Graphical Models

CSCE 970 Lecture 8: Structured Prediction

Stephen Scott and Vinod Variyam

(Adapted from Sebastian Nowozin and Christoph H. Lampert)

sscott@cse.unl.edu

4 D > 4 D > 4 E > 4 E > E 990

Nebraska

Introduction Out with the old ...

We now know how to answer the question: Does this picture contain a cat?

E.g., convolutional layers feeding connected layers feeding

4 D > 4 B > 4 E > 4 E > 9 Q @

Nebraska

Introduction

Introduction ... and in with the new.

What we want to know now is: Where are the cats?

No longer a classification problem; need more sophisticated (structured) output

Nebraska

Outline

Introduction

Applications Graphical Models

Training

Definitions

Applications

Graphical modeling of probability distributions

Training models

Inference

4 D > 4 B > 4 E > 4 E > E 9 Q C

Nebraska

Definitions Structured Outputs

Definitions

• Most machine learning approaches learn function

- Inputs \mathcal{X} are any kind of objects
- Output y is a **real number** (classification, regression, density estimation, etc.)
- Structured output learning approaches learn function $f: \mathcal{X} \to \mathcal{Y}$
 - Inputs \mathcal{X} are any kind of objects
 - Outputs $y \in \mathcal{Y}$ are complex (structured) objects (images, text, audio, etc.)

Nebraska

Definitions Structured Outputs (2)

Definitions

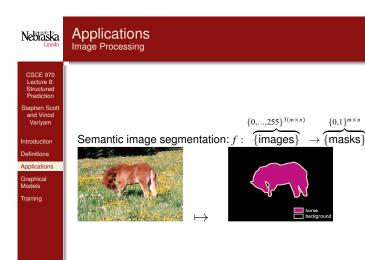
Graphical Models

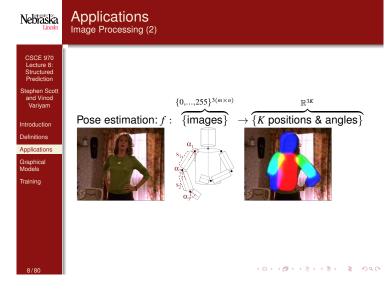
Can think of structured data as consisting of parts, where each part contains information, as well as how they fit together

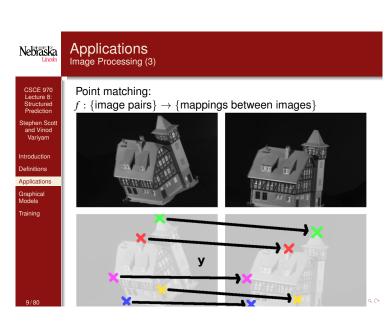
- Text: Word sequence matters
- Hypertext: Links between documents matter
- Chemical structures: Relative positions of molecules
- Images: Relative positions of pixels matter

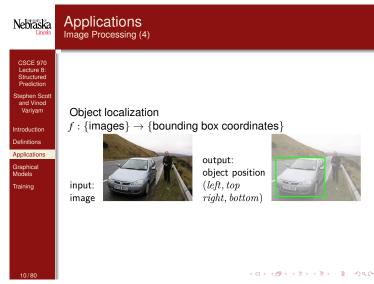
4 D > 4 B > 4 E > 4 E > E 990

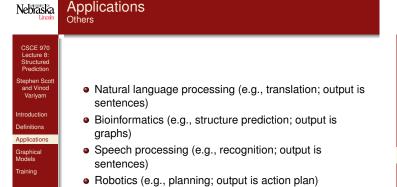
4 D > 4 B > 4 E > 4 E > 9 Q @



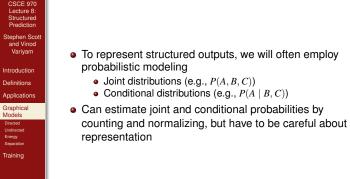








• Image denoising (output is "clean" version of image)



Graphical Models

Probabilistic Modeling

Nebraska

Graphical Models Probabilistic Modeling (2)

Definitions

Graphical Models

E.g., I have a coin with unknown probability p of heads

- I want to estimate the probability of flipping it ten times and getting the sequence HHTTHHTTTT
- One way of representing this joint distribution is a single, big lookup table:
- Each experiment consists of ten coin flips
- For each outcome, increment its counter
- After n experiments, divide HHTTHHTTTT's counter by n to get the estimate
- Will this work?

Outcome	Count
TTHHTTHHTH	1
НННТНТТТНН	0
НТТТТТНННТ	0

4 D > 4 B > 4 E > 4 E > 9 Q @

TTHTHTHHTT

Nebraska

Graphical Models Probabilistic Modeling (3)

Definitions Applications

Graphical Models

Ten flips is bad enough, but consider 100 ¨

probably none with more

⇒ Lousy probability estimates

• How would vou solve this problem?

• Problem: Number of possible outcomes grows

exponentially with number of variables (flips)

 \Rightarrow Most outcomes will have count = 0, a few with 1,

Nebraska

Graphical Models

Factoring a Distribution

ntroduction

Graphical Models

Of course, we recognize that all flips are independent,

$$\Pr[\mathsf{HHTTHHTTTT}] = p^4 \, (1-p)^6$$

- So we can count n coin flips to estimate p and use the formula above
- I.e., we factor the joint distribution into independent components and multiply the results:

$$Pr[\texttt{HHTTHHTTTT}] = Pr[\textit{f}_1 = \texttt{H}] \, Pr[\textit{f}_2 = \texttt{H}] \, Pr[\textit{f}_3 = \texttt{T}] \cdots Pr[\textit{f}_{10} = \texttt{T}]$$

 We greatly reduce the number of parameters to estimate

Nebraska

Graphical Models Factoring a Distribution (2)

Applications

Graphical Models

Training

Another example: Relay racing team Alice, then Bob, then Carol

- Let t_A = Alice's finish time (in seconds), t_B = Bob's, $t_C = Carol's$
- Want to model the joint distribution $Pr[t_A, t_B, t_C]$
- Let $t_C, t_B, t_A \in \{1, \dots, 1000\}$
- How large would the table be for $Pr[t_A, t_B, t_C]$?
- How many races must they run to populate the table?

4 D > 4 D > 4 E > 4 E > E +990

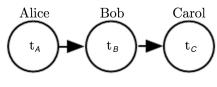
Carol

Nebraska

Graphical Models Factoring a Distribution (3)

Graphical Models

- But we can factor this distribution by observing that t_A is independent of t_B and t_C
 - \Rightarrow Can estimate t_A on its own
- Also, t_B directly depends on t_A, but is independent of t_C
- t_C directly depends on t_B, and indirectly on t_A
- Can display this graphically:



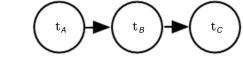
Nebraska

Graphical Models Factoring a Distribution (4)

Alice

Definitions

Graphical Models



Bob

- This directed graphical model (often called a Bayesian network or Bayes net) represents conditional dependencies among variables
- Makes factoring easy:

$$Pr[t_A, t_B, t_C] = Pr[t_A] Pr[t_B \mid t_A] Pr[t_C \mid t_B]$$

Graphical Models

Definitions

Graphical Models

changing discrete probability $Pr[\cdot]$ to pdf $p(\cdot)$

Factoring a Distribution (5)

 $Pr[t_A, t_B, t_C] = Pr[t_A] Pr[t_B \mid t_A] Pr[t_C \mid t_B]$

- Table for $Pr[t_A]$ requires 1000 entries, while $Pr[t_B \mid t_A]$ requires 10^6 , as does $Pr[t_C \mid t_B]$
 - \Rightarrow Total 2.001 \times 10⁶, versus 10⁹
- Idea easily extends to continuous distributions by

Nebraska

Directed Models Conditional Independence

Definition: X is **conditionally independent** of Y given Z if the probability distribution governing X is independent of the value of Y given the value of Z; that is, if

$$(\forall x_i, y_j, z_k) \Pr[X = x_i \mid Y = y_j, Z = z_k] = \Pr[X = x_i \mid Z = z_k]$$

more compactly, we write

$$Pr[X \mid Y, Z] = Pr[X \mid Z]$$

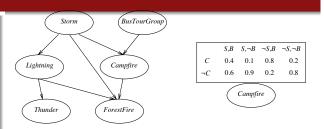
Example: Thunder is conditionally independent of Rain, given Lightning

 $Pr[Thunder \mid Rain, Lightning] = Pr[Thunder \mid Lightning]$

Nebraska

troduction

Directed Models Definition



Network (directed acyclic graph) represents a set of conditional independence assertions:

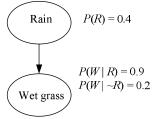
- Each node is asserted to be conditionally independent of its nondescendants, given its immediate predecessors
- E.g., Given Storm and BusTourGroup, Campfire is CI of Lightning and Thunder 4 D > 4 B > 4 E > 4 E > E 994

Nebraska

Directed Models Causality

troduction Applications

Can think of edges in a Bayes net as representing a causal relationship between nodes



E.g., rain causes wet grass

Probability of wet grass depends on whether there is rain

4 D > 4 B > 4 B > 4 B > 8 9 9 9

Nebraska

Directed Models Generative Models

Represents joint probability distribution over $\langle Y_1, \ldots, Y_n \rangle$, e.g., $Pr[\textit{Storm}, \textit{BusTourGroup}, \dots, \textit{ForestFire}]$

• In general, for $y_i = \text{value of } Y_i$

$$\Pr[y_1,\ldots,y_n] = \prod_{i=1}^n \Pr[y_i \mid Parents(Y_i)]$$

 $(Parents(Y_i))$ denotes immediate predecessors of Y_i)

• E.g., $\Pr[S, B, C, \neg L, \neg T, \neg F] =$ $\Pr[S] \cdot \Pr[B] \cdot \underbrace{\Pr[C \mid B, S]} \cdot \Pr[\neg L \mid S] \cdot \Pr[\neg T \mid \neg L] \cdot \Pr[\neg F \mid S, \neg L, \neg C]$

• If variables continuous, use pdf $p(\cdot)$ instead of $Pr[\cdot]$

Nebraska

Directed Models Predicting Most Likely Label

Definitions Graphical Models

We sometimes call graphical models generative (vs discriminative) models since they can be used to generate instances $\langle Y_1, \dots, Y_n \rangle$ according to joint distribution

Can use for classification

- Label r to predict is one of the variables, represented by a node
- If we can determine the most likely value of r given the rest of the nodes, can predict label
- One idea: Go through all possible values of r, and compute joint distribution (previous slide) with that value and other attribute values, then return one that maximizes

¹Technically, we only need 999 entries, since the value of the last one is implied since probabilities must sum to one. However, then the analysis requires the use of a lot of "9"s, and that's not something I'm willing to take on at this point in my life.

Directed Models

Predicting Most Likely Label (cont'd)

E.g., if *Storm* (S) is the label to predict, and we are given values of B, C, $\neg L$, $\neg T$, and $\neg F$, can use formula to compute $\Pr[S, B, C, \neg L, \neg T, \neg F]$ and $\Pr[\neg S, B, C, \neg L, \neg T, \neg F]$, then predict more likely one

Easily handles unspecified attribute values

Issue: Takes time exponential in number of values of unspecified attributes

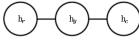
More efficient approach: Pearl's message passing algorithm for chains and trees and polytrees (at most one path between any pair of nodes)

Nebraska

Undirected Models

 Since directed edges imply causal relationships, might want to use undirected edges if causality not modeled

- E.g., let $h_v = 1$ if you are healthy, 0 if sick
 - h_r same but for your roommate, h_c for coworker
- h_v and h_r directly influence each other, but causality unknown and irrelevant
- h_v and h_c also directly influence each other
- h_r and h_c only indirect influence, via h_v
- Can model $Pr[h_r, h_v, h_c]$ with **undirected model**, aka Markov random field (MRF), aka Markov network

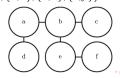


Nebraska

Factors

Undirected Models

- In directed models, factors defined by a node's parents: conditionally indep. of nondescendants given parents
- In undirected models, factors defined by maximal cliques (complete subgraphs): conditionally indep. of all other variables given neighbors
- In graph above, cliques are $\{\{h_r,h_y\},\{h_y,h_c\}\}$
- In graph below, cliques are $\{\{a,d\},\{a,b\},\{b,c\},\{b,e\},\{e,f\}\}$



Nebraska

Undirected Models

Factors (2)

Applications

- Given clique $C \in \mathcal{G}$ and $y_C =$ values on nodes in C, factor $\phi_{\mathcal{C}}(\mathbf{y}_{\mathcal{C}})$ describes how likely they will co-exist
- Not guite a probability; need to normalize it first
- First go through all cliques C, compute factor on C using values from v:

$$\tilde{P}(\mathbf{y}) = \prod_{\mathcal{C} \in \mathcal{G}} \phi_{\mathcal{C}}(\mathbf{y}_{\mathcal{C}})$$

• Can convert this to a probability of y by normalizing:

$$\Pr[\mathbf{y}] = \tilde{P}(\mathbf{y})/Z$$
,

where $Z = \sum_{\mathbf{y} \in \mathcal{Y}} \tilde{P}(\mathbf{y})$ comes from summing (or integrating) over all possible values across all nodes

Z doesn't change if model doesn't

Nebraska

Undirected Models Factors (3)

Distribution:

h	r hy	h_c	$\phi(C_{ry})$	$\phi(\mathcal{C}_{yc})$	$\tilde{P}(y)$	Pr[y]
	0	0	2	5	10	0.051
C	0	1	2	2	4	0.020
C) 1	0	1	1	1	0.005
C) 1	1	1	15	15	0.076
1	0	0	1	5	5	0.025
1	0	1	1	2	2	0.010
1	1	0	10	1	10	0.051
1	1	1	10	15	150	0.762
					Z = 197	1.0

What is time complexity of brute-force approach?

Nebraska

Undirected Models **Factor Graphs**

- How do we interpret this MRF?
- Could be one factor: $\phi(\{a,b,c\})$
- Or, is it three:

$$\phi(\{a,b\}), \phi(\{a,c\}), \phi(\{b,c\})$$

A **factor graph** makes explicit the scope of each factor ϕ $\phi(\{a,b,c\})$ $\phi(\{a,b\}), \phi(\{a,c\}), \phi(\{b,c\})$

Bipartite graph, so no circles or squares connected

4 D > 4 B > 4 B > 4 B > 9 Q C

Undirected Models Factor Graphs (2)

• Formally, a factor graph is a bipartite graph $(V, \mathcal{F}, \mathcal{E})$, where V =variable nodes, $\mathcal{F} =$ factor nodes and edges $\mathcal{E} \subseteq V \times \mathcal{F}$ with one endpoint V and one in \mathcal{F}

• The **scope** $N: \mathcal{F} \to 2^V$ of factor $f \in \mathcal{F}$ is the set of neighboring variables:

$$N(f) = \{i \in V : (i, f) \in \mathcal{E}\}\$$

Now compute distribution similar to before:

$$\Pr[\mathbf{y}] = \frac{1}{Z} \prod_{f \in \mathcal{F}} \phi_f(\mathbf{y}_{N(f)})$$

Nebraska

Undirected Models Conditional Random Fields

distribution

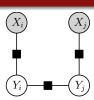
A conditional random field (CRF) is a factor

graph used to directly

model a conditional

E.g., probability that a

 $\Pr[Y = y \mid X = x]$



specific pixel
$$y$$
 is part of a cat given the observation (input image) x
$$\Pr[Y_i = y_i, Y_j = y_j \mid X_i = x_i, X_j = x_j] = \frac{1}{Z(x_i, x_j)} \phi_i(y_i; x_i) \phi_j(y_j; x_j) \phi_{i,j}(y_i, y_j)$$

$$\Pr[Y = \mathbf{y} \mid X = \mathbf{x}] = \frac{1}{Z(\mathbf{x})} \prod_{f \in \mathcal{F}} \phi_f(\mathbf{y}_f; \mathbf{x}_f)$$

Z now depends on x

Nebraska

Undirected Models

Energy-Based Functions

- We now know how to factor the distribution graphically. but what form will $\phi(\cdot)$ take?
- Want to learn them to infer a distribution
- Need $\tilde{p}(x) > 0$ for all x in order to get a distribution
- Define an **energy function** $E_f: \mathcal{Y}_{N(f)} \to \mathbb{R}$ for factor f
- Then define $\phi_f = \exp(-E_f(y_f)) > 0$ and get

$$\begin{split} p(Y = \mathbf{y}) &= \frac{1}{Z} \prod_{f \in \mathcal{F}} \phi_f(y_f) = \frac{1}{Z} \prod_{f \in \mathcal{F}} \exp\left(-E_f(y_f)\right) \\ &= \frac{1}{Z} \exp\left(-\sum_{f \in \mathcal{F}} E_f(y_f)\right) \end{split}$$

4D> 4B> 4B> B 990

Nebraska

Undirected Models

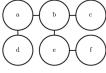
Energy-Based Functions (2)

ntroduction

Applications

Training

Using this form of ϕ allows us to factor our energy function as well!



 $E(a,b,c,d,e,f) = E_{a,b}(a,b) + E_{b,c}(b,c) + E_{a,d}(a,d) + E_{b,e}(b,e) + E_{e,f}(e,f)$

Nebraska

Undirected Models Energy-Based Functions (3)

- Still need a form for $E(\cdot)$ to parameterize and learn
- Define $E_f(y_f; w)$ to depend on weight vector $w \in \mathbb{R}^d$:

$$E_f: \mathcal{Y}_{N(f)} \times \mathbb{R}^d \to \mathbb{R}$$

- E.g., say we are doing binary image segmentation
 - Want adjacent pixes to try to take same value, so define $E_f:\{0,1\} imes\{0,1\} imes\mathbb{R}^2 o\mathbb{R}$ as

$$E_f(0,0; \mathbf{w}) = E_f(1,1; \mathbf{w}) = w_1$$

 $E_f(0,1; \mathbf{w}) = E_f(0,1; \mathbf{w}) = w_2$

- We learn w₁ and w₂ from training data, expecting $w_1 > w_2$
- More on this later

Nebraska

Separation and D-Separation

 An edge between two nodes indicates a direct interaction between the variables

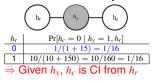
- Paths between nodes indicate indirect interactions
- Observing (instantiating) some variables change the interactions between others
- Useful to know which subsets of variables are conditionally independent from each other, given values of other variables
- Say that set of variables A is separated (if undirected model) or **d-separated** (if directed) from set \mathbb{B} given set $\mathbb S$ if the graph implies that $\mathbb A$ and $\mathbb B$ are conditionally independent given S

Separation and D-Separation

 h_c $\Pr[h_c = 0 \mid h_r]$ $\begin{array}{c|c} \hline 0 & (10+1)/(10+4+1+15) = 11/30 \\ \hline 1 & (5+10)/(5+2+10+150) = 15/167 \\ \hline \end{array}$ $\Rightarrow \Pr[h_c = 0]$ influenced by h_r

Recall example on health of you, roommate, and coworker

What if we **know** that you are healthy $(h_v = 1)$?



Nebraska

Separation and D-Separation Separation in Undirected Models

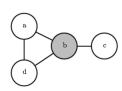
 If a variable is observed. it **blocks** all paths

In an undirected model,

two nodes are separated if all paths between them

through it

are blocked



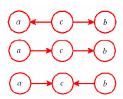
 E.g., a and c are blocked, as are d and c, but not a and d (even though one of their paths is blocked)

Nebraska

Separation and D-Separation

D-Separation in Directed Models

- In directed models, d-separation is more complicated Depends on the direction of the edges involved
- When considering nodes a and b connected via c, can classify connection as tail-to-tail. head-to-tail, and head-to-head



 For each case, assuming no other path exists (ignoring) edge direction) between a and b, we will determine if aand b are independent, or conditionally independent given c

Nebraska

Separation and D-Separation D-Separation in Directed Models: Tail-to-Tail

E.g., a = car won't start, b

0 lights work, c =battery low

Pr[c = 1] = 1/2 $c \mid \Pr[a = 1 \mid c] \mid c \mid \Pr[b = 1 \mid c]$ 1/3 0 4/5 || 1 1/10

Factorization:

$$Pr[a, b, c] = Pr[a \mid c] Pr[b \mid c] Pr[c]$$

• When c unknown, get Pr[a, b] by marginalizing:

$$Pr[a,b] = \sum_{c} Pr[a \mid c] Pr[b \mid c] Pr[c] ,$$

which generally does not equal Pr[a] Pr[b] \Rightarrow a and b not independent

● E.g., $\Pr[a=1,b=1] = 0.292 \neq 0.321 = (0.583)(0.550) = \Pr[a=1] \Pr[b=1]$

Nebraska

Separation and D-Separation D-Separation in Directed Models: Tail-to-Tail (2)

E.g.,
$$c = 1$$
 (battery low)

• When conditioning on c:

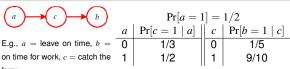
$$\Pr[a,b\mid c] = \frac{\Pr[a,b,c]}{\Pr[c]} = \frac{\Pr[c]\Pr[a\mid c]\Pr[b\mid c]}{\Pr[c]} = \Pr[a\mid c]\Pr[b\mid c]$$

- ullet Thus a and b conditionally independent given c (car not starting independent of lights working)
- Say that connection between a and b is blocked by c when it is observed and unblocked when unobserved
- Always true for uncoupled tail-to-tail connections (where there's no edge between a and b)

←□ → ←□ → ← □ → ← □ → へ○

Nebraska

Separation and D-Separation D-Separation in Directed Models: Head-to-Tail



Factorization:

$$Pr[a, b, c] = Pr[a] Pr[c \mid a] Pr[b \mid c]$$

• When c unknown, get Pr[a, b] by marginalizing:

$$\Pr[a,b] = \Pr[a] \sum_{c} \Pr[c \mid a] \Pr[b \mid c] = \Pr[a] \Pr[b \mid a] ,$$

which generally does not equal Pr[a] Pr[b]

 \Rightarrow a and b not independent

4 D > 4 B > 4 E > 4 E > E 9 Q C

1/5

9/10

Separation and D-Separation

D-Separation in Directed Models: Head-to-Tail (2)

E.g., c = 1 (catch ferry)

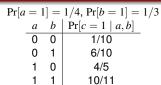
When conditioning on c:

$$\Pr[a,b\mid c] = \frac{\Pr[a,b,c]}{\Pr[c]} = \frac{\Pr[a]\Pr[c\mid a]\Pr[b\mid c]}{\Pr[c]} = \Pr[a\mid c]\Pr[b\mid c]$$

- Thus a and b conditionally independent given c (on time for work independent of leaving on time)
- Say that connection between a and b is blocked by c when it is observed and unblocked when unobserved
- Always true for uncoupled head-to-tail connections

Nebraska

Separation and D-Separation D-Separation in Directed Models: Head-to-Head



Factorization:

c = wet grass

$$P(a,b,c) = P(a)P(b)P(c \mid a,b)$$

• When c unknown, get P(a, b) by marginalizing:

$$P(a,b) = P(a)P(b)\sum_{c} P(c \mid a,b) = P(a)P(b)$$

 \Rightarrow a and b are independent

Nebraska

Separation and D-Separation D-Separation in Directed Models: Head-to-Head (2)

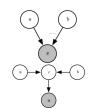
E.g.,
$$c = 1$$
 (grass wet)

When conditioning on c:

$$\Pr[a,b\mid c] = \frac{\Pr[a,b,c]}{\Pr[c]} = \frac{\Pr[a]\Pr[b]\Pr[c\mid a,b]}{\Pr[c]}$$

which generally does not equal $Pr[a \mid c] Pr[b \mid c]$

- a-b connection blocked by c when c unobserved and unblocked when observed (also unblocks if one of c's descendants observed)
- E.g., if grass wet and not raining, Pr[b=1] increases
- Always true for uncoupled head-to-head connections



4 D > 4 B > 4 E > 4 E > 9 Q @

Nebraska

Separation and D-Separation D-Separation in Directed Models: Example

• [W, Y, R, T] blocked by Y or R

[W, Y, X, Z, R, T] blocked by X or

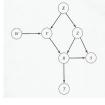
• [W, Y, X, Z, S, R, T] blocked by X

Applications

or Z or R but not by S since observing S unblocks the chain Y and T:

W and T:

- [Y, R, T] blocked by R
- [Y, X, Z, R, T] blocked by X or Z
- [Y, X, Z, S, R, T] blocked by X or Z or R



4 D > 4 D > 4 E > 4 E > E 990

Nebraska

Separation and D-Separation D-Separation in Directed Models: Example (2)

W and S:

- [W, Y, R, S] blocked by Y or R
- [W, Y, X, Z, R, S] blocked by X or Z or R
- [W, Y, X, Z, S] blocked by X or Z
- [W, Y, R, Z, S] blocked by Y or Z

Y and S:

- \bullet [Y, R, S] blocked by R
- \bullet [Y, R, Z, S] blocked by Z
- [Y, X, Z, R, S] blocked by X or Z or
- [Y, X, Z, S] blocked by X or Z

Thus $\{W, Y\}$ and $\{S, T\}$ are CI given $\{R, Z\}$

Separation and D-Separation D-Separation in Directed Models: Example (2)

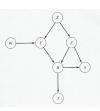
W and X:

 Chain [W, Y, X] blocked by Y when not observed

• Chain [W, Y, R, Z, X] blocked by R when not observed

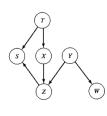
Chain [W, Y, R, S, Z, X] blocked by S when not observed

Thus W and X are independent



4 D > 4 D > 4 E > 4 E > E 90 C

Markov Blankets



ullet Let ${\mathcal V}$ be a set of random variables (nodes), and $X \in \mathcal{V}$. A Markov blanket \mathcal{M}_X of X is any set of variables such that X is CI of all other variables given \mathcal{M}_X

- If no proper subset of \mathcal{M}_X is a Markov blanket, then \mathcal{M}_X is a Markov boundary
- **Theorem:** The set of *X*'s parents, children, and co-parents (other parents of X's children) form a Markov blanket of X
- Node X has Markov blanket {T, Y, Z}

4 D > 4 B > 4 E > 4 E > 9 Q @

Nebraska

Learning Graphical Models

 Learning a CRF with input x, parameterized by weight vector w:

$$\Pr[\mathbf{y} \mid \mathbf{x}, \mathbf{w}] = \frac{1}{Z(\mathbf{x}, \mathbf{w})} \exp\left(-E(\mathbf{y}, \mathbf{x}, \mathbf{w})\right)$$

where $Z(x, w) = \sum_{y \in \mathcal{Y}} \exp\left(-E(y, x, w)\right)$

- Let energy function $E(y, x, w) = \langle w, \varphi(x, y) \rangle$
 - I.e., a weighted sum of features produced by feature function $\varphi(x,y)$
 - $\varphi(x,y)$ could be a deep network, possibly trained earlier
 - w is trained to get $Pr_P[y \mid x, w]$ "close" to the true distribution $Pr_D[y \mid x]$

4 D > 4 D > 4 E > 4 E > E 990

4 D > 4 D > 4 E > 4 E > E 990

Nebraska

Learning Graphical Models Conditional Random Fields (2)

- Want w such that $Pr_P[y \mid x, w]$ is close to the true distribution $Pr_D[y \mid x]$
- Measure distance via Kullback-Leibler (KL) **divergence**: for any $x \in \mathcal{X}$ we have

$$\mathsf{KL}(P||D) = \sum_{\mathbf{y} \in \mathcal{Y}} \Pr_{D}[\mathbf{y} \mid \mathbf{x}] \log \frac{\Pr_{D}[\mathbf{y} \mid \mathbf{x}]}{\Pr_{P}[\mathbf{y} \mid \mathbf{x}, \mathbf{w}]}$$

• By marginalizing over all $x \in \mathcal{X}$ we get

$$\mathsf{KL}_{tot}(P||D) = \sum_{x \in \mathcal{X}} \Pr_{D}[x] \sum_{y \in \mathcal{Y}} \Pr_{D}[y \mid x] \log \frac{\Pr_{D}[y \mid x]}{\Pr_{P}[y \mid x, w]}$$

4 D > 4 B > 4 E > 4 E > E 9 Q C

Nebraska

Learning Graphical Models Conditional Random Fields (3)

Goal is to find weights yielding close distribution, so

$$\begin{array}{ll}
* & = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \operatorname{\mathsf{KL}}_{tot}(P \| D) \\
& = \underset{w \in \mathbb{R}^d}{\operatorname{argmax}} \sum_{x \in \mathcal{X}} \Pr_D[x] \sum_{y \in \mathcal{Y}} \Pr_D[y \mid x] \log \Pr_P[y \mid x, w] \\
& = \underset{w \in \mathbb{R}^d}{\operatorname{argmax}} \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \Pr_D[x] \Pr_D[y \mid x] \log \Pr_P[y \mid x, w] \\
& = \underset{w \in \mathbb{R}^d}{\operatorname{argmax}} \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \Pr_D[x, y] \log \Pr_P[y \mid x, w] \\
& = \underset{w \in \mathbb{R}^d}{\operatorname{argmax}} \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \Pr_D[\log \Pr_P[y \mid x, w]] \\
& \approx \underset{w \in \mathbb{R}^d}{\operatorname{argmax}} \sum_{(x^n, y^n) \in \mathcal{D}} \log \Pr_P[y \mid x, w]
\end{array}$$

for training data \mathcal{D}

Nebraska

Learning Graphical Models

Conditional Random Fields: RMCL

- I.e., we choose a model (w*) that maximizes the conditional log likelihood of the data
 - If all (x, y) instances are drawn iid, then w^* maximizes the probability of seeing all the ys given all the xs
- Throw in a regularizer for good measure
- **Definition:** Let $\Pr[y \mid x, w] = \frac{1}{Z(x,w)} \exp(-\langle w, \varphi(x,y) \rangle)$ be a probability distribution parameterized by $\mathbf{w} \in \mathbb{R}^d$ and let $\mathcal{D} = \{(\mathbf{x}^n, \mathbf{y}^n)\}_{n=1,...,N}$ be a set of training examples. For any $\lambda > 0$, regularized maximum conditional likelihood (RMCL) training chooses

$$\mathbf{w}^* = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^d} \lambda \|\mathbf{w}\|^2 + \sum_{n=1}^N \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}^n) \rangle + \sum_{n=1}^N \log Z(\mathbf{x}^n, \mathbf{w})$$

Nebraska

Learning Graphical Models Conditional Random Fields: RMCL (2)

Applications Graphical Models

Goal: find w minimizing

$$\mathcal{L}(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 + \sum_{n=1}^{N} \langle \mathbf{w}, \varphi(\mathbf{x}^n, \mathbf{y}^n) \rangle + \sum_{n=1}^{N} \log Z(\mathbf{x}^n, \mathbf{w})$$

Compute the gradient:

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = 2\lambda \mathbf{w} + \sum_{n=1}^{N} \left[\varphi(\mathbf{x}^{n}, \mathbf{y}^{n}) - \sum_{\mathbf{y} \in \mathcal{Y}} \left(\frac{\exp(-\langle \mathbf{w}, \varphi(\mathbf{x}^{n}, \mathbf{y}) \rangle)}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp(-\langle \mathbf{w}, \varphi(\mathbf{x}^{n}, \mathbf{y}') \rangle)} \right) \varphi(\mathbf{x}^{n}, \mathbf{y}) \right]$$

$$= 2\lambda \mathbf{w} + \sum_{n=1}^{N} \left[\varphi(\mathbf{x}^{n}, \mathbf{y}^{n}) - \sum_{\mathbf{y} \in \mathcal{Y}} \Pr_{\mathbf{y}} \left[\mathbf{y} \mid \mathbf{x}^{n}, \mathbf{w} \right] \varphi(\mathbf{x}^{n}, \mathbf{y}) \right]$$

$$= \left[2\lambda \mathbf{w} + \sum_{n=1}^{N} \left[\varphi(\mathbf{x}^{n}, \mathbf{y}^{n}) - \mathsf{E}_{\mathbf{y} \sim P(\mathbf{y} \mid \mathbf{x}^{n}, \mathbf{w})} \left[\varphi(\mathbf{x}^{n}, \mathbf{y}) \right] \right]$$

Learning Graphical Models Conditional Random Fields: RMCL (3)

 The gradient has a nice, compact form, and is convex ⇒ Any local optimum is a global one

- Problem: Computing expectation requires summing over exponentially many combinations of values of y
- We can factor energy function, and therefore its derivative, and therefore the expectation of its derivative
- Let's focus on an individual factor f:

$$\mathsf{E}_{\mathbf{y}_f \sim P(\mathbf{y}_f \mid \mathbf{x}^n, \mathbf{w})} \left[\varphi_f(\mathbf{x}^n, \mathbf{y}_f) \right] = \sum_{\mathbf{y}_f \in \mathcal{Y}_f} \Pr_P(\mathbf{y}_f \mid \mathbf{x}, \mathbf{w}) \varphi_f(\mathbf{x}^n, \mathbf{y}_f)$$

- Summation still has exponentially many terms, but instead of $K^{|V|}$ now it's $K^{|N(f)|}$ (more manageable)
- Still need to compute each factor's marginal probability

4 D > 4 B > 4 B > 4 B > 8 9 9 9

Nebraska

Learning Graphical Models

Training

• Efficient **inference** of marginal probabilities and Z in a graphical model is itself a major research area

- Depends on the structural model we're using
- Start with belief propagation in acyclic models
- Then approximate loopy belief propagation for cyclic models

Nebraska

Learning Graphical Models Inference: Sum-Product Algorithm

- Belief propagation is a general approach to inference in directed and undirected graphical models
- Generally, some node i sends a message to another node *i* regarding *i*'s belief about variable *y*
 - i informs j its belief about marginal probability Pr[y]
 - E.g., message value high \Rightarrow belief is Pr[y] also high
 - · Each node messages each of its neighbors about its belief for each value of the random variable
- Sum-Product Algorithm uses belief propagation to find marginal probabilities and Z in tree-structured factor graphs (connected and acyclic)
- $\begin{array}{c} \bullet \ \ \text{Each edge} \ (i,f) \in \mathcal{E} \subseteq V \times \mathcal{F} \ \text{has} \\ \bullet \ \ q_{Y_i \to f} \in \mathbb{R}^{|\mathcal{Y}_i|} \ \text{is a variable-to-factor} \ \text{message} \end{array}$ $r_{f o Y_i} \in \mathbb{R}^{|\mathcal{Y}_i|}$ is a factor-to-variable message
- Note they are vector quantities, one component per value of Y_i 101481313131300

Nebraska

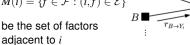
Learning Graphical Models

Inference: Sum-Product Algorithm (2)

Applications

Variable-to-Factor Message • For variable $i \in V$, let

 $M(i) = \{ f \in \mathcal{F} : (i, f) \in \mathcal{E} \}$



 For each value y_i of variable i, variable-to-factor message is

$$q_{Y_i \to f}(y_i) = \sum_{f' \in M(i) \setminus \{f\}} r_{f' \to Y_i}(y_i)$$

 Variable node i sums up all factor-to-variable messages from all factors except f and transmits result to f

Nebraska

Learning Graphical Models Inference: Sum-Product Algorithm (3)

Factor-to-Variable Message

• For factor $f \in \mathcal{F}$, recall

$$N(f) = \{i \in V : (i,f) \in \mathcal{E}\}$$
 is the set of variables adjacent to f
$$\frac{q_{Y_j \to F}}{q_{Y_k \to F}} F$$

• For each value y_i of variable i, factor-to-variable message is

$$r_{f \to Y_i}(y_i) = \log \sum_{\substack{y_f' \in \mathcal{Y}_f, \\ y_i' = y_i}} \exp \left(-E_f(y_f') + \sum_{j \in N(f) \setminus \{i\}} q_{Y_j \to f'}(y_i') \right)$$

 Factor node f sums up all variable-to-factor messages from all variables except i and transmits result to i

Nebraska

Learning Graphical Models Inference: Sum-Product Algorithm (4)

 Since we have a tree structure, there is always at least one variable adjacent to only one factor or one factor adjacent to one variable

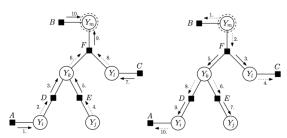
• These messages depend on nothing, so start there

- Then order the other message computations via precedence graph
- Designate an arbitrary variable node to be the root
- Two phases of algorithm:
 - Leaf-to-root phase: start at leaves and compute messages toward root
 - Root-to-leaf phase: start at root and compute messages toward leaves

4 D > 4 D > 4 E > 4 E > E 990

Learning Graphical Models

Inference: Sum-Product Algorithm (5)



After two phases, all messages computed

Nebraska

Learning Graphical Models Inference: Sum-Product Algorithm (6)

To **compute** Z, sum over factor-to-variable messages directed to root Y_r :

$$\log Z = \log \sum_{y_r \in \mathcal{Y}_r} \exp \left(\sum_{f \in M(r)} r_{f \to Y_r}(y_r) \right)$$

Nebraska

Learning Graphical Models Inference: Sum-Product Algorithm (7)

To compute factor marginals:

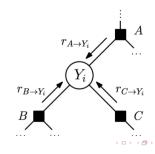
4 ロ ト 4 原 ト 4 夏 ト 4 夏 ト 9 Q (P)

Nebraska

Learning Graphical Models Inference: Sum-Product Algorithm (8)

To compute variable marginals:

 $\Pr[Y_i = y_i] = \exp\left(\sum_{f \in M(i)} r_{f \to Y_i}(y_i) - \log Z\right)$

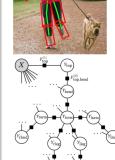


 $\mu_f(\mathbf{y}_f) = \Pr[Y_f = \mathbf{y}_f] = \exp\left(-E_f(\mathbf{y}_f) + \sum_{i \in N(f)} q_{Y_i \to f}(y_i) - \log Z\right)$

Nebraska

Learning Graphical Models

Inference: Sum-Product Algorithm: Pictorial Structures Example



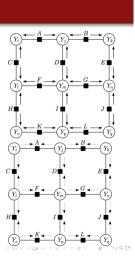
- E.g., $E_{f_{\text{top}}^{(1)}}(y_{\text{top}};x)$ is energy function for factor f_{top} representing top of person
- x is observed image and Y_{top} is tuple (a, b, s, θ) where (a, b) are coordinates, s is scale, and θ is
- ullet $E_{f_{\mathsf{top}},\mathsf{head}}(y_{\mathsf{top}},y_{\mathsf{head}})$ relates adjecnt pairs of variables

Nebraska

Learning Graphical Models Inference: Loopy Belief Propagation

• When graph has a cycle, can still perform message passing to approximate Z and marginal probabilities

- Initialize messages to fixed
- Perform updates in random order until convergence
- Factor-to-variable messages $r_{f \to Y_i}$ computed as before
- Variable-to-factor messages computed differently



Learning Graphical Models Inference: Loopy Belief Propagation (2)

Variable-to-factor messages:

$$\begin{split} \bar{q}_{Y_i \to f}(y_i) &= \sum_{f' \in \mathcal{M}(i) \setminus \{f\}} r_{f' \to Y_i}(y_i) \\ \delta &= \log \sum_{y_i \in \mathcal{Y}_i} \exp \left(\bar{q}_{Y_i \to f}(y_i) \right) \\ q_{Y_i \to f}(y_i) &= \bar{q}_{Y_i \to f}(y_i) - \delta \end{split}$$

←□ → ←□ → ← □ → ← □ → へ○

Nebraska

Learning Graphical Models Inference: Loopy Belief Propagation (3)

To compute factor marginals:

$$\begin{array}{lcl} \bar{\mu}_f(\mathbf{y}_f) & = & -E_f(\mathbf{y}_f) + \sum_{j \in N(f)} q_{Y_j \to f}(y_j) \\ \\ z_f & = & \log \sum_{\mathbf{y}_f \in \mathcal{Y}_f} \exp(\bar{\mu}_f(\mathbf{y}_f)) \\ \\ \mu_f(\mathbf{y}_f) & = & \exp\left(\bar{\mu}_f(\mathbf{y}_f) - z_f\right) \end{array}$$

$$\mu_f(\mathbf{y}_f) = \exp(\bar{\mu}_f(\mathbf{y}_f) - z_f)$$

4 D > 4 B > 4 E > 4 E > 9 Q @

Nebraska

Learning Graphical Models Inference: Loopy Belief Propagation (4)

To compute variable marginals:

$$\begin{array}{rcl} \bar{\mu}_i(y_i) & = & \displaystyle \sum_{f' \in M(i)} r_{f' \to Y_i}(y_i) \\ \\ z_i & = & \log \displaystyle \sum_{y_i \in \mathcal{Y}_i} \exp(\bar{\mu}_i(y_i)) \\ \\ \mu_i(y_i) & = & \exp(\bar{\mu}_i(y_i) - z_i) \end{array}$$

4D> 4B> 4B> B 990

Nebraska

Learning Graphical Models Inference: Loopy Belief Propagation (5)

Applications

To compute Z:

$$\log Z = \sum_{i \in V} (|M(i) - 1|) \left[\sum_{y_i \in \mathcal{Y}_i} \mu_i(y_i) \log \mu_i(y_i) \right]$$
$$- \sum_{f \in \mathcal{F}} \sum_{\mathbf{y}_f \in \mathcal{Y}_f} \mu_f(\mathbf{y}_f) (E_f(\mathbf{y}_f) + \log \mu_f(\mathbf{y}_f))$$

4D> 4B> 4B> B 990

Nebraska

Learning Graphical Models Conditional Random Fields: Case Study

Chen et al. (2015): Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs

- Adapted DCNN ResNet-101 (trained for image classification) to the task of semantic segmentation
- Replaced connected layer with a "de-convolution" layer to upscale to original resolution for segmented image
- Result effective, but segment edges blurred
- Used CRF to sharpen

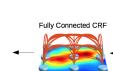
Nebraska

Learning Graphical Models Conditional Random Fields: Case Study (2): Overview

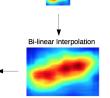
Graphical Models

Final Output

Input



Neural Network



Aeroplane Coarse Score map

- Score map generated as output of DCNN interpolated to input resolution
- Right area, but boundary of high-scoring region is fuzzy
- CRF sharpens to final output

4D> 4B> 4B> B 990

4D> 4B> 4B> B 990

Learning Graphical Models

Conditional Random Fields: Case Study (2): CRF

• Energy function:

$$E(\mathbf{y}) = \sum_{i} \theta_{i}(y_{i}) + \sum_{i,j} \theta_{ij}(y_{i}, y_{j})$$

where $y_i \in \{0, 1\}$ is label assignment for pixel i

• Use $\theta_i(y_i) = -\log P(y_i)$ and

$$\theta_{\mathcal{Y}}(y_l,y_j) = \mu(y_l,y_j) \left[w_1 \exp\left(-\frac{\|p_l - p_j\|^2}{2\sigma_{\alpha}^2} - \frac{\|l_l - l_j\|^2}{2\sigma_{\beta}^2} \right) + w_2 \exp\left(-\frac{\|p_l - p_j\|^2}{2\sigma_{\gamma}^2} \right) \right]$$

- $\mu(y_i, y_j) = 1$ iff $y_i \neq y_j$ (different labels) $p_i =$ position of pixel i• $I_i =$ RGB color of pixel i

- $\sigma = \text{parameters}$
- Inference via specialized algorithms for Gaussian-based functions

4 D > 4 D > 4 E > 4 E > E 990

Learning Graphical Models Conditional Random Fields: Case Study (3): CRF Training Example

Image/G.T.

DCNN output

CRF Iteration 1

CRF Iteration 2

CRF Iteration 10

Training

