  for which  $\alpha_i > 0$  are the support vectors, and are the vectors that lie on the margin, i.e. those for which the constraints are tight
  - Other vectors (where  $\alpha_i = 0$ ) are irrelevant to determining the hyperplane w
  - Will be useful later in classification
  - See Prop. 7.8 for relationship between expected number of SVs and test error bound

- Now substitute the saddle point conditions into the Lagrangian
- The  $k{\rm th}$  component of the weight vector is  $w_k = \sum_{i=1}^m \alpha_i y_i x_{ik},$  so

$$w_k^2 = \left(\sum_{i=1}^m \alpha_i y_i x_{ik}\right) \left(\sum_{i=1}^m \alpha_i y_i x_{ik}\right)$$

• Thus

$$\|\mathbf{w}\|^{2} = \sum_{k} \left( \sum_{i=1}^{m} \alpha_{i} y_{i} x_{ik} \right) \left( \sum_{i=1}^{m} \alpha_{i} y_{i} x_{ik} \right)$$
$$= \sum_{k} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{ik} x_{jk}$$
$$= \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \sum_{k} x_{ik} x_{jk}$$
$$= \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle$$

14

# The Dual Optimization Problem (cont'd)

• Further,

$$\sum_{i=1}^{m} \alpha_i (y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) - 1)$$
$$= \sum_{i=1}^{m} \alpha_i y_i \left( \sum_k x_{ik} w_k \right) - \sum_{i=1}^{m} \alpha_i$$
$$= \sum_{i=1}^{m} \alpha_i y_i \left( \sum_k x_{ik} \sum_{j=1}^{m} \alpha_j y_j x_{jk} \right) - \sum_{i=1}^{m} \alpha_i$$
$$= \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle - \sum_{i=1}^{m} \alpha_i$$

• Combine them:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

# The Dual Optimization Problem (cont'd)

• Maximizing the Lagrangian wrt  $\alpha$  yields the dual optimization problem:

$$\begin{array}{ll} \underset{\boldsymbol{\alpha} \in \mathbb{R}^{m}}{\text{maximize}} & \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle \\ \text{s.t.} & \alpha_{i} \geq 0, i = 1, \dots, m \\ & \sum_{i=1}^{m} \alpha_{i} y_{i} = 0 \end{array}$$

$$(2)$$

• After optimization, we can label new vectors with the decision function:

$$f(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_i y_i \langle \mathbf{x}, \mathbf{x}_i \rangle + b\right)$$

(later we'll discuss finding b)

#### Adding Kernels

- As discussed before, using kernels is an effective way to introduce nonlinearities to the data
  - Nonlinear remapping might make data (almost) linearly separable in the new space
  - Cover's theorem implies that simply increasing the dimension improves the probability of linear separability
- For given remapping  $\Phi$ , simply replace x with  $\Phi(x)$
- Thus in dual optimization problem and in decision function, replace  $\langle \mathbf{x}, \mathbf{x}_i \rangle$  with  $k(x, x_i)$ , where k is the PD kernel corresponding to  $\Phi$
- If k is PD, then we still have a convex optimization problem
- Once  $\alpha$  is found, can e.g. set b to be the average over all  $\alpha_j > 0$  of  $y_j \sum_{i=1}^m y_i \alpha_i k(x_j, x_i)$  (derived from KKT conditions)

17

# Soft Margin Hyperplanes

(cont'd)

• To relax each constraint from (1), add <u>slack</u> <u>variable</u>  $\xi_i \ge 0$ :

 $y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) \ge 1 - \xi_i, \ i = 1, \dots, m$ 

- Also need to penalize large  $\xi_i$  in the objective function to prevent trivial solutions
  - C-SV classifier
  - v-SV classifier

# Soft Margin Hyperplanes

- Under a given mapping Φ, the data might not be linearly separable
- There always exists a Φ that will yield separability, but is it a good idea to find one just for the sake of separating?
- If we choose to keep the mapping that corresponds to our favorite kernel, what are our options?
  - Instead of finding a hyperplane that is perfect on the training set, find one that minimizes training errors
    - Computationally intractable to even approximate
  - Instead, we'll <u>soften</u> the margin, allowing for some vectors to get too close to the hyperplane (i.e. margin errors)

18

# Soft Margin Hyperplanes

C-SV Classifier

 Weight with C > 0 (e.g. C = 10m) the importance of minimizing sum of ξ variables:

 $\begin{array}{ll} \underset{\mathbf{w} \in \mathcal{H}, b \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^m}{\text{minimize}} & \tau(\mathbf{w}, \boldsymbol{\xi}) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{m} \sum_{i=1}^m \xi_i \\ \text{s.t.} & y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) \geq 1 - \xi_i, \ i = 1, \dots, m \\ & \xi_i \geq 0, \ i = 1, \dots, m \end{array}$ 

- First term of τ decreases ||w||, second term focuses on margin error rate ν, thus together they focus on T7.3
- The dual is similar to that for hard margin:

$$\begin{array}{ll} \underset{\boldsymbol{\alpha} \in \mathbb{R}^m}{\text{maximize}} & W(\boldsymbol{\alpha}) = \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(x_i, x_j) \\ \text{s.t.} & 0 \leq \alpha_i \leq C/m, \ i = 1, \dots, m \\ & \sum_{i=1}^m \alpha_i y_i = 0 \end{array}$$

Once α is found, can e.g. set b to be the average over all α<sub>j</sub> ∈ (0, C) of y<sub>j</sub> − Σ<sup>m</sup><sub>i=1</sub> y<sub>i</sub>α<sub>i</sub>k(x<sub>j</sub>, x<sub>i</sub>)

Soft Margin Hyperplanes u-SV Classifier (cont'd)

# Soft Margin Hyperplanes

 $\nu$ -SV Classifier

- A more intuitable way to weight the emphasis on reducing margin errors
- Primal:

 $\begin{array}{ll} \underset{\mathbf{w} \in \mathcal{H}, \rho, b \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^m}{\text{minimize}} & \tau(\mathbf{w}, \boldsymbol{\xi}, \rho) = \frac{1}{2} \|\mathbf{w}\|^2 - \nu\rho + \frac{1}{m} \sum_{i=1}^m \xi_i \\ \text{s.t.} & y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) \ge \rho - \xi_i, i = 1, \dots, m \\ & \rho \ge 0, \xi_i \ge 0, \ i = 1, \dots, m \end{array}$ 

•  $\rho$  is similar to that in T7.3: for  $\xi$  to be 0, all vectors must be at least  $\rho/||\mathbf{w}||$  from the hyperplane

21

### **Soft Margin Hyperplanes** *v*-SV Classifier

(cont'd)

• Derivation of dual form (details omitted) yields:

$$\begin{array}{ll} \underset{\boldsymbol{\alpha} \in \mathbb{R}^m}{\text{maximize}} & W(\boldsymbol{\alpha}) = -\frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j k(x_i, x_j) \\ \text{s.t.} & 0 \leq \alpha_i \leq 1/m, \\ & \sum_{i=1}^m \alpha_i y_i = 0 \\ & \sum_{i=1}^m \alpha_i \geq \nu \end{array}$$

• Let  $S_+$  and  $S_-$  be sets of SVs  $x_i$  with labels  $y_i = +1$  and -1,  $0 < \alpha_i < 1$ , and  $|S_+| = |S_-| = s > 0$ , then set

$$b = -\frac{1}{2s} \sum_{x \in S_+ \cup S_-} \sum_{i=1}^m y_i \alpha_i k(x, x_i)$$

**P7.5** If  $\nu$ -SVC yields a solution with  $\rho > 0$ , then

- 1.  $\nu$  is an upper bound on the fraction of margin errors
- 2.  $\nu$  is a lower bound on the fraction of support vectors
- See Table 7.1, p. 207



Multi-Class Classification

- What if we want to go beyond binary labels  $\pm 1$  to M classes?
- Most methods decompose a multi-class problem into a set of binary ones
  - One vs. rest
  - Error-correcting output codes
  - Pairwise classification
  - Kessler's construction/multi-class objective function (doesn't need to decompose into binary cases)

- To handle M classes, train a set of M binary classifiers  $f^1, \ldots, f^M$ , where  $f^i$  is trained to distinguish patterns from class i from those not in class i
- If  $(\alpha^i, b^i)$  is the classifier learned for class i, then a new pattern x is classified as

$$\underset{j=1,\dots,M}{\operatorname{argmax}} \left\{ \sum_{i=1}^{m} y_i \alpha_i^j k(x, x_i) + b^j \right\}$$

i.e. the class with the most confident prediction among the binary classifiers

- Applicable even if the number of classifiers predicting +1 is not exactly 1
- Note that the set of SVs can be different for each class
- Can also let the classifier "punt" if the difference between the top two predictions is small

25

# Multi-Class Classification

Error-Correcting Output Codes (ECOC)

- One vs. rest requires *M* classifiers to represent *M* classes
- Is this the minimum amount required?
- E.g. M = 4, so use two linear classifiers:

| Class   | Binary Encoding |              |
|---------|-----------------|--------------|
|         | Classifier 1    | Classifier 2 |
| Class 1 | $^{-1}$         | -1           |
| Class 2 | -1              | +1           |
| Class 3 | +1              | -1           |
| Class 4 | +1              | +1           |

and train simultaneously

• <u>Problem</u>: Sensitive to individual classifier errors, so use a <u>set of encodings</u> per class to improve robustness

26

## Multi-Class Classification

Error-Correcting Output Codes (ECOC) (cont'd)

- Similar to principle of <u>error-correcting output</u> <u>codes</u> used in communication networks
  - After all classifiers make their predictions, find the code that is nearest to the bit string returned and use that for the predicted class
- Can provably tolerate some mispredictions by individual classifiers, but doesn't use the margin

# Multi-Class Classification

Pairwise Classification

- Instead of training one classifier per class as in one vs. rest, train a classifier for each <u>pair</u> of classes
- Now have  $\binom{M}{2}$  classifiers to train rather than  $\lceil \log_2 M \rceil$  up to M, but each training set is smaller
  - Number of SVs smaller for each classifier due to smaller training set and easier learning problem
- To classify new pattern, evaluate it on all classifiers and choose the class that gets the most votes
  - Can avoid running on all classifiers if votes so far imply that some classes are guaranteed to not win



• All have comparable min error rates, but sensitive to parameter setting

#### **Parameter Setting**

• Gaussian kernel: low, med, high values of c



- How to choose parameter settings?
  - Cross validation
  - Settings that work well for similar problems (rescaled)
  - For  $\nu$ -SVCs, set  $\nu$  to e.g. test error from other classifiers
    - \*  $\nu \geq$  margin error  $\geq$  train error, which is also  $\leq$  test error
  - For  $C\text{-}\mathsf{SVCs},\ C\propto 1/R^2,$  where R measures range of data in  $\mathcal H$ 
    - \* E.g. R = radius of smallest sphere, max or mean length  $k(x_i, x_i)$ , or std dev of distance of points to their mean

#### Overlap of SV Sets

- In the handwritten digit classification experiments, the three kernels typically had 80–93% of their SV sets in common (Table 7.6, p. 220)
- In fact, each kernel got similar error rates when training on SVs of a different kernel rather than the entire training set (Table 7.7)
- Basically, these kernels (dot products) mostly found the same regularities in the data
- Results might vary depending on learning problem/data set

34

### Topic summary due in 1 week!