
CSCE 990 Lecture 0: Administrivia

Stephen D. Scott

January 10, 2006

1

Welcome to CSCE 990 (aka 978)!

You should have the following handouts:

1. Syllabus

2. Copies of slides (also on web page)

Please check off or write your name on the roster

(if you write your name, indicate if you plan to

register for the course)

Also, don’t forget Homework 0 (due January 17)

on the web page: have a JPEG image of yourself

(and yourself only) ready to upload. The image

must be smaller than 100k, and must be in JPEG

format.

2

CSCE 990 Lecture 1: Introduction

Stephen D. Scott

January 10, 2006

3

Outline

• Overview of Machine Learning

• Overview of SVMs:

1. Introduction to linear classifiers and the Per-

ceptron algorithm

2. Introducing nonlinear remappings

3. Margins, duality, kernels, convexity

4

What is Machine Learning?

• Machine Learning: classify objects (instances,

examples) into categories (classes, labels)

• Has roots in artificial intelligence, probability

theory, statistics, computational complexity the-

ory, information theory, linear algebra, and al-

gorithms

• Applications: Machine vision, OCR, handwrit-

ing recognition, computer-aided diagnosis, speech

recognition, computational biology

5

An Example

Class BClass A

= Class A

= Class B

= unclassified

σ

µ

= decision line

6

Features, Feat. Vectors, Classifiers

• x = (x1, . . . , xℓ) is a feature vector of ℓ features

– E.g. x = (µ, σ) from previous slide

– Feature vectors also known as instances or

examples

• A classifier separates the feature space into

regions corresponding to two or more classes

(also known as labels)

– Use to classify new, unlabeled instances

– E.g. decision line from previous slide

• Classifier built by training (learning) using a

training set of labeled instances

• Can also use labeled instances as a testing set

to evaluate the classifier

7

Applications of Machine Learning

• Data mining: Extracting new information from

medical records, maintenance records, biolog-

ical sequence databases, etc.

• Self-customizing programs: E.g. a learning news-

reader/browser that learns what you like and

seeks it out

• Applications we can’t program by hand: E.g.

speech recognition, image analysis, autonomous

driving

8

Solving a ML Problem

sensor
patterns

generation
feature feature

selection

how to generate
features from

sensor readings?

which features
to use?

classifier
design

partition the
how to best

feature space?

system
evaluation

generalization
how to assess

capability?

1. Feat. Gen.: Want to reduce sensitivity to noise

and reduce complexity but retain important

info

“Pack” sensor info into small number of features

2. Feat. Sel.: Want to reduce complexity and re-

duce redundancy but retain important info

Select small set of features that separates classes

3. Classif. Des.: Want small generalization er-

ror and fast training and classification (i.e. low

complexity)

4. Sys. Eval.: Want to accurately estimate clas-

sifier’s generalization error

We’ll focus on stage 3, and a little on 4

9

Introduction to SVMs

Linear Classifiers

• Linear classifiers use a decision hyperplane to

perform classification

• Simple and efficient to train and use

• Optimality requires linear separability of classes

= Class A

= Class B

= unclassified

= decision line

10

Linear Discriminant Functions

• Let w = (w1, . . . , wℓ) be a weight vector and

w0 (a.k.a. θ) be a threshold

• Decision surface is a hyperplane:

w · x + w0 = 0

• E.g. predict label yx = +1 if
∑ℓ

i=1 wixi > w0,

otherwise predict that yx = −1

• Where the learning comes in: How to find wi’s

– Perceptron algorithm

– Winnow algorithm

11

The Perceptron Algorithm

• Assume linear separability, i.e. ∃w∗ such that

w∗ · x > 0 ∀x s.t. yx = +1

w∗ · x ≤ 0 ∀x s.t. yx = −1

(w∗0 is included in w∗)

1

i

x

x

x

l wl

y(t)=

y(t)=

1

+1 if sum > 0w1

w
i

Σ
i

(ω)1

(ω)2

−1 otherwise

w0

• Given actual label y(t) for trial t, update weights:

w(t + 1) = w(t) + ρ(y(t)− ŷ(t))x(t)

· ρ > 0 is learning rate

· (y(t)− ŷ(t)) moves weights toward correct

prediction for x

12

The Perceptron Algorithm

Example

w(t)

our dec. line

x(t)

w* w(t+1)

our new dec. line

opt. dec. line

0w = 0
y(t) = +1
y(t) = −1x2

x1

(ω)1

2
(ω)

13

The Perceptron Algorithm

Intuition

• Compromise between correctiveness and

conservativeness

– Correctiveness: Tendency to improve on x(t)

if prediction error made

– Conservativeness: Tendency to keep

w(t + 1) close to w(t)

• Use cost function that measures both:

U(w) =

conserv.
︷ ︸︸ ︷

‖w(t + 1)−w(t)‖22 +η

corrective
︷ ︸︸ ︷

(y(t)−w(t + 1) · x(t))2

=
ℓ∑

i=1

(wi(t + 1)− wi(t))
2 +

η



y(t)−
ℓ∑

i=1

wi(t + 1)xi(t)





2

14

The Perceptron Algorithm

Intuition

(cont’d)

• Take gradient w.r.t. w(t + 1) and set to 0:

0 =2(wi(t + 1)− wi(t))−

2η



y(t)−
ℓ∑

i=1

wi(t + 1)xi(t)



xi(t)

• Approximate with

0 =2 (wi(t + 1)− wi(t))−

2η



y(t)−
ℓ∑

i=1

wi(t) xi(t)



xi(t),

which yields

wi(t + 1) = wi(t)+

η



y(t)−
ℓ∑

i=1

wi(t)xi(t)



xi(t)

• Applying threshold to summation yields

wi(t + 1) = wi(t) + η (y(t)− ŷ(t)) xi(t)

15

The Perceptron Algorithm

Miscellany

• If classes linearly separable, then by cycling

through vectors,

guaranteed to converge in finite number of steps

• For real-valued output (aka regression), can

replace threshold function on sum with

– Identity function: f(x) = x

– Sigmoid function: e.g. f(x) = 1
1+exp(−ax)

– Hyperbolic tangent: e.g. f(x) = c tanh(ax)

16

Adding Nonlinearity

• For non-linearly separable classes, performance

of even the best linear classifier might not be

good

• Thus we will remap feature vectors to new

space where they are (almost) linearly sepa-

rable

• Many ways to do this; we’ll introduce a few

and then focus on using kernels

17

Getting Started: The XOR Problem

x

x

1

2

g (x)1

g (x)2
> 0

< 0

> 0
< 0

ω

ω1

2

ω2

A: (0,0)

D: (1,1)

B: (0,1)

C: (1,0)

• Can’t represent with a single linear separator,

but can with intersection of two:

g1(x) = 1 · x1 + 1 · x2 − 1/2

g2(x) = 1 · x1 + 1 · x2 − 3/2

• ω1 =
{

x ∈ Rℓ : g1(x) > 0 AND g2(x) < 0
}

• ω2 =
{

x ∈ Rℓ : g1(x), g2(x) < 0 OR g1(x), g2(x) > 0
}

18

Getting Started: The XOR Problem
(cont’d)

• Let yi =







0 if gi(x) < 0

1 otherwise

Class (x1, x2) g1(x) y1 g2(x) y2

ω1 B: (0,1) 1/2 1 −1/2 0
ω1 C: (1,0) 1/2 1 −1/2 0

ω2 A: (0,0) −1/2 0 −3/2 0
ω2 D: (1,1) 3/2 1 1/2 1

• Now feed y1, y2 into:

g(y) = 1 · y1 − 2 · y2 − 1/2

2 ω1
ω

1

2

A: (0,0)

D: (1,1)

y

y

B, C: (1,0)

g(y)

> 0
< 0

19

Getting Started: The XOR Problem

(cont’d)

• In other words, we remapped all vectors x to y

such that the classes are linearly separable in

the new vector space

Σ
i

Σ
i ix

Σ
i

w = 1

w = 1

w = 1

w = 1

12

01w = -1/2

w = -3/2

22

11

02

21

w

w

i1

i2 xi

iyw
i3

w = 1

23

13

w = -2

w = -1/203

y1

y2

x1

2x

Hidden Layer

Input Layer

Output
Layer

• This is a two-layer perceptron or two-layer

feedforward neural network

• Each neuron outputs 1 if its weighted sum ex-

ceeds its threshold, 0 otherwise

20

Generalized Linear Classifiers

• In XOR problem, used linear threshold funcs.

in hidden layer to map non-linearly sep. classes

to new space where they were lin. sep.

• Output layer gave sep. hyperplane in new space

• Replace hidden-layer lin. thresh. funcs. with family

of nonlinear functions fi : Rℓ → R, i = 1, . . . , k

• Hidden layer maps x ∈ R
ℓ to y = (f1(x), . . . , fk(x))

and output layer finds separating hyperplane:

• I.e. approximating separating surface as linear

combination of interpolation functions:

g(x) = w0 +
k∑

i=1

wi fi(x)

21

Generalized Linear Classifiers

Polynomial Classifiers

• Approximate g(x) by linear combination of up

to order r polynomials over components of x

• E.g. for r = 2

g(x) = w0 +

w1f1+···+wℓfℓ
︷ ︸︸ ︷

ℓ∑

i=1

wixi +

wℓ+1fℓ+1+···+wk−ℓfk−ℓ
︷ ︸︸ ︷

ℓ−1∑

i=1

ℓ∑

m=i+1

wimxixm

+
ℓ∑

i=1

wiix
2
i

︸ ︷︷ ︸

wk−ℓ+1fk−ℓ+1+···wkfk

, k = ℓ(ℓ + 3)/2

• For ℓ = 2, x = (x1, x2) and

y =
(

x1, x2, x1x2, x2
1, x2

2

)

g(x) = w · y + w0

w = (w1, w2, w12, w11, w22)

22

Generalized Linear Classifiers

Polynomial Classifiers

(cont’d)

• In general, will use all terms of form x
p1
1 x

p2
2 · · ·x

pℓ
ℓ

for all p1 + · · ·+ pℓ ≤ r

• This gives size of y to be

k =
(ℓ + r)!

r! ℓ!
,

so time to classify and update exponential in

(ℓ + r)

23

Generalized Linear Classifiers

Polynomial Classifiers

Example: XOR

• Use y = [x1, x2, x1x2]

Class [x1, x2] [y1, y2, y3]
ω1 [0,1] [0,1,0]
ω1 [1,0] [1,0,0]
ω2 [0,0] [0,0,0]
ω2 [1,1] [1,1,1]

g(y) = y1 + y2 − 2y3 −
1

4
g(x) = −1

4
+ x1 + x2 − 2x1x2

> 0⇒ x ∈ ω1

< 0⇒ x ∈ ω2

24

Generalized Linear Classifiers

Radial Basis Function Networks

• Argument of func. fi is x’s Euclidian distance

from designated center ci, e.g.

fi(x) = exp

(

−‖x− ci‖22
2σ2

i

)

• So

g(x) = w0 +
k∑

i=1

wi exp

(

−(x− ci) · (x− ci)

2σ2
i

)

• Exponential decrease in increased distance gives

a very localized activation response

25

Generalized Linear Classifiers

Radial Basis Function Networks

Example: XOR

• c1 = [1,1], c2 = [0,0], fi(x) = exp
(

−‖x − ci‖22
)

Class [x1, x2] [y1, y2]
ω1 (A) [0,1] [0.368,0.368]
ω1 (A) [1,0] [0.368,0.368]
ω2 (B) [0,0] [0.135,1]
ω2 (B) [1,1] [1,0.135]

g(y) = y1 + y2 − 1 g(x) = −1 + e−‖x−c1‖22 + e−‖x−c2‖22

< 0⇒ x ∈ ω1

> 0⇒ x ∈ ω2

26

Support Vector Machines

• Introduced in 1992

• State-of-the-art technique for classification and

regression

• Techniques can also be applied to e.g. cluster-

ing and principal components analysis

• Similar to polynomial classifiers and RBF net-

works in that it remaps inputs and then finds

a hyperplane

– Main difference is how it works

• Features of SVMs:

– Maximization of margin

– Duality

– Use of kernels

– Use of problem convexity to find classifier

(often without local minima)

27

Support Vector Machines
Margins

0

γ

w =b

• A hyperplane’s margin γ is the shortest dis-
tance from it to any training vector

• Intuition: larger margin ⇒ higher confidence

in classifier’s ability to generalize

– Guaranteed generalization error bound in

terms of 1/γ2

• Definition assumes linear separability (more gen-
eral definitions exist that do not)

28

Support Vector Machines

Reformulating the Perceptron Algorithm

• w(0)← 0, b(0)← 0, k← 0, yi ∈ {−1, +1} ∀i

• While mistakes are made on training set

– For i = 1 to N (= # training vectors)

∗ If yi (wk · xi + bk) ≤ 0

· wk+1 ← wk + η yi xi

· bk+1 ← bk + η yi

· k ← k + 1

• Final predictor: h(x) = sgn (wk · x + bk)

29

Support Vector Machines

Duality

• Another way of representing predictor:

h(x) = sgn (w · x + b) = sgn



η
N∑

i=1

(αi yi xi) · x + b





= sgn



η
N∑

i=1

αi yi (xi · x) + b





(αi = # mistakes on xi)

• So perceptron alg has equivalent dual form:

• α← 0, b← 0

• While mistakes are made in For loop

– For i = 1 to N (= # training vectors)

∗ If yi

(

η
∑N

j=1 αj yj

(

xj · xi

)

+ b
)

≤ 0

· αi ← αi + 1

· b← b + ηyi

• Now data only in dot products

30

Kernels

• Duality lets us remap to many more features!

• Let φ : Rℓ→ F be nonlinear map of f.v.s, so

h(x) = sgn



η
N∑

i=1

αi yi (φ (xi) · φ (x)) + b





• (Update “If” statement in dual algorithm)

• Can we compute φ (xi) · φ (x) without evaluat-

ing φ (xi) and φ (x)? YES!

• x = [x1, x2], z = [z1, z2]:

(x · z)2 = (x1 z1 + x2 z2)
2

= x2
1 z2

1 + x2
2 z2

2 + 2x1 x2 z1 z2
=
[

x2
1, x2

2,
√

2 x1 x2

]

︸ ︷︷ ︸

φ(x)

·
[

z2
1, z2

2,
√

2 z1 z2
]

• LHS requires 2 mults + 1 squaring to compute,

RHS takes 3 mults

• In general, (x · z)d takes ℓ mults + 1 expon.,

vs.
(
ℓ+d−1

d

)

≥
(

ℓ+d−1
d

)d
mults if compute φ first

31

Kernels

(cont’d)

• In general, a kernel is a function K such that

∀x, z, K(x, z) = φ(x) · φ(z) for some mapping

φ(·)

• Typically start with kernel and take the feature

mapping that it yields

• E.g. Let ℓ = 1,x = x, z = z, K(x, z) = sin(x−z)

• By Fourier expansion,

sin(x− z) = a0 +
∞∑

n=1

an sin(n x) sin(n z)

+
∞∑

n=1

an cos(n x) cos(n z)

for Fourier coeficients a0, a1, . . .

• This is the dot product of two infinite sequences

of nonlinear functions:

{φi(x)}∞i=0 = [1, sin(x), cos(x), sin(2x), cos(2x), . . .]

• I.e. there are an infinite number of features in

this remapped space!

32

Support Vector Machines

Finding a Hyperplane

• Can show [Cristianini & Shawe-Taylor] that if

data linearly separable in remapped space, then

get maximum margin classifier by minimizing

w ·w subject to yi (w · xi + b) ≥ 1

• Can reformulate this into a convex quadratic

program, which can be solved optimally, i.e.

won’t encounter local optima

• Can always find a kernel that will make training

set linearly separable, but beware of choosing a

kernel that is too powerful (overfitting)

• If kernel doesn’t separate, can optimize sub-

ject to yi (w · xi + b) ≥ 1 − ξi, where ξi are

slack variables that soften the margin (can still

solve optimally)

• If number of training vectors is very large, may

opt to approximately solve these problems to

save time and space

• Use e.g. gradient ascent and sequential mini-

mal optimization (SMO) [Cristianini & Shawe-

Taylor]

• When done, can throw out non-SVs

33

What’s Next?

• Core material:

– More on kernels (2.1–2.3)

– Loss (error) functions (3.1–3.2)

– Statistical learning theory (5.1–5.2)

– Convex optimization (6.1–6.3)

– Pattern recognition with SVMs (7)

• Advanced material:

– Implementation issues (10)

– Kernel design (13)

– Regularization (4)

– Bayesian kernels (16)

– More depth on 3 and 5

– Others?

34

