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Introduction

e In Chapter 3, we discussed the need for re-
stricting the class of functions F we choose
from when minimizing Rempl[f]

Introduction
(cont'd)

e Put another way, simply minimzing Remplf]
doesn’'t necessarily minimize R[f]

e We will quantify the “expressiveness” or ‘rich-
ness' of F via its Vapnik-Chervonenkis (VC)

dimension h, allowing us to bound R[f] with
probability at least 1 — 4:

R[f] < Remplf] + \/; (1 (m 27’” +1)+1n g) ,

where m is training sample size
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An Example

e Consider two fits to m observations
S = {(ZL‘]_,y]_),. --7($m7y’m)} € X X yv ny =R:

X

e Restricting (biasing) our set of models to linear
will always lead to simple explanations of S,
though maybe not always good ones

e Allowing our set of models to be degree m
polynomials will always lead to perfect expla-
nations of S, but the models will have high
variance in betwen data points

e This is the bias-variance dilemma, aka the is-
sue of avoiding underfitting and overfitting
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Empirical Risk Minimization

e Recall that our ultimate goal is to minimize
the expected risk:

R = [, ey f@) dPG.y)

where commonly Y = {+1, -1} and ¢(z, vy, f(z)) =
(1/2)[f(z) — vl

e We don't know P(z,y), so we employ empirical risk
minimization (ERM), and choose f € F (where
F is appropriately restricted) to minimize

Remplf] =~ e i, (@)

=1

Law of Large Numbers

e For iid examples (z;,y;) and a fixed function f,
the loss ¢; = c(x;,y;, f(x;)) are also iid random
variables

e In partiCl-”arv if c(mzyy’uf(xl)) = (1/2)|f(£1}1) -
yil, then ¢ € {0, 1} and are called Bernoulli trials

e Can apply Chernoff bound to show how quickly
an empirical mean converges to its expecta-
tion:

|

e I.e. for a fixed f, as the sample grows, the
empirical risk converges exponentially fast to
the true risk

1 m
gi; G—E[] > 6) < 2exp (—2m62>

e A more general form holds for ¢ € [a, b]

Consistency

e Problem: f is not fixed!
— Instead, we are choosing f to minimize Remp|f]

— No longer have independent Bernoulli trials

Risk

I re= I” Function class

e What we really want is more subtle: as m — oo,
want f™ = argminscr Remp[f] to also mini-
mize R[f]

— Le. in the limit, f™'s training error matches
its test error




Uniform Convergence

In other words, want convergence of Remp[f]
towards R[f] to be uniform over all f € F

— We'll come back to this later

Let f™ be the function from F minimizing
Remp and let fOPt be the one minimizing R.
Then VfeF

R[f] - R[f°"] >0 ,
Remp[f] — Remp[f™] >0

Thus

R[f™ — R[f°*'] >0 , (1)
Rempl[f°PY] — Remplf™ > 0 (2)

Uniform Convergence
(cont'd)
Sum these and get

0 < R[f™ — Remplf™ + Remplf°Pt] — R[f°PY]
Jscgg(Rm — Remplf]) + Remplf°Pt] — R[f°PY]

IA

e Since fOPt is a fixed function, we can apply our

earlier results that say Remp[f°Pt] approaches
R[f°Pt] as m — oo

e Also, if we have uniform convergence (from

above), then
sup (R[f] — Remp[f]) P 0asm—
feFr

(converges in probability; see p. 130)

e Thus in the limit, LHSs of (1) and (2) con-

verge to 0, R[f™] is not larger than Remp[f™],
and ERM works

e UC also necessary for ERM (Theorem 5.3)
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Defn:

Defn:

Vapnik-Chervonenkis Dimension

Under what circumstances do we get uniform
convergence?

— I.e. what restrictions on F and m?

There are many ways to quantify the ‘“rich-
ness” of F

We will focus on the Vapnik-Chervonenkis (VC)

dimension

A dichotomy of a set S is a partition of S
into two disjoint subsets, i.e. into a set of +
patterns and a set of — patterns

A set of instances S is shattered by set of func-
tions F if and only if for every dichotomy of
S there exists some function f € F consistent
with this dichotomy
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Example: Three Instances Shattered
by a Hyperplane
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The Vapnik-Chervonenkis Dimension
(cont'd)

Defn: The Vapnik-Chervonenkis dimension h of F de-
fined over X is the size of the largest finite
subset of X shattered by F. If arbitrarily large
finite sets of X can be shattered by F, then

h = oo.

e So to show that h = d, must show there exists
some subset X' C X of size d that F can shat-
ter and show that there exists no subset of X
of size > d that F can shatter

e Note that h < logs |F| (why?)
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VCD Example: Intervals on R

e Let F be the set of closed intervals on the real
line (each f € F is a single interval), X = R,
and a point z € X is positive iff it lies in the
interval defined by f € F

e pos/pos\'
n/n n/p Can shatter 2 pts, s0
VCD >=2
pos/n>eg
pos pos Can't shatter any 3 pts, so
-<—— 00— VCD < 3
neg
e Thus h=2

e In general, VCD of d-dimensional boxes is 2d
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VCD of Hyperplanes

@ )

e Can't shatter (b), so what is lower bound on
VCD?

e What about upper bound?
o

e In general, VCD of d-dimensional hyperplanes
isd+1
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Putting it Together

e It turns out that if F has finite VCD then we
can get uniform convergence and use ERM

e SKipping the proofs, one can show that for all
f € F, with probability at least 1 — 4

1 2m 4
R[f] < Remplf] + \/m (h (In e + 1) +In 5)
(3
where m is the sample size

e Thus we have a tradeoff between low error on
the training set and low VCD h

e Why the dependence on 67
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Aside: Structural Risk Minimization

e We can work with the tradeoff between Remp
and h via structural risk minimization (SRM)

First decompose F into nested subsets of func-
tions S1---S,—1 C Sp C Sp41--- such that
hy < <hp_1<hp<hpgg <---

e For each §;, find the f; € S; minimzing Remp

Choose the f; that minimizes (3)

error
bound on resr error

capacity term

training error

structure
e C = Sn-h’ e
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Back to SVMs

e \What will the VCD be of our SVMs?

e Can we apply (3) to our results?
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Back to SVMs
(cont'd)

e Recall that our SVMs not only find a hyper-
plane, but a large margin hyperplane

T5.5 Consider hyperplanes (w,x) = 0 that are nor-
malized such that mini<;<,|(w,x;)| = 1 for
some set of points X* = {x3,...,x,} (i.e. the
hyperplanes are in canonical form). Then the
set of decision functions defined on X* such
that ||w|| < A has VC dimension at most R?A2,
where R is the radius of the smallest sphere
centered at the origin and containing X*.
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Back to SVMs
(cont'd)

e Thus can substitute R2A2 for h in (3)

e Sort of (not exactly) motivates minimzing ||w||

in SVMs (see p. 142)

e Minimizing ||w|| corresponds to maximizing

margin

— This is our regularization term

e Can extend result to where ball is not centered

at origin (by adding offset b) and to the entire
input domain X
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Example

e Application of polynomial classifiers of degrees
2—7 to character recognition

e Data are separable for all degrees, so Remp = 0
in all cases

e Ran 10 tests on different data sets, computed
average VCD bound from T5.5 and average
number of errors on independent test set

average VC dimension bound total # of test errors
i
2000 + |
- 300
1000 +
- 200
: : - 174
degree: 2 4 5 6 7

e VCD bound closely matches test error
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Topic summary due in 1 week!

22




