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Outline

Dot products as similarity measures

Example: Product features

Definitions

All kernels are dot products

— The “kernel trick”

Examples of kernels

Sections 1.1, 2.1, 2.2.1-2.2.2, 2.2.6—2.2.7, 2.3
(also read Sections 2.2.3—-2.2.4, 2.5)

Introduction

e Remember that a kernel is simply a dot prod-
uct under some mapping

— We'll go into this more formally later

e Dot product = similarity measure

— E.g.: x1 = (1/v2,1/v2), xo = (1/1.3,1/1.565),
x3 = (1,0) (lIxill =1 vi)
(x1,%2) ~ 1/1.838 4 1/2.213 ~ 0.9958
(x1,x3) = 1/vV2+4 0~ 0.707

— If x| =1 and ||x|| = 1, then (x,x) = co-
sine of angle between them

e So kernel £ : X x X — R gives measures of
similarity under its corresponding remapping
DX - H

— X is the original input space, where the la-
beled training examples x; come from

— 'H is the feature space, which is where we’ll
search for a separating hyperplane

Product Features

Let X C RN. We will consider the dth order
products of the entries [z]; of z € X

[x];, - [2]j, - - 2], for j1,...,54 € {1,...,N}

These are called product features, and H is the
set of all products of d entries

Popular in image processing:

— Let each z correspond to a vector of the
pixel intensities of an entire image (smoothed
to remove noise)

— Each product feature in ®(z) is related to
a logical “and” of a subset (up to size d) of
pixels from the image z=




Product Features
(cont'd)

E.g. ®(([z]1, [2]2)) = ([2]1, [2]5, [z]1 [2]2)

Problem: If x has NV dimensions, then for order-
d products, the dimension of ®(z) is

d+N-1 d+N—1>d

Ny = > (1= -

= d )—( d

— E.g. images that are 16 x 16 (N = 256) and
d =5 yield Ny ~ 1010

But if we're only concerned about the dot prod-
ucts, then we can define ®,4(z) such that

d
(@4(2), Py(a’)) = (2,2")" = k(=,2)
which is easy to compute

— E.g. ®3(2) = ([213, [213, v2[z]1 [2]2)

Can also use k(z,2') = ((z,2)+ 1)¢ to get
terms of degree <d

Product Features
An Example

B

D2.3

D2.4

Definitions

Up to now, we assumed X C RYN. For the
rest of this course, X can be arbitrary, e.g.
sequences of letters from some alphabet (such
as protein sequences)

We will require the range of kernels to be R,
even though the book allows it to be complex

Given a function k: X x X — R and patterns

z1,...,om € X, the m x m matrix K (where
K;; = k(x;,x)) is called the Gram matrix or
kernel matrix of k wrt z1,...,zm

A real, symmetric m xm matrix K that satisfies
(x, Kx) > 0 for all x € H is positive definite.
Equivalently, K is PD if it is symmetric and
satisfies }; jcic;Ky; > 0 for all ¢;,¢c; € R

— PD <« all eigenvalues > 0

Definitions
(cont'd)

D2.5 A function kK on X x X which for all positive

integers m and all z1,...,zm € X yields a PD
Gram matrix is called a positive definite kernel,
aka kernel, reproducing kernel, Mercer kernel,
admissible kernel, support vector kernel, non-
negative definite kernel, positive semidefinite
kernel, covariance function

e Properties of PD kernels:

1. If ® maps X to H, then (P(z), d(2')) is a
PD kernel on X x X

2. k(z,z) >0 forallze X
3. Cauchy-Schwarz: k(z,2')2 < k(z, z)k(2/,z)

4. k(x,z) = 0 for all x € X implies k(x,z') =0
for all z,2’ € X




All Kernels are Dot Products

e All kernels are dot products in some feature
space 'H

e Consider a kernel kK and some z €¢ X

e Then ®(z)(-) = k(-,z) is a function that mea-
sures similarity of all ' € X to =

— Le. ®(2)(z) = k(2/,x)

— One such function for each z € X
m
x x' Ty x) Iy x')

e Can now think of each z € X as a function
over X

All Kernels are Dot Products
(cont'd)

e We can turn the set of functions ®(X) into a
linear space

e Let m,m’ be positive ints, a;, 3; € R, and
Ty, .0, Tm, T, 2 € X be arbitrary

o Let

!

FOY= 3 aikCoz)  g() = ) Bik(-,z})

i=1 j=1
and define the dot product as

(fr9) =Y > aifjk(zs ) (1)

i=1j=1

e Can show that (1) is a valid dot product and
that
(k(,2), k(,2))) = k(z,2")

which implies

<<D(:n), <D(a:/)> = k(z, )
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The “Kernel Trick”

e Thus we see that any algorithm formulated in
terms of a PD kernel k can be changed by
replacing k with another PD kernel &’

e Holds for any algorithm, not just SVMs
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Examples of Kernels

e Polynomial: k(z,z') = ((z,a') + )¢ for ¢ >0
— When ¢ = 0, then k is invariant under all

rotations and mirroring operations of X

e Gaussian radial basis function (Gaussian RBF):

2
k(z,z') = exp (_7||x zl )

202
with ¢ > 0

— Invariant under rotations and translations

— Its remapping has ||[®(z)|| =1 for all z € X
e Sigmoid: k(z,z') = tanh(k (z,2') +9) with k >

Oand 9 <0

— Invariant under rotations

— Not PD, but still used in practice
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Examples of Kernels
(cont'd)

e Can make new kernels from other kernels: if
k1 and ko are PD kernels, then so are
= aky for all a >0
= k1t k2
= ki ko

= k(A,B) ==Y, carepki(z,z), where A, B C
X

— More on this later
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Empirical Kernel Map

e Given a kernel k and a dataset Z = {z1,...,2n},
can define an empirical kernel map ®,,(z) =

(k(z1,2),...,k(zn,2)) "

e I.e. remap x to a new representation based on
its similarities to the patterns in Z

e Can then use each ®,,(x) as training patterns
in an SVM, etc.

— Can feed pairs of ®,,(x) into a different ker-
nel k&’

— If k¥ is a straight dot product, then this is
the same as squaring K, k's Gram matrix

e This remapping is valid even if k is not PD!
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Topic summary due in 1 week!
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