

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

Training

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

(Adapted from Sebastian Nowozin and Christoph H. Lampert)

sscott@cse.unl.edu

Introduction Out with the old ...

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models Training We now know how to answer the question: **Does this picture contain a cat?**

E.g., convolutional layers feeding connected layers feeding softmax

Introduction

... and in with the new.

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

Training

What we want to know now is: Where are the cats?

No longer a classification problem; need more sophisticated (**structured**) output

Outline

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

- Definitions
- Applications
- Graphical modeling of probability distributions
- Training models
- Inference

Definitions Structured Outputs

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

- Most machine learning approaches learn function $f: \mathcal{X} \to \mathbb{R}$
 - Inputs X are any kind of objects
 - Output y is a real number (classification, regression, density estimation, etc.)
- Structured output learning approaches learn function $f: \mathcal{X} \to \mathcal{Y}$
 - Inputs X are any kind of objects
 - Outputs y ∈ Y are complex (structured) objects (images, text, audio, etc.)

Definitions Structured Outputs (2)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

Training

Can think of structured data as consisting of parts, where each part contains information, as well as how they fit together

- Text: Word sequence matters
- Hypertext: Links between documents matter
- Chemical structures: Relative positions of molecules matter
- Images: Relative positions of pixels matter

Applications Image Processing

CSCE 970 Lecture 8: Structured Prediction

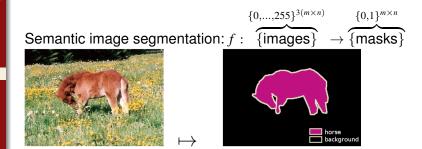
Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models



Applications Image Processing (2)

CSCE 970 Lecture 8: Structured Prediction

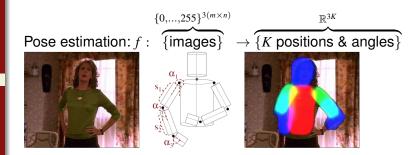
Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models



Applications Image Processing (3)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

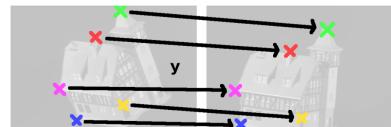
Definitions

Applications

Graphical Models Training

Point matching:

 $f: \{\text{image pairs}\} \rightarrow \{\text{mappings between images}\}$



Applications Image Processing (4)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

Training

Object localization

input:

image

 $f: \{images\} \rightarrow \{bounding box coordinates\}$

output:
object position
(left, top
right, bottom)

Applications Others

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

- Natural language processing (e.g., translation; output is sentences)
- Bioinformatics (e.g., structure prediction; output is graphs)
- Speech processing (e.g., recognition; output is sentences)
- Robotics (e.g., planning; output is action plan)
- Image denoising (output is "clean" version of image)

Graphical Models Probabilistic Modeling

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

Directed Undirected Energy Separation

- To represent structured outputs, we will often employ probabilistic modeling
 - Joint distributions (e.g., P(A, B, C))
 - Conditional distributions (e.g., $P(A \mid B, C)$)
- Can estimate joint and conditional probabilities by counting and normalizing, but have to be careful about representation

Graphical Models Probabilistic Modeling (2)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

Undirected Energy Separation

Training

- E.g., I have a coin with unknown probability p of heads
- I want to estimate the probability of flipping it ten times and getting the sequence HHTTHHTTTT
- One way of representing this joint distribution is a single, big lookup table:
- Each experiment consists of ten coin flips
- For each outcome, increment its counter
- After n experiments, divide HHTTHHTTTT's counter by n to get the estimate

Will this work?

Outcome	Count
TTHHTTHHTH	1
нннтнтттнн	0
НТТТТТНННТ	0
TTHTHTHHTT	1
:	:

Graphical Models Probabilistic Modeling (3)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

Directed Undirected Energy Separation

- Problem: Number of possible outcomes grows exponentially with number of variables (flips)
 - ⇒ Most outcomes will have count = 0, a few with 1, probably none with more
 - ⇒ Lousy probability estimates
- Ten flips is bad enough, but consider 100 ¨
- How would you solve this problem?

Graphical Models Factoring a Distribution

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

Directed Undirected Energy Separation

Training

 Of course, we recognize that all flips are independent, so

$$\Pr[\texttt{HHTTHHTTTT}] = p^4 (1-p)^6$$

- So we can count n coin flips to estimate p and use the formula above
- I.e., we **factor** the joint distribution into independent components and multiply the results:

$$\Pr[\texttt{HHTTHHTTTT}] = \Pr[f_1 = \texttt{H}] \Pr[f_2 = \texttt{H}] \Pr[f_3 = \texttt{T}] \cdots \Pr[f_{10} = \texttt{T}]$$

 We greatly reduce the number of parameters to estimate

Graphical Models Factoring a Distribution (2)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

Directed Undirected Energy Separation

- Another example: Relay racing team
- Alice, then Bob, then Carol
- Let t_A = Alice's finish time (in seconds), t_B = Bob's, t_C = Carol's
- Want to model the joint distribution $Pr[t_A, t_B, t_C]$
- Let $t_C, t_B, t_A \in \{1, \dots, 1000\}$
- How large would the table be for $Pr[t_A, t_B, t_C]$?
- How many races must they run to populate the table?

Graphical Models

Factoring a Distribution (3)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

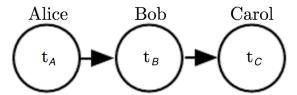
Definitions

Applications

Graphical Models

Directed Undirected Energy Separation

- But we can factor this distribution by observing that t_A is independent of t_B and t_C
 - \Rightarrow Can estimate t_A on its own
- Also, t_B directly depends on t_A , but is independent of t_C
- t_C directly depends on t_B, and indirectly on t_A
- Can display this graphically:



Graphical Models Factoring a Distribution (4)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

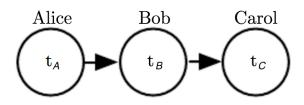
Definitions

Applications

Graphical Models

Directed Undirected

Energy Separation



- This directed graphical model (often called a Bayesian network or Bayes net) represents conditional dependencies among variables
- Makes factoring easy:

$$Pr[t_A, t_B, t_C] = Pr[t_A] Pr[t_B \mid t_A] Pr[t_C \mid t_B]$$

Graphical Models Factoring a Distribution (5)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

Directed Undirected Energy Separation

$$Pr[t_A, t_B, t_C] = Pr[t_A] Pr[t_B \mid t_A] Pr[t_C \mid t_B]$$

- Table for $Pr[t_A]$ requires 1000 entries, while $Pr[t_B \mid t_A]$ requires 10⁶, as does $Pr[t_C \mid t_B]$
 - \Rightarrow Total 2.001×10^6 , versus 10^9
- Idea easily extends to continuous distributions by changing discrete probability $\Pr[\cdot]$ to pdf $p(\cdot)$

Technically, we only need 999 entries, since the value of the last one is implied since probabilities must sum to one. However, then the analysis requires the use of a lot of "9"s, and that's not something I'm willing to take on at this point in my life.

Directed Models Conditional Independence

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Applications

Graphical Models

Undirected Energy Separation

Training

Definition: X is **conditionally independent** of Y given Z if the probability distribution governing X is independent of the value of Y given the value of Z; that is, if

$$(\forall x_i, y_j, z_k) \Pr[X = x_i \mid Y = y_j, Z = z_k] = \Pr[X = x_i \mid Z = z_k]$$

more compactly, we write

$$\Pr[X \mid Y, Z] = \Pr[X \mid Z]$$

Example: *Thunder* is conditionally independent of *Rain*, given *Lightning*

 $Pr[Thunder \mid Rain, Lightning] = Pr[Thunder \mid Lightning]$

Directed Models Definition

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

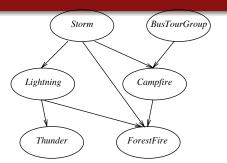
Applications

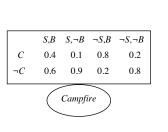
Graphical

Models

Undirected Energy Separation

Training





Network (directed acyclic graph) represents a set of conditional independence assertions:

- Each node is asserted to be conditionally independent of its nondescendants, given its immediate predecessors
- E.g., Given Storm and BusTourGroup, Campfire is CI of Lightning and Thunder

Directed Models Causality

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

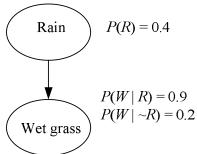
Applications

Graphical Models

Undirected Energy Separation

Training

Can think of edges in a Bayes net as representing a **causal relationship** between nodes



E.g., rain causes wet grass

Probability of wet grass depends on whether there is rain

Directed Models Generative Models

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Models
Directed
Undirected
Energy

Separation Training Represents joint probability distribution over $\langle Y_1, \dots, Y_n \rangle$, e.g., $\Pr[Storm, BusTourGroup, \dots, ForestFire]$

• In general, for y_i = value of Y_i

$$\Pr[y_1,\ldots,y_n] = \prod_{i=1}^n \Pr[y_i \mid Parents(Y_i)]$$

($Parents(Y_i)$ denotes immediate predecessors of Y_i)

• E.g.,
$$\Pr[S, B, C, \neg L, \neg T, \neg F] =$$

0.4

$$\Pr[S] \cdot \Pr[B] \cdot \underbrace{\Pr[C \mid B, S]} \cdot \Pr[\neg L \mid S] \cdot \Pr[\neg T \mid \neg L] \cdot \Pr[\neg F \mid S, \neg L, \neg C]$$

• If variables continuous, use pdf $p(\cdot)$ instead of $\Pr[\cdot]$

Directed Models Predicting Most Likely Label

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Models
Directed
Undirected
Energy

Separation

We sometimes call graphical models **generative** (vs **discriminative**) models since they can be used to generate instances (Y_1, \ldots, Y_n) according to joint distribution

Can use for classification

- Label r to predict is one of the variables, represented by a node
- If we can determine the most likely value of r given the rest of the nodes, can predict label
- One idea: Go through all possible values of r, and compute joint distribution (previous slide) with that value and other attribute values, then return one that maximizes

Directed Models

Predicting Most Likely Label (cont'd)

Structured Prediction Stephen Scott and Vinod Varivam

CSCE 970

Lecture 8:

Introduction

Definitions

Applications

Graphical

Models
Directed
Undirected
Energy
Separation

Training

E.g., if Storm (S) is the label to predict, and we are given values of B, C, $\neg L$, $\neg T$, and $\neg F$, can use formula to compute $\Pr[S, B, C, \neg L, \neg T, \neg F]$ and $\Pr[\neg S, B, C, \neg L, \neg T, \neg F]$, then predict more likely one

Easily handles unspecified attribute values

Issue: Takes time exponential in number of values of unspecified attributes

Campfire

ForestFire

More efficient approach: **Pearl's message passing algorithm** for chains and trees and polytrees (at most one path between any pair of nodes)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

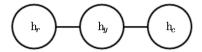
Graphical

Models Directed

Undirected

Energy Separation

- Since directed edges imply causal relationships, might want to use undirected edges if causality not modeled
- E.g., let $h_y = 1$ if you are healthy, 0 if sick
 - h_r same but for your roommate, h_c for coworker
- h_y and h_r directly influence each other, but causality unknown and irrelevant
- h_v and h_c also directly influence each other
- h_r and h_c only indirect influence, via h_y
- Can model $Pr[h_r, h_y, h_c]$ with undirected model, aka Markov random field (MRF), aka Markov network



Factors

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

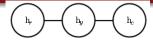
Applications

Graphical

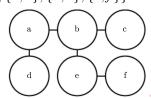
Models

Undirected

Energy Separation



- In directed models, factors defined by a node's parents: conditionally indep. of nondescendants given parents
- In undirected models, factors defined by maximal cliques (complete subgraphs): conditionally indep. of all other variables given neighbors
- In graph above, cliques are $\{\{h_r, h_v\}, \{h_v, h_c\}\}$
- In graph below, cliques are
 {{a,d}, {a,b}, {b,c}, {b,e}, {e,f}}



Undirected Models Factors (2)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Models Directed

Undirected Energy

Separation

Training

- Given clique $C \in \mathcal{G}$ and $y_C =$ values on nodes in C, factor $\phi_C(y_C)$ describes how likely they will co-exist
- Not quite a probability; need to **normalize** it first
- First go through all cliques C, compute factor on C using values from y:

$$\tilde{P}(\mathbf{y}) = \prod_{\mathcal{C} \in \mathcal{G}} \phi_{\mathcal{C}}(\mathbf{y}_{\mathcal{C}})$$

• Can convert this to a probability of y by normalizing:

$$\Pr[\mathbf{y}] = \tilde{P}(\mathbf{y})/Z$$
,

where $Z = \sum_{y \in \mathcal{Y}} \tilde{P}(y)$ comes from summing (or integrating) over all possible values across all nodes

Z doesn't change if model doesn't

Factors (3)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Varivam

Introduction

Definitions

Applications

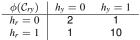
Graphical Models

Directed

Undirected Energy Separation

Training

Model:



 $\begin{array}{c|ccc} \phi(\mathcal{C}_{yc}) & h_y = 0 & h_y = 1 \\ \hline h_c = 0 & 5 & 1 \end{array}$ $h_c = 1$

Distribution:

h_r	h_{y}	h_c	$\phi(C_{ry})$	$\phi(\mathcal{C}_{yc})$	$\tilde{P}(y)$	Pr[y]
0	0	0	2	5	10	0.051
0	0	1	2	2	4	0.020
0	1	0	1	1	1	0.005
0	1	1	1	15	15	0.076
1	0	0	1	5	5	0.025
1	0	1	1	2	2	0.010
1	1	0	10	1	10	0.051
1	1	1	10	15	150	0.762
					Z = 197	1.0

What is time complexity of brute-force approach?

Factor Graphs

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

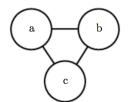
Graphical

Models Directed

Undirected

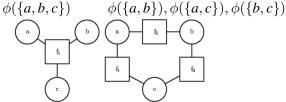
Energy Separation

Training



- How do we interpret this MRF?
- Could be one factor: $\phi(\{a,b,c\})$
- Or, is it three: $\phi(\{a,b\}), \phi(\{a,c\}), \phi(\{b,c\})$

A factor graph makes explicit the scope of each factor ϕ



Bipartite graph, so no circles or squares connected

Factor Graphs (2)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Models Directed

Undirected

Energy Separation

Training

- Formally, a factor graph is a bipartite graph $(V, \mathcal{F}, \mathcal{E})$, where V =variable nodes, $\mathcal{F} =$ factor nodes and edges $\mathcal{E} \subseteq V \times \mathcal{F}$ with one endpoint V and one in \mathcal{F}
- The **scope** $N: \mathcal{F} \to 2^V$ of factor $f \in \mathcal{F}$ is the set of neighboring variables:

$$N(f) = \{i \in V : (i, f) \in \mathcal{E}\}\$$

Now compute distribution similar to before:

$$\Pr[\mathbf{y}] = \frac{1}{Z} \prod_{f \in \mathcal{F}} \phi_f(\mathbf{y}_{N(f)})$$

Conditional Random Fields

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Models Directed

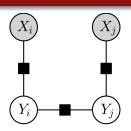
Undirected

Energy Separation

Training

 A conditional random field (CRF) is a factor graph used to directly model a conditional distribution Pr[Y = y | X = x]

 E.g., probability that a specific pixel y is part of a cat given the observation (input image) x



$$\Pr[Y_i = y_i, Y_j = y_j \mid X_i = x_i, X_j = x_j] = \frac{1}{Z(x_i, x_j)} \phi_i(y_i; x_i) \phi_j(y_j; x_j) \phi_{i,j}(y_i, y_j)$$

$$\Pr[Y = \mathbf{y} \mid X = \mathbf{x}] = \frac{1}{Z(\mathbf{x})} \prod_{f \in \mathcal{F}} \phi_f(\mathbf{y}_f; \mathbf{x}_f)$$

Energy-Based Functions

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models Directed Undirected

Energy Separation

- We now know how to factor the distribution graphically, but what form will $\phi(\cdot)$ take?
- Want to learn them to infer a distribution.
- Need $\tilde{p}(x) > 0$ for all x in order to get a distribution
- Define an **energy function** $E_f: \mathcal{Y}_{N(f)} \to \mathbb{R}$ for factor f
- Then define $\phi_f = \exp(-E_f(y_f)) > 0$ and get

$$p(Y = \mathbf{y}) = \frac{1}{Z} \prod_{f \in \mathcal{F}} \phi_f(y_f) = \frac{1}{Z} \prod_{f \in \mathcal{F}} \exp\left(-E_f(y_f)\right)$$
$$= \frac{1}{Z} \exp\left(-\sum_{f \in \mathcal{F}} E_f(y_f)\right)$$

Energy-Based Functions (2)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Varivam

Introduction

Definitions

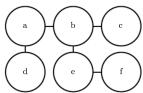
Applications

Graphical Models Directed Undirected

Energy Separation

Training

Using this form of ϕ allows us to factor our energy function as well!



$$E(a,b,c,d,e,f) = E_{a,b}(a,b) + E_{b,c}(b,c) + E_{a,d}(a,d) + E_{b,e}(b,e) + E_{e,f}(e,f)$$

Energy-Based Functions (3)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models Directed Undirected

Energy

Separation

- Still need a form for $E(\cdot)$ to parameterize and learn
- Define $E_f(y_f; w)$ to depend on weight vector $w \in \mathbb{R}^d$:

$$E_f: \mathcal{Y}_{N(f)} \times \mathbb{R}^d \to \mathbb{R}$$

- E.g., say we are doing binary image segmentation
 - Want adjacent pixes to try to take same value, so define $E_f: \{0,1\} \times \{0,1\} \times \mathbb{R}^2 \to \mathbb{R}$ as

$$E_f(0,0; \mathbf{w}) = E_f(1,1; \mathbf{w}) = w_1$$

 $E_f(0,1; \mathbf{w}) = E_f(0,1; \mathbf{w}) = w_2$

- We learn w₁ and w₂ from training data, expecting w₁ > w₂
- More on this later

Separation and D-Separation

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models Directed Undirected Energy

Deparation

- An edge between two nodes indicates a direct interaction between the variables
- Paths between nodes indicate indirect interactions
- Observing (instantiating) some variables change the interactions between others
- Useful to know which subsets of variables are conditionally independent from each other, given values of other variables
- Say that set of variables $\mathbb A$ is **separated** (if undirected model) or **d-separated** (if directed) from set $\mathbb B$ given set $\mathbb S$ if the graph implies that $\mathbb A$ and $\mathbb B$ are conditionally independent given $\mathbb S$

Separation and D-Separation Example

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Varivam

Introduction

Definitions

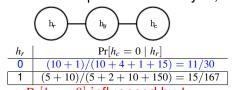
Applications

Graphical Models Directed Undirected Energy

Separation

Training

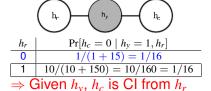
Recall example on health of you, roommate, and coworker



	(-	1 //	(1	/-
$\Rightarrow P$	$r[h_a]$	$_{-} = 0$	influ	ienc	ed by	h_r

h_r	h_y	h_c	$\tilde{P}(y)$
0	0	0	10
0	0	1	4
0	- 1	0	1
0	1	1	15
1	0	0	5 2
1	0	1	2
1	1	0	10
1	1	1	150

What if we **know** that you are healthy $(h_v = 1)$?



h_r	h_y	h_c	$\tilde{P}(y)$
0	0	0	10
0	0	1	4
0	1	0	1
0	1	- 1	15
1	0	0	5 2
1	0	1	2
1	1	0	10
1	1	1	150

Separation in Undirected Models

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

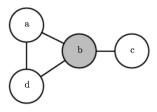
Applications

Graphical Models Directed Undirected Energy

Separation

Training

- If a variable is observed, it blocks all paths through it
- In an undirected model, two nodes are separated if all paths between them are blocked



 E.g., a and c are blocked, as are d and c, but not a and d (even though one of their paths is blocked)

D-Separation in Directed Models

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction Definitions

Applications

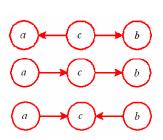
Graphical Models Directed Undirected Energy

Separation

Training

- In directed models, d-separation is more complicated
- Depends on the direction of the edges involved
- When considering nodes

 a and b connected via c,
 can classify connection
 as tail-to-tail,
 head-to-tail, and
 head-to-head



 For each case, assuming no other path exists (ignoring edge direction) between a and b, we will determine if a and b are independent, or conditionally independent given c Stephen Scott and Vinod

Variyam

Definitions

Directed Undirected Energy

Separation Training

Applications
Graphical
Models

Separation and D-Separation

D-Separation in Directed Models: Tail-to-Tail

E.g., a = car won't start, b = lights work, c = battery low

$$\begin{array}{c|c|c} & \Pr[c=1] = 1/2 \\ \hline c & \Pr[a=1 \mid c] & c & \Pr[b=1 \mid c] \\ \hline 0 & 1/3 & 0 & 4/5 \\ 1 & 1/2 & 1 & 1/10 \\ \end{array}$$

Factorization:

$$\Pr[a, b, c] = \Pr[a \mid c] \Pr[b \mid c] \Pr[c]$$

• When c unknown, get Pr[a, b] by marginalizing:

$$\Pr[a,b] = \sum_{c} \Pr[a \mid c] \Pr[b \mid c] \Pr[c] ,$$

which generally does not equal Pr[a] Pr[b] $\Rightarrow a$ and b not independent

● E.g.,
$$\Pr[a=1,b=1] = 0.292 \neq 0.321 = (0.583)(0.550) = \Pr[a=1] \Pr[b=1]$$

Separation and D-Separation D-Separation in Directed Models: Tail-to-Tail (2)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models Directed Undirected Energy

Separation

Training

E.g.,
$$c = 1$$
 (battery low)

When conditioning on c:

$$\Pr[a,b\mid c] = \frac{\Pr[a,b,c]}{\Pr[c]} = \frac{\Pr[c]\Pr[a\mid c]\Pr[b\mid c]}{\Pr[c]} = \Pr[a\mid c]\Pr[b\mid c]$$

- Thus a and b conditionally independent given c (car not starting independent of lights working)
- Say that connection between a and b is blocked by c
 when it is observed and unblocked when unobserved
- Always true for uncoupled tail-to-tail connections (where there's no edge between a and b)

Separation and D-Separation D-Separation in Directed Models: Head-to-Tail

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models Directed Undirected Energy

Training

Pr[
$$a=1$$
] = 1/2

E.g., $a=$ leave on time, $b=$

$$\begin{array}{c|cccc}
a & \Pr[c=1 \mid a] & c & \Pr[b=1 \mid c] \\
\hline
0 & 1/3 & 0 & 1/5 \\
\hline
\text{on time for work, } c = \text{catch the} & 1 & 1/2 & 1 & 9/10 \\
\hline
\text{ferry} & & & & & & & & & & & & \\
\end{array}$$

Factorization:

$$Pr[a, b, c] = Pr[a] Pr[c \mid a] Pr[b \mid c]$$

• When c unknown, get Pr[a, b] by marginalizing:

$$\Pr[a,b] = \Pr[a] \sum_{c} \Pr[c \mid a] \Pr[b \mid c] = \Pr[a] \Pr[b \mid a] ,$$

which generally does not equal Pr[a] Pr[b] $\Rightarrow a$ and b not independent

D-Separation in Directed Models: Head-to-Tail (2)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models Directed Undirected Energy

Separation

Training

E.g.,
$$c = 1$$
 (catch ferry)

• When conditioning on c:

$$\Pr[a,b\mid c] = \frac{\Pr[a,b,c]}{\Pr[c]} = \frac{\Pr[a]\Pr[c\mid a]\Pr[b\mid c]}{\Pr[c]} = \Pr[a\mid c]\Pr[b\mid c]$$

- Thus a and b conditionally independent given c (on time for work independent of leaving on time)
- Say that connection between a and b is blocked by c
 when it is observed and unblocked when unobserved
- Always true for uncoupled head-to-tail connections

Separation and D-Separation D-Separation in Directed Models: Head-to-Head

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models Directed Undirected Energy

Separation

Training

E.g.,
$$a = rain$$
, $b = sprinkler$, $c = wet grass$

$$\Pr[a = 1] = 1/4, \Pr[b = 1] = 1/3
 \frac{a \quad b \mid \Pr[c = 1 \mid a, b]}{0 \quad 0 \quad 1/10}
 0 \quad 1 \quad 6/10
 1 \quad 0 \quad 4/5
 1 \quad 1 \quad 10/11$$

• Factorization:

$$P(a,b,c) = P(a)P(b)P(c \mid a,b)$$

• When c unknown, get P(a,b) by marginalizing:

$$P(a,b) = P(a)P(b)\sum_{a} P(c \mid a,b) = P(a)P(b)$$

 \Rightarrow a and b are independent

CSCE 970

Lecture 8: Structured Prediction Stephen Scott

> and Vinod Varivam

Introduction Definitions

Applications Graphical

Models

Directed Undirected

Energy Separation

Separation and D-Separation

D-Separation in Directed Models: Head-to-Head (2)

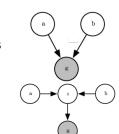
E.g.,
$$c = 1$$
 (grass wet)

• When conditioning on c:

$$\Pr[a,b\mid c] = \frac{\Pr[a,b,c]}{\Pr[c]} = \frac{\Pr[a]\Pr[b]\Pr[c\mid a,b]}{\Pr[c]} \ ,$$

which generally does not equal $\Pr[a \mid c] \Pr[b \mid c]$

- a-b connection blocked by c when c unobserved and unblocked when observed (also unblocks if one of c's descendants observed)
- E.g., if grass wet and not raining,
 Pr[b = 1] increases
- Always true for uncoupled head-to-head connections



4 D > 4 P > 4 E > 4 E

Training

D-Separation in Directed Models: Example

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models Directed Undirected Energy

Separation

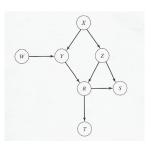
Training

W and T:

- [W, Y, R, T] blocked by Y or R
- [W, Y, X, Z, R, T] blocked by X or Z or R
- [W, Y, X, Z, S, R, T] blocked by X or Z or R but not by S since observing S unblocks the chain

Y and T:

- \bullet [Y, R, T] blocked by R
- [Y,X,Z,R,T] blocked by X or Z or R
- [Y,X,Z,S,R,T] blocked by X or Z or R



D-Separation in Directed Models: Example (2)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models Directed Undirected Energy

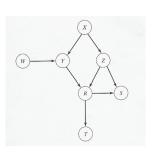
Separation Training

W and S:

- \bullet [W, Y, R, S] blocked by Y or R
- [W, Y, X, Z, R, S] blocked by X or Z or R
- [W, Y, X, Z, S] blocked by X or Z
- \bullet [W, Y, R, Z, S] blocked by Y or Z

Y and *S*:

- \bullet [Y, R, S] blocked by R
- \bullet [Y, R, Z, S] blocked by Z
- [Y,X,Z,R,S] blocked by X or Z or R
- [Y, X, Z, S] blocked by X or ZThus $\{W, Y\}$ and $\{S, T\}$ are CI given $\{R, Z\}$



D-Separation in Directed Models: Example (2)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models Directed Undirected Energy

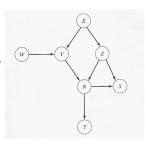
Separation

Training

W and X:

- Chain [W, Y, X] blocked by Y when not observed
- Chain [W, Y, R, Z, X] blocked by R when not observed
- Chain [W, Y, R, S, Z, X] blocked by S when not observed

Thus *W* and *X* are independent



Markov Blankets

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

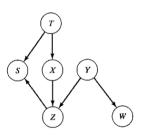
Definitions

Applications

Graphical Models Directed Undirected Energy

Separation

Training



- Let $\mathcal V$ be a set of random variables (nodes), and $X \in \mathcal V$. A **Markov blanket** $\mathcal M_X$ of X is any set of variables such that X is CI of all other variables given $\mathcal M_X$
- If no proper subset of \mathcal{M}_X is a Markov blanket, then \mathcal{M}_X is a Markov boundary
- Theorem: The set of X's parents, children, and co-parents (other parents of X's children) form a Markov blanket of X
- Node X has Markov blanket {T, Y, Z}

Learning Graphical Models Conditional Bandom Fields

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Models Training Learning a CRF with input x, parameterized by weight vector w:

$$\Pr[\mathbf{y} \mid \mathbf{x}, \mathbf{w}] = \frac{1}{Z(\mathbf{x}, \mathbf{w})} \exp\left(-E(\mathbf{y}, \mathbf{x}, \mathbf{w})\right)$$

where
$$Z(x, w) = \sum_{y \in \mathcal{Y}} \exp(-E(y, x, w))$$

- Let energy function $E(y, x, w) = \langle w, \varphi(x, y) \rangle$
 - I.e., a weighted sum of features produced by **feature** function $\varphi(x, y)$
 - $\varphi(x,y)$ could be a deep network, possibly trained earlier
 - w is trained to get $Pr_P[y \mid x, w]$ "close" to the true distribution $Pr_D[y \mid x]$

Learning Graphical Models Conditional Random Fields (2)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Models Training

- Want w such that $Pr_P[y \mid x, w]$ is close to the true distribution $Pr_D[y \mid x]$
- Measure distance via Kullback-Leibler (KL) divergence: for any $x \in \mathcal{X}$ we have

$$\mathsf{KL}(P||D) = \sum_{\mathbf{y} \in \mathcal{Y}} \Pr_{D}[\mathbf{y} \mid \mathbf{x}] \log \frac{\Pr_{D}[\mathbf{y} \mid \mathbf{x}]}{\Pr_{P}[\mathbf{y} \mid \mathbf{x}, \mathbf{w}]}$$

• By marginalizing over all $x \in \mathcal{X}$ we get

$$\mathsf{KL}_{tot}(P||D) = \sum_{\boldsymbol{x} \in \mathcal{X}} \Pr_{D}[\boldsymbol{x}] \sum_{\boldsymbol{y} \in \mathcal{Y}} \Pr_{D}[\boldsymbol{y} \mid \boldsymbol{x}] \log \frac{\Pr_{D}[\boldsymbol{y} \mid \boldsymbol{x}]}{\Pr_{P}[\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{w}]}$$

Learning Graphical Models Conditional Random Fields (3)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Models Training Goal is to find weights yielding close distribution, so

$$\begin{aligned} \mathbf{w}^* &= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \operatorname{\mathsf{KL}}_{tot}(P \| D) \\ &= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmax}} \sum_{\mathbf{x} \in \mathcal{X}} \operatorname{Pr}_D[\mathbf{x}] \sum_{\mathbf{y} \in \mathcal{Y}} \operatorname{Pr}_D[\mathbf{y} \mid \mathbf{x}] \log \operatorname{Pr}_P[\mathbf{y} \mid \mathbf{x}, \mathbf{w}] \\ &= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmax}} \sum_{\mathbf{x} \in \mathcal{X}} \sum_{\mathbf{y} \in \mathcal{Y}} \operatorname{Pr}_D[\mathbf{x}] \operatorname{Pr}_D[\mathbf{y} \mid \mathbf{x}] \log \operatorname{Pr}_P[\mathbf{y} \mid \mathbf{x}, \mathbf{w}] \\ &= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmax}} \sum_{\mathbf{x} \in \mathcal{X}} \sum_{\mathbf{y} \in \mathcal{Y}} \operatorname{Pr}_D[\mathbf{x}, \mathbf{y}] \log \operatorname{Pr}_P[\mathbf{y} \mid \mathbf{x}, \mathbf{w}] \\ &= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmax}} \operatorname{\mathsf{E}}_{(\mathbf{x}, \mathbf{y}) \sim D} \left[\log \operatorname{Pr}_P[\mathbf{y} \mid \mathbf{x}, \mathbf{w}] \right] \\ &\approx \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmax}} \sum_{\mathbf{x} \in \mathcal{X}} \log \operatorname{Pr}_P[\mathbf{y} \mid \mathbf{x}, \mathbf{w}] \end{aligned}$$

for training data \mathcal{D}

Learning Graphical Models Conditional Bandom Fields: BMCL

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

- I.e., we choose a model (w*) that maximizes the conditional log likelihood of the data
 - If all (x,y) instances are drawn iid, then w^* maximizes the probability of seeing all the ys given all the xs
- Throw in a regularizer for good measure
- **Definition:** Let $\Pr[y \mid x, w] = \frac{1}{Z(x,w)} \exp\left(-\langle w, \varphi(x,y)\rangle\right)$ be a probability distribution parameterized by $w \in \mathbb{R}^d$ and let $\mathcal{D} = \{(x^n, y^n)\}_{n=1,\dots,N}$ be a set of training examples. For any $\lambda > 0$, **regularized maximum conditional likelihood (RMCL)** training chooses

$$\mathbf{w}^* = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^d} \lambda \|\mathbf{w}\|^2 + \sum_{n=1}^N \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}^n) \rangle + \sum_{n=1}^N \log Z(\mathbf{x}^n, \mathbf{w})$$

Conditional Random Fields: RMCL (2)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Models Training

Goal: find w minimizing

$$\mathcal{L}(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 + \sum_{n=1}^{N} \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}^n) \rangle + \sum_{n=1}^{N} \log Z(\mathbf{x}^n, \mathbf{w})$$

Compute the gradient:

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = 2\lambda \mathbf{w} + \sum_{n=1}^{N} \left[\varphi(\mathbf{x}^{n}, \mathbf{y}^{n}) - \sum_{\mathbf{y} \in \mathcal{Y}} \left(\frac{\exp(-\langle \mathbf{w}, \varphi(\mathbf{x}^{n}, \mathbf{y}) \rangle)}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp(-\langle \mathbf{w}, \varphi(\mathbf{x}^{n}, \mathbf{y}') \rangle)} \right) \varphi(\mathbf{x}^{n}, \mathbf{y}) \right]$$

$$= 2\lambda \mathbf{w} + \sum_{n=1}^{N} \left[\varphi(\mathbf{x}^{n}, \mathbf{y}^{n}) - \sum_{\mathbf{y} \in \mathcal{Y}} \Pr_{\mathbf{y}} \left[\mathbf{y} \mid \mathbf{x}^{n}, \mathbf{w} \right] \varphi(\mathbf{x}^{n}, \mathbf{y}) \right]$$

$$= 2\lambda \mathbf{w} + \sum_{n=1}^{N} \left[\varphi(\mathbf{x}^{n}, \mathbf{y}^{n}) - \mathsf{E}_{\mathbf{y} \sim P(\mathbf{y} \mid \mathbf{x}^{n}, \mathbf{w})} \left[\varphi(\mathbf{x}^{n}, \mathbf{y}) \right] \right]$$

Learning Graphical Models Conditional Random Fields: RMCL (3)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

- The gradient has a nice, compact form, and is convex
 - ⇒ Any local optimum is a global one
- Problem: Computing expectation requires summing over exponentially many combinations of values of y
- We can factor energy function, and therefore its derivative, and therefore the expectation of its derivative
- Let's focus on an individual factor *f*:

$$\mathsf{E}_{\mathbf{y}_f \sim P(\mathbf{y}_f \mid \mathbf{x}^n, \mathbf{w})} \left[\varphi_f(\mathbf{x}^n, \mathbf{y}_f) \right] = \sum_{\mathbf{y}_f \in \mathcal{Y}_f} \Pr_P(\mathbf{y}_f \mid \mathbf{x}, \mathbf{w}) \varphi_f(\mathbf{x}^n, \mathbf{y}_f)$$

- Summation still has exponentially many terms, but instead of $K^{|V|}$ now it's $K^{|N(f)|}$ (more manageable)
- Still need to compute each factor's marginal probability

Learning Graphical Models Inference

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

- Efficient inference of marginal probabilities and Z in a graphical model is itself a major research area
- Depends on the structural model we're using
- Start with belief propagation in acyclic models
- Then approximate loopy belief propagation for cyclic models

Inference: Sum-Product Algorithm

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications Graphical

- Belief propagation is a general approach to inference in directed and undirected graphical models
- Generally, some node i sends a message to another node j regarding i's belief about variable y
 - ullet informs j its belief about marginal probability $\Pr[y]$
 - ullet E.g., message value high \Rightarrow belief is $\Pr[y]$ also high
 - Each node messages each of its neighbors about its belief for each value of the random variable
- Sum-Product Algorithm uses belief propagation to find marginal probabilities and Z in tree-structured factor graphs (connected and acyclic)
- Each edge $(i,f) \in \mathcal{E} \subseteq V \times \mathcal{F}$ has
 - $\mathbf{0} \quad q_{Y_i o f} \in \mathbb{R}^{|\mathcal{Y}_i|}$ is a variable-to-factor message
 - ② $r_{f o Y_i} \in \mathbb{R}^{|\mathcal{Y}_i|}$ is a factor-to-variable message
- Note they are vector quantities, one component per value of Y_i

Inference: Sum-Product Algorithm (2)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

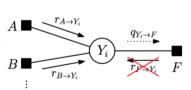
Models Training

Variable-to-Factor Message

• For variable $i \in V$, let

$$M(i) = \{ f \in \mathcal{F} : (i,f) \in \mathcal{E} \}$$

be the set of factors adjacent to *i*



• For each value y_i of variable i, variable-to-factor message is

$$q_{Y_i \to f}(y_i) = \sum_{f' \in M(i) \setminus \{f\}} r_{f' \to Y_i}(y_i)$$

 Variable node i sums up all factor-to-variable messages from all factors except f and transmits result to f

Inference: Sum-Product Algorithm (3)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications Graphical

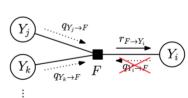
Models Training

Factor-to-Variable Message

• For factor $f \in \mathcal{F}$, recall

$$N(f) = \{i \in V : (i,f) \in \mathcal{E}\}$$

is the set of variables adjacent to f



• For each value y_i of variable i, factor-to-variable message is

$$r_{f \to Y_i}(y_i) = \log \sum_{\substack{y_f' \in \mathcal{Y}_f, \\ y_i' = y_i'}} \exp \left(-E_f(y_f') + \sum_{j \in N(f) \setminus \{i\}} q_{Y_j \to f'}(y_i') \right)$$

• Factor node f sums up all variable-to-factor messages from all variables except i and transmits result to i

Inference: Sum-Product Algorithm (4)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Varivam

Introduction

Definitions

Applications

Graphical

- Since we have a tree structure, there is always at least one variable adjacent to only one factor or one factor adjacent to one variable
- These messages depend on nothing, so start there
- Then order the other message computations via precedence graph
- Designate an arbitrary variable node to be the root
- Two phases of algorithm:
 - Leaf-to-root phase: start at leaves and compute messages toward root
 - Root-to-leaf phase: start at root and compute messages toward leaves

Inference: Sum-Product Algorithm (5)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

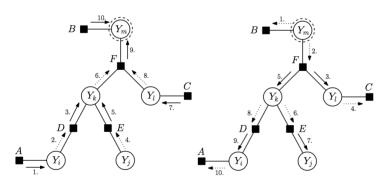
Introduction

Definitions

Applications

Graphical

Models Training



After two phases, all messages computed

Inference: Sum-Product Algorithm (6)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Models Training To **compute** Z, sum over factor-to-variable messages directed to root Y_r :

$$\log Z = \log \sum_{y_r \in \mathcal{Y}_r} \exp \left(\sum_{f \in M(r)} r_{f \to Y_r}(y_r) \right)$$

Inference: Sum-Product Algorithm (7)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

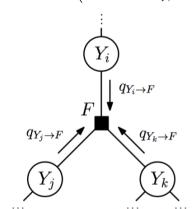
Applications

Graphical

Models Training

To compute factor marginals:

$$\mu_f(\mathbf{y}_f) = \Pr[Y_f = \mathbf{y}_f] = \exp\left(-E_f(\mathbf{y}_f) + \sum_{i \in N(f)} q_{Y_i \to f}(y_i) - \log Z\right)$$



Inference: Sum-Product Algorithm (8)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Varivam

Introduction

Definitions

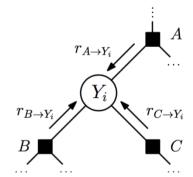
Applications

Graphical

Models Training

To compute variable marginals:

$$\Pr[Y_i = y_i] = \exp\left(\sum_{f \in M(i)} r_{f \to Y_i}(y_i) - \log Z\right)$$



Inference: Sum-Product Algorithm: Pictorial Structures Example

CSCE 970 Lecture 8: Structured Prediction

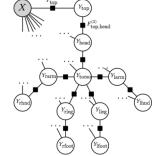
Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical



- E.g., $E_{f_{\text{top}}^{(1)}}(y_{\text{top}}; x)$ is energy function for factor f_{top} representing top of person
- x is observed image and Y_{top} is tuple (a, b, s, θ) where (a, b) are coordinates, s is scale, and θ is rotation
- $E_{f_{\mathrm{top,head}}^{(2)}}(y_{\mathrm{top}},y_{\mathrm{head}})$ relates adjecnt pairs of variables

Inference: Loopy Belief Propagation

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

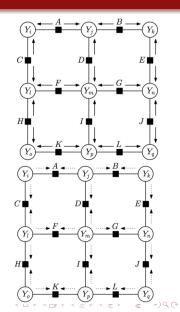
Introduction

Definitions

Applications

Graphical Models Training

- When graph has a cycle, can still perform message passing to approximate Z and marginal probabilities
- Initialize messages to fixed value
- Perform updates in random order until convergence
- Factor-to-variable messages $r_{f \rightarrow Y_i}$ computed as before
- Variable-to-factor messages computed differently



Inference: Loopy Belief Propagation (2)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Models Training

Variable-to-factor messages:

$$\bar{q}_{Y_i \to f}(y_i) = \sum_{f' \in M(i) \setminus \{f\}} r_{f' \to Y_i}(y_i)$$

$$\delta = \log \sum_{y_i \in \mathcal{Y}_i} \exp \left(\bar{q}_{Y_i \to f}(y_i)\right)$$

$$q_{Y_i \to f}(y_i) = \bar{q}_{Y_i \to f}(y_i) - \delta$$

Inference: Loopy Belief Propagation (3)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

Training

To compute factor marginals:

$$\begin{split} \bar{\mu}_f(\mathbf{y}_f) &= -E_f(\mathbf{y}_f) + \sum_{j \in N(f)} q_{Y_j \to f}(y_j) \\ z_f &= \log \sum_{\mathbf{y}_f \in \mathcal{Y}_f} \exp(\bar{\mu}_f(\mathbf{y}_f)) \\ \mu_f(\mathbf{y}_f) &= \exp\left(\bar{\mu}_f(\mathbf{y}_f) - z_f\right) \end{split}$$

Inference: Loopy Belief Propagation (4)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Models Training

To compute variable marginals:

$$\bar{\mu}_i(y_i) = \sum_{f' \in M(i)} r_{f' \to Y_i}(y_i)$$

$$z_i = \log \sum_{y_i \in \mathcal{Y}_i} \exp(\bar{\mu}_i(y_i))$$

$$\mu_i(y_i) = \exp(\bar{\mu}_i(y_i) - z_i)$$

Inference: Loopy Belief Propagation (5)

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Models Training

To compute Z:

$$\log Z = \sum_{i \in V} (|M(i) - 1|) \left[\sum_{y_i \in \mathcal{Y}_i} \mu_i(y_i) \log \mu_i(y_i) \right]$$
$$- \sum_{f \in \mathcal{F}} \sum_{\mathbf{y}_f \in \mathcal{Y}_f} \mu_f(\mathbf{y}_f) (E_f(\mathbf{y}_f) + \log \mu_f(\mathbf{y}_f))$$

Learning Graphical Models Conditional Random Fields: Case Study

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Models Training Chen et al. (2015): Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs

- Adapted DCNN ResNet-101 (trained for image classification) to the task of semantic segmentation
- Replaced connected layer with a "de-convolution" layer to upscale to original resolution for segmented image
- Result effective, but segment edges blurred
- Used CRF to sharpen

Conditional Random Fields: Case Study (2): Overview

CSCE 970 Lecture 8: Structured Prediction

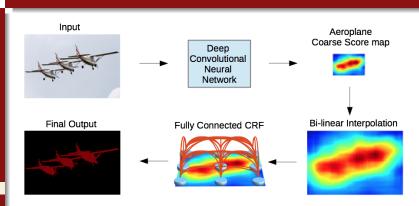
Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical



- Score map generated as output of DCNN interpolated to input resolution
- Right area, but boundary of high-scoring region is fuzzy
- CRF sharpens to final output

Conditional Random Fields: Case Study (2): CRF

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical Models

Training

Energy function:

$$E(\mathbf{y}) = \sum_{i} \theta_{i}(y_{i}) + \sum_{i,j} \theta_{ij}(y_{i}, y_{j})$$

where $y_i \in \{0, 1\}$ is label assignment for pixel i

• Use $\theta_i(y_i) = -\log P(y_i)$ and

$$\theta_{ij}(y_i, y_j) = \mu(y_i, y_j) \left[w_1 \exp\left(-\frac{\|p_i - p_j\|^2}{2\sigma_{\alpha}^2} - \frac{\|I_i - I_j\|^2}{2\sigma_{\beta}^2}\right) + w_2 \exp\left(-\frac{\|p_i - p_j\|^2}{2\sigma_{\gamma}^2}\right) \right]$$

where

- $\mu(y_i, y_i) = 1$ iff $y_i \neq y_i$ (different labels)
- p_i = position of pixel i
- $I_i = \mathsf{RGB}$ color of pixel i
- $\sigma = \text{parameters}$
- Inference via specialized algorithms for Gaussian-based functions

Conditional Random Fields: Case Study (3): CRF Training Example

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

Introduction

Definitions

Applications

Graphical

Image/G.T.

DCNN output

CRF Iteration 1

CRF Iteration 2

CRF Iteration 10