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Introduction

e In Lecture 1 we mentioned our desire to infer
a ‘''good’ classifier

e \What does this mean?!?!

e [ here are many ways to define “goodness’,
even for binary classification



Outline

e Loss functions
— Binary classification

— Regression

e EXxpected risk

e Sections 1.3, 3.1-3.2 (also read Section 3.5)



D3.1

Loss Functions

Let (z,vy, f(x)) € X x Y x Y be the pattern z,
its true label y and a prediction f(x) of y. A
loss function isa mapping c: XxYxY — [0, 00)

with the property c¢(z,y,y) = 0 for all x € X and
yey

c is always > 0 so we can't use good predictions
to “undo” bad ones

It is always possible to get O loss on pattern x
by predicting correctly

Our choice of loss function will depend on con-
siderations of computational complexity and
statistical properties



Loss Functions
Binary Classification

e Count number of misclassifications:

0O ify=f(x)
1 otherwise

c(z,y, f(z)) = {

e Same as above, but penalty is input-dependent:

0 if y= f(x)
c¢(x) otherwise

c(z,y, f(z)) = {

— E.qg. if y € {rocks,diamonds} then penalty
for ‘false diamond’ classification depends
on x's weight

e Can also have different values for false positive
(y = —1) and false negative (y = +1) errors

— If y € {cancer,—cancer} then FP results in
unnecessary treatment, but FN can be fatal



Loss Functions
Binary Classification
(cont'd)

e If f(x) is real-valued and y € {—1,41}, can
think of sign(f(x)) as prediction and |f(x)| as a
confidence. Then a highly confident incorrect
prediction can be penalized more, as can low-
confidence correct predictions:

— Soft margin loss:

c(z,y, f(z)) = max(0,1—yf(x))

)0 if yf(zx) >1
)1 -yf(x) otherwise

— Logistic loss:

c(z,y, f(x)) = In(1 + exp(—yf(x)))

— Both penalize a lot for confident, incorrect
predictions, penalize a little for low confi-
dence, and don’'t penalize much or at all
for confident, correct predictions



clx, v, f(x))

Loss Functions
Binary Classification
(cont'd)
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Loss Functions
Regression

e In regression, Y C R rather than Y ={-1,+41}

e [ hus we're interested in how far off our pre-
diction f(x) is

e Squared loss (very popular):

c(z,y, f(2)) = (f(@) — y)°

e Can extend soft margin loss to e-insensitive
loss, which doesn’'t penalize for close predic-
tions:

c(z,y, f(x)) = |f(2) —yle = max(|f(x) —y|—¢ 0)




Loss Functions
Practical Considerations
e \Want loss function to be:
— Cheap to compute
— Have few discontinuities in first derivative
— Convex (to ensure unique global optimum)

— Yield computationally efficient solutions for
learning

— Resistant to outliers/noise



Risk

e A loss function measures error on individual
examples

e Our ultimate goal is to minimize 10oss on new
(yet unseen) examples

e How do we measure this?

— Without making certain assumptions, this
is very difficult or even impossible

— Assume that there is a probability distribu-
tion P(z,y) on X x Y that governs genera-

tion of patterns and labels
* Assume the pairs (z,y) are drawn iid (in-

dependent and identically distributed) ac-
cording to P(x,vy)

x Generally, we won't make specific assump-
tions about the nature of P(xz,vy)

— P(y | ) = conditional probability of getting
label y given that x is the pattern (so x
could have a different label on each draw)
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D3.2

D3.3

Risk
Definitions

For now, assume we know all the new patterns
we'll ever classify; call these the test patterns
xh,...,x , (note we do not know the labels
until after we make predictions)

When test set z,...,2/ , already known, goal
IS to minimize the expected error on the test set:

1™
Riestlf) 1= 5 3 | e(afou. f(2)) dP(y | 2})
=1

Often, minimizing Riest[f] not realistic since
typically don’t know test set a priori

— One exception: querying fixed collection of
images, biological sequences, etc.

The expected risk (expected loss) wrt P & c:

R[f] = E[Rtestlf]] = El[c(z,y, f(2))]
= [ e v F@) dP(2.)

Not realistic since we don't know P(x,vy)
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Risk
Definitions
(cont'd)

e To get a handle on P(z,y), assume it's the
same one that generated the training set

e Now use the training patterns to estimate P(z,y)

D3.4 The empirical risk is

Remplf] = [ (@, f(@)) pemp(a,y) dody

= =3 oy f@)
mi—1

e Easy to compute and generally straightforward
to minimize (depending on c¢)

e SO now all we have to do is find an f that
minimizes Remp|f], use that as our predictor,
and we're done, right?

(Can we go home now?)
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NO!

e \We have to appropriately restrict the set of
functions F from which we choose f

— Otherwise, Rempl[f] won't approximate R[f],
which is what we want to minimize

e E.g. what if F is the set of all functions from
X to Y7
— Then our learning algorithm could get Remp[f] =
O by simply storing the (x,vy) pairs in a table
(i.e. memorization)

— Is this learning? Will it generalize well?

e Restricting F has been looked from many per-
spectives: e.g. VC dimension, bias, structural
risk minimization

e Our approach (called regularization) will quan-
tify the “power” (‘“expressiveness”) of each f
and minimize a sum of this and Remp|f]

— Special case: minimum description length
principle
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Topic summary (over Lectures 2
and 3) due in 1 week!
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