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Outline

• Dot products as similarity measures

• Example: Product features

• Definitions

• All kernels are dot products

– The “kernel trick”

• Examples of kernels

• Sections 1.1, 2.1, 2.2.1–2.2.2, 2.2.6–2.2.7, 2.3

(also read Sections 2.2.3–2.2.4, 2.5)
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Introduction

• Remember that a kernel is simply a dot prod-

uct under some mapping

– We’ll go into this more formally later

• Dot product ⇒ similarity measure

– E.g.: x1 = (1/
√

2,1/
√

2), x2 = (1/1.3, 1/1.565),

x3 = (1,0) (‖xi‖ = 1 ∀i)

〈x1,x2〉 ≈ 1/1.838 + 1/2.213 ≈ 0.9958

〈x1,x3〉 = 1/
√

2 + 0 ≈ 0.707

– If ‖x‖ = 1 and ‖x′‖ = 1, then 〈x,x′〉 = co-

sine of angle between them

• So kernel k : X × X → R gives measures of

similarity under its corresponding remapping

Φ : X → H

– X is the original input space, where the la-

beled training examples xi come from

– H is the feature space, which is where we’ll

search for a separating hyperplane
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Product Features

• Let X ⊆ RN . We will consider the dth order

products of the entries [x]j of x ∈ X :

[x]j1 · [x]j2 · · · [x]jd
for j1, . . . , jd ∈ {1, . . . , N}

• These are called product features, and H is the

set of all products of d entries

• Popular in image processing:

– Let each x correspond to a vector of the

pixel intensities of an entire image (smoothed

to remove noise)

– Each product feature in Φ(x) is related to

a logical “and” of a subset (up to size d) of

pixels from the image x
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Product Features

(cont’d)

• E.g. Φ(([x]1, [x]2)) = ([x]21, [x]22, [x]1[x]2)

• Problem: If x has N dimensions, then for order-

d products, the dimension of Φ(x) is

NH =
(d + N − 1

d

)
≥
(

d + N − 1

d

)d

– E.g. images that are 16×16 (N = 256) and

d = 5 yield NH ≈ 1010

• But if we’re only concerned about the dot prod-

ucts, then we can define Φd(x) such that〈
Φd(x),Φd(x

′)
〉
=
〈
x, x′

〉d
= k(x, x′) ,

which is easy to compute

– E.g. Φ2(x) =
(
[x]21, [x]22,

√
2[x]1[x]2

)

• Can also use k(x, x′) =
(〈

x, x′
〉
+ 1

)d to get

terms of degree ≤ d
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Product Features

An Example
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Definitions

• Up to now, we assumed X ⊆ R
N . For the

rest of this course, X can be arbitrary, e.g.

sequences of letters from some alphabet (such

as protein sequences)

• We will require the range of kernels to be R,

even though the book allows it to be complex

D2.3 Given a function k : X × X → R and patterns

x1, . . . , xm ∈ X , the m × m matrix K (where

Kij = k(xi, xj)) is called the Gram matrix or

kernel matrix of k wrt x1, . . . , xm

D2.4 A real, symmetric m×m matrix K that satisfies

〈x, Kx〉 ≥ 0 for all x ∈ H is positive definite.

Equivalently, K is PD if it is symmetric and

satisfies
∑

i,j cicjKij ≥ 0 for all ci, cj ∈ R

– PD ⇔ all eigenvalues ≥ 0
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Definitions

(cont’d)

D2.5 A function k on X × X which for all positive

integers m and all x1, . . . , xm ∈ X yields a PD

Gram matrix is called a positive definite kernel,

aka kernel, reproducing kernel, Mercer kernel,

admissible kernel, support vector kernel, non-

negative definite kernel, positive semidefinite

kernel, covariance function

• Properties of PD kernels:

1. If Φ maps X to H, then
〈
Φ(x),Φ(x′)

〉
is a

PD kernel on X × X

2. k(x, x) ≥ 0 for all x ∈ X

3. Cauchy-Schwarz: k(x, x′)2 ≤ k(x, x)k(x′, x′)

4. k(x, x) = 0 for all x ∈ X implies k(x, x′) = 0

for all x, x′ ∈ X
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All Kernels are Dot Products

• All kernels are dot products in some feature

space H

• Consider a kernel k and some x ∈ X

• Then Φ(x)(·) = k(·, x) is a function that mea-

sures similarity of all x′ ∈ X to x

– I.e. Φ(x)(x′) = k(x′, x)

– One such function for each x ∈ X

• Can now think of each x ∈ X as a function

over X
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All Kernels are Dot Products

(cont’d)

• We can turn the set of functions Φ(X ) into a

linear space

• Let m, m′ be positive ints, αi, βj ∈ R, and

x1, . . . , xm, x′1, . . . , x′m′ ∈ X be arbitrary

• Let

f(·) =
m∑

i=1

αik(·, xi) g(·) =
m′∑

j=1

βjk(·, x′j)

and define the dot product as

〈f, g〉 :=
m∑

i=1

m′∑
j=1

αiβjk(xi, x
′
j) (1)

• Can show that (1) is a valid dot product and

that 〈
k(·, x), k(·, x′)

〉
= k(x, x′) ,

which implies〈
Φ(x), Φ(x′)

〉
= k(x, x′)
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The “Kernel Trick”

• Thus we see that any algorithm formulated in

terms of a PD kernel k can be changed by

replacing k with another PD kernel k′

• Holds for any algorithm, not just SVMs
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Examples of Kernels

• Polynomial: k(x, x′) =
(〈

x, x′
〉
+ c

)d for c ≥ 0

– When c = 0, then k is invariant under all

rotations and mirroring operations of X

• Gaussian radial basis function (Gaussian RBF):

k(x, x′) = exp

(
−‖x − x′‖2

2σ2

)

with σ > 0

– Invariant under rotations and translations

– Its remapping has ‖Φ(x)‖ = 1 for all x ∈ X

• Sigmoid: k(x, x′) = tanh(κ
〈
x, x′

〉
+ϑ) with κ >

0 and ϑ < 0

– Invariant under rotations

– Not PD, but still used in practice
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Examples of Kernels

(cont’d)

• Can make new kernels from other kernels: if

k1 and k2 are PD kernels, then so are

⇒ αk1 for all α ≥ 0

⇒ k1 + k2

⇒ k1 k2

⇒ k(A, B) :=
∑

x∈A,x′∈B k1(x, x′), where A, B ⊆
X

– More on this later
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Empirical Kernel Map

• Given a kernel k and a data set Z = {z1, . . . , zn},
can define an empirical kernel map Φm(x) =

(k(z1, x), . . . , k(zn, x))�

• I.e. remap x to a new representation based on

its similarities to the patterns in Z

• Can then use each Φm(x) as training patterns

in an SVM, etc.

– Can feed pairs of Φm(x) into a different ker-

nel k′

– If k′ is a straight dot product, then this is

the same as squaring K, k’s Gram matrix

• This remapping is valid even if k is not PD!
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Topic summary due in 1 week!
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