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Outline

Dot products as similarity measures

Example: Product features

Definitions

All kernels are dot products

— The “kernel trick”

Examples of kernels

Sections 1.1, 2.1, 2.2.1-2.2.2, 2.2.6—2.2.7, 2.3
(also read Sections 2.2.3-2.2.4, 2.5)



Introduction

e Remember that a kernel is simply a dot prod-
uct under some mapping

— We'll go into this more formally later

e Dot product = similarity measure

— E.g.: x1=(1/v2,1/v/2), x0 =(1/1.3,1/1.565),
x3 = (1,0) ([|x;]| =1 Vi)

(x1,X2) ~ 1/1.838 +1/2.213 ~ 0.9958
(x1,x3) =1/v/24+ 0~ 0.707

— If ||x|| =1 and |¥/|| = 1, then (x,x') = co-
sine of angle between them

e SO kernel £ : X x X — R gives measures of
similarity under its corresponding remapping
b X —-H

— X is the original input space, where the la-
beled training examples x; come from

— 'H is the feature space, which is where we'll
search for a separating hyperplane




Product Features

e Let X C RY. We will consider the dth order
products of the entries [z]; of z € X"

[$]]1[£U]]2[x]]d for jl,...,jdE{l,...,N}

e [ hese are called product features, and H is the
set of all products of d entries

e Popular in image processing:

— Let each x correspond to a vector of the
pixel intensities of an entire image (smoothed
to remove noise)

— Each product feature in ®(z) is related to
a logical “and” of a subset (up to size d) of
pixels from the image x




Product Features
(cont'd)

o E.g. (([z]1, [z]2)) = ([#]%, []3, [x]1[x]2)

e Problem: If x has N dimensions, then for order-
d products, the dimension of ®(x) is

=7 ()

— E.g. images that are 16 x 16 (IN = 256) and
d = 5 yield Ny ~ 1010

e But if we're only concerned about the dot prod-
ucts, then we can define &, (xz) such that

d
(Pa(@), Pa(a)) = (z,2')" = k(z,2) |
which is easy to compute

— E.g. ®(2) = ([213, [2]3, v2lz]1[2]2)

e Can also use k(z,z') = ((z,2')+ 1)¢ to get
terms of degree < d



Product Features
An Example
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Definitions

e Up to now, we assumed X C R¥Y. For the
rest of this course, X can be arbitrary, e.g.
sequences of letters from some alphabet (such
as protein sequences)

e We will require the range of kernels to be R,
even though the book allows it to be complex

D2.3 Given a function k£ : X x X — R and patterns

x1,...,om € X, the m x m matrix K (where
K;; = k(x;,z;)) is called the Gram matrix or
kernel matrix of k& wrt x1,...,xm

D2.4 A real, symmetric mxm matrix K that satisfies
(x, Kx) > 0 for all x € H is positive definite.
Equivalently, K is PD if it is symmetric and
satisfies Zi,j Cichz'j > 0 for all Ci, Cj € R

— PD < all eigenvalues > 0



Definitions
(cont'd)

D2.5 A function £k on X x X which for all positive
integers m and all zq1,...,xm € X yields a PD
Gram matrix is called a positive definite kernel,
aka kernel, reproducing kernel, Mercer kernel,
admissible kernel, support vector kernel, non-
negative definite kernel, positive semidefinite
kernel, covariance function

e Properties of PD kernels:

1. If @ maps X to H, then (d(x),d(x’)) is a
PD kernel on X x X

2. k(x,z) >0 forall zx €¢ X
3. Cauchy-Schwarz: k(z,z)? < k(z,2)k(2’, ")

4. k(x,z) =0 for all x € X implies k(z,z') =0
for all z,2’ € X



All Kernels are Dot Products

e All kernels are dot products in some feature
space H

e Consider a kernel £k and some z € X

e Then ®(x)(-) = k(-,z) is a function that mea-
sures similarity of all z’ € X to «

— Ie. ®(z)(z") = k(2 x)

— One such function for each x € X
m

X X d¥x) ¥ x’)

e Can now think of each x € X as a function
over X



All Kernels are Dot Products
(cont’'d)

e We can turn the set of functions ©(X) into a
linear space

e Let m,m/ be positive ints, a;, 3 € R, and
T1,...,Tm,Tq,. ..,z , € X be arbitrary

o Let

m m/
FC) =Y aik(z)  g() = > Bik(, )
i=1 j=1
and define the dot product as

i=1j=1

e Can show that (1) is a valid dot product and
that

<k(',$),k‘(',$/)> — k(xaw/) )

which implies

(D(x), ®(2)) = k(z,2")
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The “Kernel Trick”

e [ hus we see that any algorithm formulated in
terms of a PD kernel kK can be changed by
replacing k with another PD kernel &k’

e Holds for any algorithm, not just SVMs
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Examples of Kernels

e Polynomial: k(z,z') = ((z,2') + ¢)¢ for ¢ > 0
— When ¢ = 0, then k is invariant under all

rotations and mirroring operations of X

e Gaussian radial basis function (Gaussian RBF):

2
k(az,x’) — exp (_HLU L || )

D52

with ¢ > 0

— Invariant under rotations and translations

— Its remapping has [|[®(x)|| =1 forall x € X
e Sigmoid: k(z,z’) = tanh(k (x,z") +9) with x >

Oand ¥ <0

— Invariant under rotations

— Not PD, but still used in practice
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Examples of Kernels
(cont'd)

e Can make new kernels from other kernels: if
k1 and k> are PD kernels, then so are
= akq for all >0
= k1 + k2
= k1 ko

= k(A,B) ‘=Y cAren k1(z,z’), where A, B C
X

— More on this later
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Empirical Kernel Map

e Given a kernel k and a dataset Z = {z1,...,2n},
can define an empirical kernel map ®m,(x) =

(k(z1,2),...,k(zn,2)) "

e [.e. remap x to a new representation based on
its similarities to the patterns in Z

e Can then use each d,,(x) as training patterns
in an SVM, etc.

— Can feed pairs of &,,(x) into a different ker-
nel k'

— If k' is a straight dot product, then this is
the same as squaring K, k's Gram matrix

e T his remapping is valid even if k is not PD!
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Topic summary due in 1 week!
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