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Introduction

• In the previous lecture, we discussed how the

VC dimension of high- (or infinite-) dimen-

sional hyperplanes can be controlled by maxi-

mizing the margin

• I.e. we further restrict the class of functions

F (from general hyperplanes to large-margin

hyperplanes) we choose from when minimizing

Remp[f ]

• Thus rather than simply look for a hyperplane

f that minimizes Remp[f ], we look for an f that

minimizes Remp[f ] plus a regularization term

– Typically, we’ll use ‖w‖2
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Regularization

• Define a regularization term Ω[f ] to our origi-

nal objective function Remp[f ] and get

Rreg[f ] = Remp[f ] + λΩ[f ] ,

where Ω[f ] quantifies the “complexity” of f

and λ weights the tradeoff between the two

optimization objectives

• Choosing convex Remp[f ] (e.g. squared loss)

and convex Ω[f ] (e.g. ‖w‖2) yields a convex

Rreg[f ]

– We’ll use this in the next lecture
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Introduction

• In general, all machine learning algorithms fo-

cus on optimizing some function

– E.g. Remp[f ] or Rreg[f ]

– Main differences come from the representa-

tion of examples, choice of function to op-

timize, and choice of optimization method

• SVMs focus on optimizing functions that are

convex

– No local optima (in contrast to e.g. back-

propagation for ANNs)

– Well-studied problem with many algorithms,

even when constraints added
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Outline

• Convex sets and convex functions

• Unconstrained optimization

• Constrained optimization

• Sections 1.4, 6.1–6.2.2, 6.3, 6.6 (also read

6.2.3–6.2.4)
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Convex Sets and Functions

D6.1 A set X in a vector space is convex if for all

x, x′ ∈ X and any λ ∈ [0,1],

λx + (1 − λ)x′ ∈ X

– I.e. the shortest path from x to x′ is entirely

in X

D6.2 A function f defined on (possibly non-convex)

set X is convex if for all x, x′ ∈ X and any

λ ∈ [0,1] s.t. λx + (1 − λ)x′ ∈ X,

f(λx + (1 − λ)x′) ≤ λf(x) + (1 − λ)f(x′)

– I.e. while moving point x′′ in a straight line

from x to x′, f(x′′) lies below the line con-

necting f(x) to f(x′)

– I.e. f(x) is shaped like a bowl
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Properties of Convex Functions and Sets

L6.3 If f is a convex function on X , then the convex

level sets

Xc := {x | x ∈ X and f(x) ≤ c} ∀c ∈ R

are convex

L6.4 If X, X ′ ⊂ X are both convex, then X ∩ X ′ is

also convex
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Constrained Convex Minimization

• Let X ⊂ X be convex, f : X → R be convex,

and let c be the minimum value of f on X

• Then

Xm := {x | x ∈ X and f(x) ≤ c}

is convex, as is Xm ∩ X, and f(x) = c for all

x ∈ Xm ∩ X

• Thus the set X ′ ⊆ X on which f takes its

minimum value over X is itself a convex set

– Further, if f is strictly convex, then |X ′| = 1

C6.6 If functions f, c1, . . . , cn are convex and if their

domain X is convex, then the optimization

problem

minimize
x

f(x)

subject to ci(x) ≤ 0 ∀i ∈ {1, . . . , n}

has as its solution a convex set, if a solution

exists. This solution is unique if f is strictly

convex
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Unconstrained Convex Minimization

Functions of One Variable

Interval Cutting

• Assume f is convex and differentiable

• Given an interval [A, B] ⊂ R, look at (A+B)/2
and check if f is “going down” or “going up”

at that point

– If going up (i.e. f ′((A+B)/2) > 0) then set

B = (A + B)/2

– Else set A = (A + B)/2

– Repeat until (B−A)min
(
|f ′(A)|, |f ′(B)|

)
≤ ε

– Called the Interval Cutting algorithm (Alg. 6.1,

p. 155)
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Unconstrained Convex Minimization

Functions of One Variable

Newton’s Method

• We can do better if f twice differentiable

• Via Taylor series expansion of f around some

fixed x0:

f(x) ≈ f(x0)+(x−x0)f
′(x0)+(x−x0)

2f ′′(x0)/2

• Minimize RHS by differentiating wrt x (so x0

is a constant) and setting = 0:

x = x0 −
f ′(x0)

f ′′(x0)

• Thus Newton’s Method starts at some point

x0 and repeatedly updates xn+1 = xn−f ′(xn)/f ′′(xn)

until |f ′(xn)| ≤ ε

• Converges faster than Interval Cutting
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Unconstrained Convex Minimization

Functions of Several Variables

Gradient Descent

• Very popular optimization technique

• Assume f ′(x) exists

• Like Newton’s Method, we have a current so-

lution xn that we iterativly update

• At solution point xn, compute the gradient∗

gn := f ′(xn), which gives the direction of steepest

descent

• Then use line search (e.g. Newton’s Method)

to find γ that maximizes f(xn) − f(xn − γgn)

• Repeat until |f ′(xn)| ≤ ε

• Guaranteed to converge eventually

∗Recall that the gradient of a function f over RN is an N-
dimensional vector of equations, where equation i is the
partial derivative of f taken wrt the ith variable.
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Constrained Optimization

• In SVMs, we will want to minimize ‖w‖2, the

squared length of the weight vector

• In general, this is trivially solved by w = 0, so

we need to constrain the set of solutions to

choose from:

minimize
x

f(x)

s.t. ci(x) ≤ 0 ∀i ∈ {1, . . . , n}
(1)

• Can also convert equality constraint ej(x) = 0

to pair of inequality constraints cj(x) ≤ 0 and

c′j(x) ≥ 0
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Constrained Optimization

Lagrange Multipliers

• Can integrate the constraints into the objec-

tive function using Lagrange multipliers: (1)

becomes

L(x, α) := f(x) +
n∑

i=1

αici(x)

– One Lagrange multiplier αi ≥ 0 per con-

straint ci(x)

• Goal is to now simultaneously minimize L(x, α)

wrt primal variables x and maximize L(x, α) wrt

dual variables αi

– Called a saddle point

• Intuition: if some ci(x) > 0 (i.e. a constraint is

violated) then L(x, α) can be increased by in-

creasing αi, which forces x to change to again

decrease L
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Constrained Optimization

Karush-Kuhn-Tucker Conditions

• Let (x̄, ᾱ) (where x̄ ∈ Rm and ᾱi ≥ 0 ∀i) be

such that for all x ∈ Rm and α ∈ [0,∞)n we

have

L(x̄, α) ≤ L(x̄, ᾱ) ≤ L(x, ᾱ) (2)

• The first inequality implies that L(x̄, α)−L(x̄, ᾱ) ≤

0, i.e.
n∑

i=1

(αi − ᾱi)ci(x̄) ≤ 0

• Since (2) holds for all αi ≥ 0, set αi = ᾱi for

all i �= j and αj = ᾱj + 1. Then cj(x̄) ≤ 0 for

all j, i.e. x̄ satisfies the constraints
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Constrained Optimization

Karush-Kuhn-Tucker Conditions
(cont’d)

• Further, when instead αj = 0 then ᾱjcj(x̄) ≥ 0,
which is only possible if ᾱjcj(x̄) = 0 ∀j (this is

the KKT condition)

• Combining this with the second inequality of (2):

f(x̄) ≤ f(x) +
n∑

i=1

ᾱici(x)

• If x is feasible, then ci(x) ≤ 0 for all i, imply-
ing that f(x̄) ≤ f(x) for all feasible x ⇒ x̄ is
optimal

• Thus if (2) holds then x̄ is an optimal feasible
solution of (1)

– I.e. satisfying (2) in the Lagrangian yields

an optimal solution to the original problem
(1) (Thrm 6.21)

– (2) is also necessary if f and ci convex and

if Lemma 6.23 satisfied
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Constrained Optimization

Karush-Kuhn-Tucker Conditions

(cont’d)

T6.26 A solution to (1) with convex, differentiable f

and ci is given by x̄ if ∃ ᾱ ∈ Rn with ᾱi ≥ 0 s.t.

the following are satisfied:

∂xL(x̄, ᾱ) = ∂xf(x̄) +
n∑

i=1

ᾱi∂xci(x̄) = 0

∂αiL(x̄, ᾱ) = ci(x̄) ≤ 0
n∑

i=1

ᾱici(x̄) = 0

Proof (� means matrix transpose)

f(x) − f(x̄) ≥ (∂xf(x̄))�(x − x̄)

= −
n∑

i=1

ᾱi(∂xci(x̄))
�(x − x̄)

≥ −
n∑

i=1

ᾱi(ci(x) − ci(x̄))

= −
n∑

i=1

ᾱici(x) ≥ 0

• Thus of those x that satisfy ci, x̄ minimizes f
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Constrained Optimization

Karush-Kuhn-Tucker Conditions

(cont’d)

• I.e. a solution to the set of equations of T6.26

is a solution to (1)

• Another useful tidbit (T6.27): For any point

x that is a feasible solution to (1),

f(x) ≥ f(x̄) ≥ f(x) +
n∑

i=1

αici(x)

where x̄ is the optimal solution

• I.e. given any feasible point x, we can bound

f(x̄) in terms of f(x) and
∑n

i=1 αici(x)

– Useful stopping criterion for optimization

algorithm
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Constrained Optimization

Duality

• Consider the following linear program:

minimize
x1,x2

6x1 + 8x2

s.t. −3x1 − x2 + 4 ≤ 0
−5x1 − 2x2 + 7 ≤ 0
−x1,−x2 ≤ 0

(3)

• Now find the Langrangian:

L(x, α) = 6x1 + 8x2 + α1(−3x1 − x2 + 4)

+α2(−5x1 − 2x2 + 7) − α3x1 − α4x2

• T6.26 says that for an optimal solution:

∂xL(x, α) =

[
6 − 3α1 − 5α2 − α3
8 − α1 − 2α2 − α4

]
=

[
0
0

]

• Which we substitute back into L(x, α) to get

4α1 + 7α2
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Constrained Optimization

Duality

(cont’d)

• Recall that we want to maximize wrt α, so

equivalent to (3) is

maximize
α1,α2

4α1 + 7α2

s.t. 6 − 3α1 − 5α2 − α3 = 0
8 − α1 − 2α2 − α4 = 0
α1, α2, α3, α4 ≥ 0

(note that we can drop α3, α4 and change “=”

to “≥” in first two inequalities)

• This is the dual (or Wolfe dual) of (3)

• Important properties:

– Constraints in one correspond to variables

in other

– Value of obj function in primal ≤ that for

dual; equality at optimal solution

– We’ve eliminated the x variables from the

primal (we’ll use this when applying kernels

for SVMs)
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Constrained Optimization

Duality

(cont’d)

• Can also find dual of convex quadratic opti-

mization problems:

minimize
x

1
2x�Kx + c�x

s.t. Ax + d ≤ 0
(4)

where K is m × m PD matrix, x, c ∈ Rm, A ∈

R
n×m and d ∈ R

n

• Lagrangian is

L(x, α) =
1

2
x�Kx + c�x + α�(Ax + d)

• Apply T6.26:

∂xL(x, α) = K�x + A�α + c = 0 (5)

∂αL(x, α) = Ax + d ≤ 0 (6)

α�(Ax + d) = 0 (7)

α ≥ 0 (8)
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Constrained Optimization

Duality

(cont’d)

• Applying (7) gives L(x, α) = 1
2x�Kx+ c�x and

further applying (5) and again (7) yields

L(x, α) =
1

2
x�Kx +

(
−K�x − A�α

)�
x

= −
1

2
x�Kx − α�Ax

= −
1

2
x�Kx + α�d

(in book, recall that when PD, K = K�)

• Now use x = −K−1(c+A�α) from (5) and get

L(x, α) = −
1

2
α�A�K−1Aα +

[
d − c�K−1A�

]
α

−
1

2
c�K−1c

• Last term is constant, so get

maximize
α

−1
2α�A�K−1Aα +

[
d − c�K−1A�

]
α

s.t. α ≥ 0

as dual to (4)

22

Topic summary due in 1 week!
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