
CSCE 978 Lecture 3: Risk and Loss
Functions∗

Stephen D. Scott

January 24, 2006

∗Most figures c©2002 MIT Press, Bernhard Schölkopf, and
Alex Smola.

1

Introduction

• In Lecture 1 we mentioned our desire to infer

a “good” classifier

• What does this mean?!?!

• There are many ways to define “goodness”,

even for binary classification

2

Outline

• Loss functions

– Binary classification

– Regression

• Expected risk

• Sections 1.3, 3.1–3.2 (also read Section 3.5)

3

Loss Functions

D3.1 Let (x, y, f(x)) ∈ X × Y × Y be the pattern x,

its true label y and a prediction f(x) of y. A

loss function is a mapping c : X×Y×Y → [0,∞)

with the property c(x, y, y) = 0 for all x ∈ X and

y ∈ Y

• c is always ≥ 0 so we can’t use good predictions

to “undo” bad ones

• It is always possible to get 0 loss on pattern x

by predicting correctly

• Our choice of loss function will depend on con-

siderations of computational complexity and

statistical properties

4

Loss Functions

Binary Classification

• Count number of misclassifications:

c(x, y, f(x)) =

0 if y = f(x)

1 otherwise

• Same as above, but penalty is input-dependent:

c(x, y, f(x)) =

0 if y = f(x)

c̃(x) otherwise

– E.g. if y ∈ {rocks,diamonds} then penalty

for “false diamond” classification depends

on x’s weight

• Can also have different values for false positive

(y = −1) and false negative (y = +1) errors

– If y ∈ {cancer,¬cancer} then FP results in

unnecessary treatment, but FN can be fatal

5

Loss Functions

Binary Classification

(cont’d)

• If f(x) is real-valued and y ∈ {−1, +1}, can

think of sign(f(x)) as prediction and |f(x)| as a

confidence. Then a highly confident incorrect

prediction can be penalized more, as can low-

confidence correct predictions:

– Soft margin loss:

c(x, y, f(x)) = max(0,1 − yf(x))

=

0 if yf(x) ≥ 1

1 − yf(x) otherwise

– Logistic loss:

c(x, y, f(x)) = ln (1 + exp(−yf(x)))

– Both penalize a lot for confident, incorrect

predictions, penalize a little for low confi-

dence, and don’t penalize much or at all

for confident, correct predictions

6

Loss Functions

Binary Classification

(cont’d)

7

Loss Functions

Regression

• In regression, Y ⊆ R rather than Y = {−1, +1}

• Thus we’re interested in how far off our pre-

diction f(x) is

• Squared loss (very popular):

c(x, y, f(x)) = (f(x) − y)2

• Can extend soft margin loss to ε-insensitive

loss, which doesn’t penalize for close predic-

tions:

c(x, y, f(x)) = |f(x)−y|ε = max(|f(x)−y|−ε, 0)

8

Loss Functions

Practical Considerations

• Want loss function to be:

– Cheap to compute

– Have few discontinuities in first derivative

– Convex (to ensure unique global optimum)

– Yield computationally efficient solutions for

learning

– Resistant to outliers/noise

9

Risk

• A loss function measures error on individual

examples

• Our ultimate goal is to minimize loss on new

(yet unseen) examples

• How do we measure this?

– Without making certain assumptions, this

is very difficult or even impossible

– Assume that there is a probability distribu-

tion P(x, y) on X × Y that governs genera-

tion of patterns and labels

∗ Assume the pairs (x, y) are drawn iid (in-

dependent and identically distributed) ac-

cording to P(x, y)

∗ Generally, we won’t make specific assump-

tions about the nature of P(x, y)

– P(y | x) = conditional probability of getting

label y given that x is the pattern (so x

could have a different label on each draw)

10

Risk

Definitions

• For now, assume we know all the new patterns

we’ll ever classify; call these the test patterns

x′1, . . . , x′
m′ (note we do not know the labels

until after we make predictions)

D3.2 When test set x′1, . . . , x′
m′ already known, goal

is to minimize the expected error on the test set:

Rtest[f] :=
1

m′

m′∑
i=1

∫
Y

c(x′i, y, f(x′i)) dP(y | x′i)

• Often, minimizing Rtest[f] not realistic since

typically don’t know test set a priori

– One exception: querying fixed collection of

images, biological sequences, etc.

D3.3 The expected risk (expected loss) wrt P & c:

R[f] := E [Rtest[f]] = E [c(x, y, f(x))]

=

∫
X×Y

c(x, y, f(x)) dP(x, y)

• Not realistic since we don’t know P(x, y)

11

Risk

Definitions

(cont’d)

• To get a handle on P(x, y), assume it’s the

same one that generated the training set

• Now use the training patterns to estimate P(x, y)

D3.4 The empirical risk is

Remp[f] :=

∫
X×Y

c(x, y, f(x)) pemp(x, y) dx dy

=
1

m

m∑
i=1

c(xi, yi, f(xi))

• Easy to compute and generally straightforward

to minimize (depending on c)

• So now all we have to do is find an f that

minimizes Remp[f], use that as our predictor,

and we’re done, right?

(Can we go home now?)

12

NO!

• We have to appropriately restrict the set of

functions F from which we choose f

– Otherwise, Remp[f] won’t approximate R[f],

which is what we want to minimize

• E.g. what if F is the set of all functions from

X to Y?

– Then our learning algorithm could get Remp[f] =

0 by simply storing the (x, y) pairs in a table

(i.e. memorization)

– Is this learning? Will it generalize well?

• Restricting F has been looked from many per-

spectives: e.g. VC dimension, bias, structural

risk minimization

• Our approach (called regularization) will quan-

tify the “power” (“expressiveness”) of each f

and minimize a sum of this and Remp[f]

– Special case: minimum description length

principle

13

Topic summary (over Lectures 2
and 3) due in 1 week!

14

