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Introduction

e In the previous lecture, we discussed how the
VC dimension of high- (or infinite-) dimen-
sional hyperplanes can be controlled by maxi-
mizing the margin

e I.e. we further restrict the class of functions
F (from general hyperplanes to large-margin
hyperplanes) we choose from when minimizing

Remplf]

e Thus rather than simply look for a hyperplane
f that minimizes Remp[f], we look for an f that
minimizes Rempl[f] plus a regularization term

— Typically, we'll use |w]||2

Regularization

e Define a regularization term Q[f] to our origi-
nal objective function Remp[f] and get

Rreg[f] = Remplf] + AQ[f] ,

where Q[f] quantifies the “complexity” of f
and M\ weights the tradeoff between the two
optimization objectives

Choosing convex Remplf] (e.g. squared loss)
and convex Q[f] (e.g. ||w|?) vields a convex

Rregl[f]

— We'll use this in the next lecture
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Introduction

e In general, all machine learning algorithms fo-
cus on optimizing some function

— E.g. Remplf] or Rreglf]

— Main differences come from the representa-
tion of examples, choice of function to op-
timize, and choice of optimization method

e SVMs focus on optimizing functions that are
convex

— No local optima (in contrast to e.g. back-
propagation for ANNSs)

— Well-studied problem with many algorithms,
even when constraints added

Outline

Convex sets and convex functions

Unconstrained optimization

e Constrained optimization

Sections 1.4, 6.1-6.2.2, 6.3, 6.6 (also read
6.2.3-6.2.4)

Convex Sets and Functions

D6.1 A set X in a vector space is convex if for all
xz,z’ € X and any X € [0, 1],

A+ (1-Nz' eX

— I.e. the shortest path from z to 2/ is entirely
in X

D6.2 A function f defined on (possibly non-convex)
set X is convex if for all z,2’ € X and any
Ae[0,1] s.t. Az + (1 — N’ € X,

fQz 4+ 1 =N)2") <Af(x) + (1 =) f()

— L.e. while moving point z” in a straight line

from z to «/, f(2") lies below the line con-
necting f(z) to f(z')

— Le. f(x) is shaped like a bowl

Properties of Convex Functions and Sets

L6.3 If f is a convex function on X, then the convex
level sets

Xe:={z|zeX and f(z) <c} VceR

are convex
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L6.4 If X, X' C X are both convex, then X N X' is
also convex




Constrained Convex Minimization

e Let X C X be convex, f: X — R be convex,
and let ¢ be the minimum value of f on X

e Then
Xm ={z|ze X and f(z) <c}

is convex, as is X;, N X, and f(z) = ¢ for all
e XmnNX

e Thus the set X’ C X on which f takes its
minimum value over X is itself a convex set

— Further, if f is strictly convex, then | X/| =1

C6.6 If functions f,cq,...,cn are convex and if their

domain X is convex, then the optimization
problem

minixmize f(x)

subject to ¢;(z) <0 Vie{l,...,n}
has as its solution a convex set, if a solution

exists. This solution is unique if f is strictly
convex

Unconstrained Convex Minimization
Functions of One Variable
Interval Cutting

e Assume f is convex and differentiable

e Given an interval [A, B] C R, look at (A+ B)/2
and check if f is 'going down” or ‘“going up”
at that point

— If going up (i.e. f/((A4+ B)/2) > 0) then set
B=(A+B)/2

— Else set A= (A+ B)/2

— Repeat until (B—A) min (|f'(A)|, | (B)|) < ¢

— Called the Interval Cutting algorithm (Alg. 6.1,

p. 155)
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Unconstrained Convex Minimization
Functions of One Variable
Newton’'s Method

e We can do better if f twice differentiable

e Via Taylor series expansion of f around some
fixed xq:

f(z) = f(zo)+(z—20) f'(x0)+(x—20)? f"(20)/2

e Minimize RHS by differentiating wrt = (so zg
is a constant) and setting = O:

(o)
f"(z0)

T = X0

e Thus Newton's Method starts at some point

xg and repeatedly updates z,, 41 = zn—f'(zn) /f" (zn)

until |f'(zn)| < e

e Converges faster than Interval Cutting
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Unconstrained Convex Minimization
Functions of Several Variables
Gradient Descent

e Very popular optimization technique
e Assume f/(z) exists

e Like Newton’'s Method, we have a current so-
lution =, that we iterativly update

e At solution point z,, compute the gradient*

gn = f'(xn), which gives the direction of steepest

descent

e Then use line search (e.g. Newton's Method)
to find ~ that maximizes f(xn) — f(zn — vgn)

e Repeat until |f/(zn)| < ¢

e Guaranteed to converge eventually

*Recall that the gradient of a function f over RM is an N-
dimensional vector of equations, where equation i is the
partial derivative of f taken wrt the ith variable.
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Constrained Optimization
Lagrange Multipliers

Constrained Optimization e Can integrate the constraints into the objec-
tive function using Lagrange multipliers: (1)
becomes
e In SVMs, we will want to minimize ||w|?, the "
squared length of the weight vector L(z,0) = f(z) + > ajci(x)

=1

— One Lagrange multiplier a; > 0 per con-

e In general, this is trivially solved by w = 0, so
straint ¢;(x)

we need to constrain the set of solutions to
choose from:

minixmize f(x) (1) e Goal is to now simultaneously minimize L(x, «)
s.t. ci(z) <0 Vie{l,...,n} wrt primal variables z and maximize L(z,«) wrt
dual variables «;

e Can also convert equality constraint e;(z) =0
to pair of inequality constraints c¢j(z) < 0 and
c;(a:) >0

— Called a saddle point

e Intuition: if some ¢;(z) > 0 (i.e. a constraint is
violated) then L(z,a) can be increased by in-
creasing «;, which forces = to change to again
decrease L
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Constrained Optimization
Karush-Kuhn-Tucker Conditions
(cont'd)
Constrained Optimization
Karush-Kuhn-Tucker Conditions e Further, when instead o;; = 0 then a;c;(z) > 0,
which is only possible if a;c;(z) = 0 Vj (this is
the KKT condition)

e Let (z,a) (where T € R™ and &; > 0 Vi) be

m n
such that for all z € R™ and «a € [0,00)" we e Combining this with the second inequality of (2):

have n
L(%,a) < L(z,a) < L(z, &) (2) f(@) < fle) + > aci(x)
i=1
e The first inequality implies that L(Zz,a)—L(Z,&) < e If z is feasible, then ¢;(z) < 0 for all 4, imply-
0, i.e. ing that f(z) < f(z) for all feasible x = T is
optimal

n
> (e —a;)ei(z) <0
=1 e Thus if (2) holds then Z is an optimal feasible

solution of (1)

e Since (2) holds for all a; > 0, set «; = &; for o ] ) ]
all i # j and a; = &; 4+ 1. Then ¢;(Z) < 0 for — Le. sat.lsfylng (2}) in the Lag.ra.nglan yields
. _ e . an optimal solution to the original problem
all 7, i.e. x satisfies the constraints (1) (Thrm 6.21)

— (2) is also necessary if f and ¢; convex and
if Lemma 6.23 satisfied
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Constrained Optimization
Karush-Kuhn-Tucker Conditions
(cont'd)

T6.26 A solution to (1) with convex, differentiable f
and ¢; is given by z if 3a € R™ with a; > 0 s.t.
the following are satisfied:

n
0:L(Z,a) = 0 f(Z) + Y @i0eci(T) =0
i=1
Oa; L(Z, ) = ¢;(Z) <0

n
> aci(z) =0
i=1

Proof (T means matrix transpose)
f@) = f@) > @f(@) (2 —7)
= -3 @(0:ci(@) (z - 7)

=1

> Y o) — @)
=1

= — > ajc(z) >0
=1

e Thus of those x that satisfy ¢;, * minimizes f
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Constrained Optimization
Karush-Kuhn-Tucker Conditions
(cont'd)

e I.e. a solution to the set of equations of T6.26
is a solution to (1)

e Another useful tidbit (T6.27): For any point
z that is a feasible solution to (1),

f@) > f@) > f@) + Y agei)

=1
where z is the optimal solution

e I.e. given any feasible point z, we can bound
f(x) in terms of f(x) and YT a;ci(x)

— Useful stopping criterion for optimization
algorithm
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Constrained Optimization
Duality

Consider the following linear program:

minimize 6x1 + 8zo

1,72

S.t. 31 —224+4<0 (3)
—5x1 —2204+7<0
—z1,—x2 <0

Now find the Langrangian:

L(z,a) = 6x1+ 8z + a1(—3z1 — 20+ 4)
—|—Oz2(—5$1 - 2:122 —|— 7) — Q3x1 — 4qxD

e T16.26 says that for an optimal solution:
DuL(z,0) = 6—3a1—5a2—a3] _ {o}

8—a1 —2ap —ay 0

e Which we substitute back into L(z,a) to get
4o + Tan
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Constrained Optimization
Duality
(cont'd)

e Recall that we want to maximize wrt «, so
equivalent to (3) is
maaxll’ropzlze daq + Tan
s.t. 6 —3a;1 —bax —a3z3 =0
8—0(1—2(12—()44:0
a1, 2,03, x4 >0
(note that we can drop a3, as and change “="
to “>" in first two inequalities)

e This is the dual (or Wolfe dual) of (3)

e Important properties:

— Constraints in one correspond to variables
in other

— Value of obj function in primal < that for
dual; equality at optimal solution

— We've eliminated the x variables from the
primal (we'll use this when applying kernels
for SVMs)

20




Constrained Optimization
Duality
(cont'd)

e Can also find dual of convex quadratic opti-
mization problems:

minimize Kr+c'x (4)
s.t. Az +d <0

where K is m x m PD matrix, z,c € R™, A €
R*®X™ and d € R"

e Lagrangian is

L(z,a) = %xTKac +c'z+a (Az+d)

e Apply T6.26:

0:L(z,0) =K'z +ATa+c=0 (5)

OoaL(z,0) = Ax+d <0 (6)
a'(Az+d) =0 (7)
a>0 (8)

21

Constrained Optimization
Duality
(cont'd)

e Applying (7) gives L(z,a) = 32T Kz + ¢z and
further applying (5) and again (7) yields
L(z,a) = %wTKac + <—KT(L’ — ATOz)Tx
= —%mTKm —al Az
= —% TKx —+ ald

(in book, recall that when PD, K =K )

e Now use z = —K~1(c+ATa) from (5) and get
1
L(z,0) = — TATK Y Aa + [d— cTKflAT} o

1
'Kkl
2
e Last term is constant, so get
maximize —%aTATKflAa + [d - cTKflAT] o
s.t. a>0
as dual to (4)
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Topic summary due in 1 week!
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