CSCE 990 Lecture 4: Statistical Learning Theory*

Stephen D. Scott

January 26, 2006

*Most figures ©2002 MIT Press, Bernhard Schölkopf, and Alex Smola.

Introduction

• In Chapter 3, we discussed the need for restricting the class of functions \mathcal{F} we choose from when minimizing $R_{emp}[f]$

Introduction (cont'd)

• Put another way, simply minimzing $R_{emp}[f]$ doesn't necessarily minimize R[f]

• We will quantify the "expressiveness" or "richness" of \mathcal{F} via its Vapnik-Chervonenkis (VC) dimension h, allowing us to bound R[f] with probability at least $1 - \delta$:

$$R[f] \le R_{\text{emp}}[f] + \sqrt{\frac{1}{m}} \left(h \left(\ln \frac{2m}{h} + 1 \right) + \ln \frac{4}{\delta} \right) ,$$

where m is training sample size

Outline

- Overfitting and the need for bias
- Expected risk minimization
- Law of large numbers
- Consistency and uniform convergence
- Vapnik-Chervonenkis dimension
- Aside: Structural risk minimization
- VC dimension of large-margin hyperplanes
- Example
- Sections 1.3, 5.1–5.4, 5.5.3–5.5.6, 5.6–5.7

• Consider two fits to m observations $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \in \mathcal{X} \times \mathcal{Y}, \ \mathcal{X}, \mathcal{Y} = \mathbb{R}:$

- Restricting (biasing) our set of models to linear will always lead to simple explanations of S, though maybe not always good ones
- Allowing our set of models to be degree *m* polynomials will always lead to perfect explanations of *S*, but the models will have high <u>variance</u> in betwen data points
- This is the <u>bias-variance dilemma</u>, aka the issue of avoiding <u>underfitting</u> and <u>overfitting</u>

Empirical Risk Minimization

• Recall that our ultimate goal is to minimize the expected risk:

$$R[f] = \int_{\mathcal{X} \times \mathcal{Y}} c(x, y, f(x)) \, d\mathsf{P}(x, y)$$

where commonly $\mathcal{Y} = \{+1, -1\}$ and c(x, y, f(x)) = (1/2)|f(x) - y|

• We don't know P(x, y), so we employ <u>empirical risk</u> <u>minimization</u> (ERM), and choose $f \in \mathcal{F}$ (where \mathcal{F} is appropriately restricted) to minimize

$$R_{\text{emp}}[f] = \frac{1}{m} \sum_{i=1}^{m} c(x_i, y_i, f(x_i))$$

Law of Large Numbers

- For iid examples (x_i, y_i) and a fixed function f, the loss ζ_i = c(x_i, y_i, f(x_i)) are also iid random variables
- In particular, if $c(x_i, y_i, f(x_i)) = (1/2)|f(x_i) y_i|$, then $\zeta_i \in \{0, 1\}$ and are called <u>Bernoulli trials</u>
- Can apply <u>Chernoff bound</u> to show how quickly an empirical mean converges to its expectation:

$$\mathsf{P}\left(\left|\frac{1}{m}\sum_{i=1}^{m}\zeta_{i}-\mathsf{E}\left[\zeta\right]\right|\geq\epsilon\right)\leq2\exp\left(-2m\epsilon^{2}\right)$$

- I.e. for a fixed *f*, as the sample grows, the empirical risk converges exponentially fast to the true risk
- A more general form holds for $\zeta \in [a, b]$

Consistency

• Problem: *f* is <u>not</u> fixed!

- Instead, we are choosing f to minimize $R_{emp}[f]$

- No longer have independent Bernoulli trials

- What we really want is more subtle: as $m \to \infty$, want $f^m = \operatorname{argmin}_{f \in \mathcal{F}} R_{\operatorname{emp}}[f]$ to also minimize R[f]
 - I.e. in the limit, f^m 's training error matches its test error

Uniform Convergence

• In other words, want convergence of $R_{emp}[f]$ towards R[f] to be <u>uniform</u> over all $f \in \mathcal{F}$

- We'll come back to this later

• Let f^m be the function from \mathcal{F} minimizing R_{emp} and let f^{opt} be the one minimizing R. Then $\forall f \in \mathcal{F}$

$$R[f] - R[f^{\mathsf{opt}}] \ge 0 ,$$

$$R_{\mathsf{emp}}[f] - R_{\mathsf{emp}}[f^m] \ge 0$$

• Thus

$$R[f^m] - R[f^{\mathsf{opt}}] \ge 0 \quad , \tag{1}$$

$$R_{\rm emp}[f^{\rm opt}] - R_{\rm emp}[f^m] \ge 0$$
 (2)

Uniform Convergence (cont'd)

- Sum these and get
 - $0 \leq R[f^m] R_{emp}[f^m] + R_{emp}[f^{opt}] R[f^{opt}]$
 - $\leq \sup_{f \in \mathcal{F}} \left(R[f] R_{emp}[f] \right) + R_{emp}[f^{opt}] R[f^{opt}]$
- Since f^{opt} is a fixed function, we can apply our earlier results that say $R_{\text{emp}}[f^{\text{opt}}]$ approaches $R[f^{\text{opt}}]$ as $m \to \infty$
- Also, if we have uniform convergence (from above), then

 $\sup_{f \in \mathcal{F}} \left(R[f] - R_{\mathsf{emp}}[f] \right) \xrightarrow{\mathsf{P}} 0 \text{ as } m \to \infty$

(converges in probability; see p. 130)

- Thus in the limit, LHSs of (1) and (2) converge to 0, $R[f^m]$ is not larger than $R_{emp}[f^m]$, and ERM works
- UC also <u>necessary</u> for ERM (Theorem 5.3)

Vapnik-Chervonenkis Dimension

• Under what circumstances do we get uniform convergence?

– I.e. what restrictions on \mathcal{F} and m?

- \bullet There are many ways to quantify the "richness" of ${\mathcal F}$
- We will focus on the Vapnik-Chervonenkis (VC) <u>dimension</u>
- **Defn:** A <u>dichotomy</u> of a set S is a partition of S into two disjoint subsets, i.e. into a set of + patterns and a set of patterns
- **Defn:** A set of instances S is <u>shattered</u> by set of functions \mathcal{F} if and only if for every dichotomy of S there exists some function $f \in \mathcal{F}$ consistent with this dichotomy

The Vapnik-Chervonenkis Dimension (cont'd)

- **Defn:** The Vapnik-Chervonenkis dimension h of \mathcal{F} defined over \mathcal{X} is the size of the largest finite subset of \mathcal{X} shattered by \mathcal{F} . If arbitrarily large finite sets of \mathcal{X} can be shattered by \mathcal{F} , then $h \equiv \infty$.
 - So to show that h = d, must show there exists some subset X' ⊂ X of size d that F can shatter and show that there exists no subset of X of size > d that F can shatter
 - Note that $h \leq \log_2 |\mathcal{F}|$ (why?)

VCD Example: Intervals on $\ensuremath{\mathbb{R}}$

Let F be the set of closed intervals on the real line (each f ∈ F is a single interval), X = ℝ, and a point x ∈ X is positive iff it lies in the interval defined by f ∈ F

• Thus h = 2

• In general, VCD of d-dimensional boxes is 2d

- Can't shatter (b), so what is lower bound on VCD?
- What about upper bound?

• In general, VCD of d-dimensional hyperplanes is d + 1

Putting it Together

- It turns out that if \mathcal{F} has finite VCD then we can get uniform convergence and use ERM
- Skipping the proofs, one can show that for all $f \in \mathcal{F}$, with probability at least 1δ

$$R[f] \le R_{\text{emp}}[f] + \sqrt{\frac{1}{m} \left(h \left(\ln \frac{2m}{h} + 1 \right) + \ln \frac{4}{\delta} \right)}$$
(3)

where m is the sample size

- Thus we have a tradeoff between low error on the training set and low VCD \boldsymbol{h}
- Why the dependence on $\delta?$

Aside: Structural Risk Minimization

- We can work with the tradeoff between R_{emp} and h via structural risk minimization (SRM)
- First decompose \mathcal{F} into nested subsets of functions $S_1 \cdots S_{n-1} \subset S_n \subset S_{n+1} \cdots$ such that $h_1 < \cdots < h_{n-1} < h_n < h_{n+1} < \cdots$
- For each S_i , find the $f_i \in S_i$ minimzing R_{emp}
- Choose the f_i that minimizes (3)

Back to SVMs

- What will the VCD be of our SVMs?
- Can we apply (3) to our results?

Back to SVMs (cont'd)

• Recall that our SVMs not only find a hyperplane, but a large margin hyperplane

T5.5 Consider hyperplanes $\langle \mathbf{w}, \mathbf{x} \rangle = 0$ that are normalized such that $\min_{1 \le i \le r} |\langle \mathbf{w}, \mathbf{x}_i \rangle| = 1$ for some set of points $X^* = \{\mathbf{x}_1, \dots, \mathbf{x}_r\}$ (i.e. the hyperplanes are in <u>canonical form</u>). Then the set of decision functions defined on X^* such that $\|\mathbf{w}\| \le \Lambda$ has VC dimension at most $R^2\Lambda^2$, where R is the radius of the smallest sphere centered at the origin and containing X^* .

Back to SVMs (cont'd)

- Thus can substitute $R^2 \Lambda^2$ for h in (3)
- Sort of (not exactly) motivates minimzing $\|\mathbf{w}\|$ in SVMs (see p. 142)
- Minimizing $\|\mathbf{w}\|$ corresponds to maximizing margin

- This is our <u>regularization</u> term

 Can extend result to where ball is not centered at origin (by adding offset b) and to the entire input domain X

Example

- Application of polynomial classifiers of degrees
 2–7 to character recognition
- Data are separable for all degrees, so $R_{emp} = 0$ in all cases
- Ran 10 tests on different data sets, computed average VCD bound from T5.5 and average number of errors on independent test set

• VCD bound closely matches test error

Topic summary due in 1 week!