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Introduction

• In Chapter 3, we discussed the need for re-

stricting the class of functions F we choose

from when minimizing Remp[f ]
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Introduction
(cont’d)

• Put another way, simply minimzing Remp[f ]
doesn’t necessarily minimize R[f ]

• We will quantify the “expressiveness” or “rich-
ness” of F via its Vapnik-Chervonenkis (VC)
dimension h, allowing us to bound R[f ] with
probability at least 1 − δ:

R[f ] ≤ Remp[f ] +

√
1

m

(
h

(
ln

2m

h
+ 1

)
+ ln

4

δ

)
,

where m is training sample size
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Outline

• Overfitting and the need for bias

• Expected risk minimization

• Law of large numbers

• Consistency and uniform convergence

• Vapnik-Chervonenkis dimension

• Aside: Structural risk minimization

• VC dimension of large-margin hyperplanes

• Example

• Sections 1.3, 5.1–5.4, 5.5.3–5.5.6, 5.6–5.7
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An Example

• Consider two fits to m observations
S = {(x1, y1), . . . , (xm, ym)} ∈ X × Y, X ,Y = R:

• Restricting (biasing) our set of models to linear
will always lead to simple explanations of S,
though maybe not always good ones

• Allowing our set of models to be degree m
polynomials will always lead to perfect expla-
nations of S, but the models will have high
variance in betwen data points

• This is the bias-variance dilemma, aka the is-
sue of avoiding underfitting and overfitting
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Empirical Risk Minimization

• Recall that our ultimate goal is to minimize

the expected risk:

R[f ] =
∫
X×Y

c(x, y, f(x)) dP(x, y)

where commonly Y = {+1,−1} and c(x, y, f(x)) =

(1/2)|f(x) − y|

• We don’t know P(x, y), so we employ empirical risk

minimization (ERM), and choose f ∈ F (where

F is appropriately restricted) to minimize

Remp[f ] =
1

m

m∑
i=1

c(xi, yi, f(xi))
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Law of Large Numbers

• For iid examples (xi, yi) and a fixed function f ,

the loss ζi = c(xi, yi, f(xi)) are also iid random

variables

• In particular, if c(xi, yi, f(xi)) = (1/2)|f(xi) −
yi|, then ζi ∈ {0,1} and are called Bernoulli trials

• Can apply Chernoff bound to show how quickly

an empirical mean converges to its expecta-

tion:

P




∣∣∣∣∣∣
1

m

m∑
i=1

ζi −E [ζ]

∣∣∣∣∣∣ ≥ ε


 ≤ 2 exp

(
−2mε2

)

• I.e. for a fixed f , as the sample grows, the

empirical risk converges exponentially fast to

the true risk

• A more general form holds for ζ ∈ [a, b]
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Consistency

• Problem: f is not fixed!

– Instead, we are choosing f to minimize Remp[f ]

– No longer have independent Bernoulli trials

• What we really want is more subtle: as m → ∞,
want fm = argminf∈F Remp[f ] to also mini-
mize R[f ]

– I.e. in the limit, fm’s training error matches
its test error
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Uniform Convergence

• In other words, want convergence of Remp[f ]

towards R[f ] to be uniform over all f ∈ F

– We’ll come back to this later

• Let fm be the function from F minimizing

Remp and let fopt be the one minimizing R.

Then ∀ f ∈ F

R[f ] − R[fopt] ≥ 0 ,

Remp[f ] − Remp[f
m] ≥ 0

• Thus

R[fm] − R[fopt] ≥ 0 , (1)

Remp[f
opt] − Remp[f

m] ≥ 0 (2)
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Uniform Convergence

(cont’d)

• Sum these and get

0 ≤ R[fm] − Remp[f
m] + Remp[f

opt] − R[fopt]

≤ sup
f∈F

(R[f ] − Remp[f ]) + Remp[f
opt] − R[fopt]

• Since fopt is a fixed function, we can apply our

earlier results that say Remp[fopt] approaches

R[fopt] as m → ∞

• Also, if we have uniform convergence (from

above), then

sup
f∈F

(R[f ] − Remp[f ])
P→ 0 as m → ∞

(converges in probability; see p. 130)

• Thus in the limit, LHSs of (1) and (2) con-

verge to 0, R[fm] is not larger than Remp[fm],

and ERM works

• UC also necessary for ERM (Theorem 5.3)
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Vapnik-Chervonenkis Dimension

• Under what circumstances do we get uniform

convergence?

– I.e. what restrictions on F and m?

• There are many ways to quantify the “rich-

ness” of F

• We will focus on the Vapnik-Chervonenkis (VC)

dimension

Defn: A dichotomy of a set S is a partition of S

into two disjoint subsets, i.e. into a set of +

patterns and a set of − patterns

Defn: A set of instances S is shattered by set of func-

tions F if and only if for every dichotomy of

S there exists some function f ∈ F consistent

with this dichotomy
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Example: Three Instances Shattered

by a Hyperplane
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The Vapnik-Chervonenkis Dimension

(cont’d)

Defn: The Vapnik-Chervonenkis dimension h of F de-

fined over X is the size of the largest finite

subset of X shattered by F. If arbitrarily large

finite sets of X can be shattered by F, then

h ≡ ∞.

• So to show that h = d, must show there exists

some subset X′ ⊂ X of size d that F can shat-

ter and show that there exists no subset of X
of size > d that F can shatter

• Note that h ≤ log2 |F| (why?)
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VCD Example: Intervals on R

• Let F be the set of closed intervals on the real

line (each f ∈ F is a single interval), X = R,

and a point x ∈ X is positive iff it lies in the

interval defined by f ∈ F

n/p

pos/pos

n/n

pos/neg

Can shatter 2 pts, so
VCD >= 2

pos 

neg

pos Can’t shatter any 3 pts, so
VCD < 3

• Thus h = 2

• In general, VCD of d-dimensional boxes is 2d
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VCD of Hyperplanes

( )( )a b

• Can’t shatter (b), so what is lower bound on

VCD?

• What about upper bound?

• In general, VCD of d-dimensional hyperplanes

is d + 1
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Putting it Together

• It turns out that if F has finite VCD then we

can get uniform convergence and use ERM

• Skipping the proofs, one can show that for all

f ∈ F, with probability at least 1 − δ

R[f ] ≤ Remp[f ] +

√
1

m

(
h

(
ln

2m

h
+ 1

)
+ ln

4

δ

)
(3)

where m is the sample size

• Thus we have a tradeoff between low error on

the training set and low VCD h

• Why the dependence on δ?
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Aside: Structural Risk Minimization

• We can work with the tradeoff between Remp

and h via structural risk minimization (SRM)

• First decompose F into nested subsets of func-

tions S1 · · ·Sn−1 ⊂ Sn ⊂ Sn+1 · · · such that

h1 < · · · < hn−1 < hn < hn+1 < · · ·

• For each Si, find the fi ∈ Si minimzing Remp

• Choose the fi that minimizes (3)
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Back to SVMs

• What will the VCD be of our SVMs?

• Can we apply (3) to our results?
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Back to SVMs
(cont’d)

• Recall that our SVMs not only find a hyper-
plane, but a large margin hyperplane

T5.5 Consider hyperplanes 〈w,x〉 = 0 that are nor-
malized such that min1≤i≤r | 〈w,xi〉 | = 1 for
some set of points X∗ = {x1, . . . ,xr} (i.e. the
hyperplanes are in canonical form). Then the
set of decision functions defined on X∗ such
that ‖w‖ ≤ Λ has VC dimension at most R2Λ2,
where R is the radius of the smallest sphere
centered at the origin and containing X∗.
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Back to SVMs

(cont’d)

• Thus can substitute R2Λ2 for h in (3)

• Sort of (not exactly) motivates minimzing ‖w‖
in SVMs (see p. 142)

• Minimizing ‖w‖ corresponds to maximizing

margin

– This is our regularization term

• Can extend result to where ball is not centered

at origin (by adding offset b) and to the entire

input domain X
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Example

• Application of polynomial classifiers of degrees

2–7 to character recognition

• Data are separable for all degrees, so Remp = 0

in all cases

• Ran 10 tests on different data sets, computed

average VCD bound from T5.5 and average

number of errors on independent test set

• VCD bound closely matches test error
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Topic summary due in 1 week!
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