CSCE 970 Lecture 7: Parameter Learning

Stephen D. Scott



Introduction

e Now we’ll discuss how to parameterize a Bayes net

e Assume that the structure is given

e Start by representing prior beliefs, then incorporate results from data




Outline

Learning a single parameter
— Uniform prior belief
— Beta distributions

— Learning a relative frequency

Beta distributions with nonintegral parameters

Learning parameters in a Bayes net
— Urn examples

— Equivalent sample size

Learning with missing data items



Learning a Single Parameter
All Relative Frequencies Equally Probable

J

e Assume urn with 101 coins, each with different probability f of heads
e |f we choose a specific coin f from the urn and flip it,

P(Side = heads | f) = f



Learning a Single Parameter

All Relative Frequencies Equally Probable (cont'd)
P(r)=1/101 00 <F<1.00

)

AN
Qg
P(Side = heads|f) =T

e If we choose the coin from the urn uniformly at random, then can rep-
resent with an augmented Bayes net

e Shaded node represents belief about a relative frequency



Learning a Single Parameter
All Relative Frequencies Equally Probable (cont'd)

1.0 1.0
P(Side = heads) = Z P(Side = heads | f)P(f) = Z f/101
f=0.0 f=0.0
1 100
- (100)(101)) fgof

B 1 (100)(101)\
B ((100>(101>>< 2 >_1/2

Get same result if a continuous set of coins



Learning a Single Parameter
All Relative Frequencies Not Equally Probable

Don’t necessarily expect all coins to be equally likely

E.g. may believe that coins more likely with P(Side = heads) ~ 0.5

Further, need to characterize the strength of this belief with some mea-
sure of concentration (i.e. lack of variance)

Will use the beta distribution




Learning a Single Parameter
All Relative Frequencies Not Equally Probable
Beta Distribution

The beta distribution has parameters a and b and is denoted beta( f; a, b)

Think of a and b as frequency counts in a pseudosample (for a prior)
or in a real sample (based on training data)

— a is the number of times coin came up heads, b tails

If N = a + b, beta’s probability density function is:
(V)

(a)l (b)

p(f) = et =it

where

©.@)
() :/O tr—Le=tqs

is generalization of factorial
Special case of Dirichlet distribution (Defn 6.4, p. 307)
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Learning a Single Parameter
All Relative Frequencies Not Equally Probable
Beta Distribution (cont’d)

B_

= = Ma w L o o b
L L L L L L L

beta(f; 3,3) beta(f; 50,50) beta(f; 18,2)
Concentration of mass is at E(F') = P(heads) = a/(a + b)
The larger N is, the more concentrated the pdf is (i.e. less variance)

Thus relative values of a and b can represent prior beliefs, and
N = a + b represents strength of prior

What does beta(f; 1,1) look like?



Learning a Single Parameter
All Relative Frequencies Not Equally Probable
Updating the Beta Distribution

Say we’re representing our prior as beta(f; a,b) and then we see a
data set with s heads and ¢ tails

Then the updated beta distribution that reflects the data d has a pdf
p(f|d) = beta(f;a+s,b+1)

|.e. we just add the data counts to the pseudocounts to reparameterize
the beta distribution

Further, the probability of seeing the data is
pd)= "N Ta+)rG+
TN+ M) T (a)l (D)
where N =a+band M = s+t
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Learning a Single Parameter
All Relative Frequencies Not Equally Probable
Updating the Beta Distribution (example)

Bold curve is beta(f; 3,3) and light curve is beta(f; 11,5), after seeing
datad = {1,1,2,1,1,1,1,1,2,1}
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Learning a Single Parameter
The Meaning of Beta Parameters

If a = b = 1, then we assume nothing about what value is more likely,
and let the data override our uninformed prior

If a,b > 1, then we believe that the distribution centers on a/(a + b),
and the strength of this belief is related to the magnitudes of the values

If a,b < 1, then we believe that one of the two values (heads, tails)
dominates the other, but we don’t know which one

— E.g.ifa = b = 0.1 then our prior on heads is 0.1/0.2 = 1/2, but
if heads comes up after one coin toss, then posterioris 1.1/1.2 =
0.917

If a < 1 and b > 1, then we believe that “heads” is uncommon

12



Learning a Single Parameter

a,b <1

0.2 =
0.18
0.16 =
0.14 =
0.12
0.1 =
0.08

0.06
0.04 =
0.02

GjrlrrllI|||||l|'1|II|lIII
0.2 0.4 0.6 0.8 1

f

U-shaped curve is beta(f;1/360,19/360), other curve is beta(f;3 +
1/360,19/360), after seeing three “heads,” and probability of next one
being heads is (3 + 1/360)/(3 + 20/360) = 0.983
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Learning Parameters in a Bayes Net
Example: Two Independent Urns

-----------

Experiment: Independently draw a coin from each urn X; and X5, and
repeatedly flip them

14



Learning Parameters in a Bayes Net
Example: Two Independent Urns (cont'd)

beta(f);1,1) beta(fyy; 1,1)

P(X,=1fi1)=fu PX;=1|fy) = f

If prior on each urn is uniform (beta( f;1; 1, 1)), then get above augmented
Bayes net
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Learning Parameters in a Bayes Net
Example: Two Independent Urns (cont'd)

& ®

PX,;=1)=1R P(X,=1) =172

Marginalizing and noting independence of coins yields the above
embedded Bayes net with joint distribution (“1” = "heads”):

P(X1=1,X,=1)
P(X1=1,X,=2)
P(X1=2,X,=1)
P(X1{=2,X,=2)

P(X1=1)P(Xo=1)=(1/2)(1/2) =1/4
P(X1 =1)P(X2=2)=(1/2)(1/2) =1/4
P(X1 =2)P(X2=1)=(1/2)(1/2) =1/4
P(X1=2)P(X2=2)=(1/2)(1/2) =1/4
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Learning Parameters in a Bayes Net
Example: Two Independent Urns (cont'd)

Now sample one coin from each urn and toss each one 7 times

End up with a set of pairs of outcomes, each of the form (X1, X5):
d={(1,1),(1,1),(1,1),(1,2),(2,1),(2,1),(2,2)}

l.e. coin X7 got s;; = 4 heads and t17 = 3 tails and coin X5 got
sp1 = 5 heads and tp1 = 2 tails

Thus

p(f11|d) beta(f11;a11 + s11,b11 + t11) = beta(f11;5,4)
p(fo1|d) = beta(fo1;a01 + s21,b21 + to1) = beta(fo1;6,3)

beta(fy,:5,4) beta(fy);6,3)

P(X, =1]£,) = fiy P(X; =1|fy) = f

17



Learning Parameters in a Bayes Net
Example: Two Independent Urns (cont'd)

(%) (®)

P(X, =1)=5/9 P(X,=1)=273

Marginalizing yields the above embedded Bayes net with joint distribution:

P(X1=1,X,=1)
P(X1=1,X,=2)
P(X1=2X,=1)
P(X1=2,X,=2)

P(X1=1)P(X,=1) = (5/9)(2/3) = 10/27
P(X1=1)P(Xo =2) = (5/9)(1/3) = 5/27
P(X{1=2)P(Xo=1)=(4/9)(2/3) =8/27
P(X1=2)P(Xo =2) = (4/9)(1/3) = 4/27
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Learning Parameters in a Bayes Net
Example: Three Dependent Urns

et 1::@

XX, =1 Xl X, =2
Experiment: Independently draw a coin from each urn X1, Xo | X1 = 1,
and X5 | X1 = 2, then repeatedly flip X1’s coin

o If X flip is heads, flip coin fromurn X5 | X1 =1
o If X flip is tails, flip coin from urn X5 | X1 =2
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Learning Parameters in a Bayes Net
Example: Three Dependent Urns (cont'd)

beta(f1:1,1) beta(f;:1,1) beta(fs,1,1)

Ay

P(X, = ]|f”} =fn PX;=1X,=1,f1)=f
P(X;=1|X; =2,/) = fx

If prior on each urn is uniform (beta(f;;; 1, 1)), then get above augmented
Bayes net

20



Learning Parameters in a Bayes Net
Example: Three Dependent Urns (cont'd)

(W)——®)

P(X;=1)=1/2 PX,=1X,=1)=

PX,=1X,=2)=

Marginalizing yields the above embedded Bayes net with joint distribution:

P(X1=1,X,=1)
P(X1=1,X,=2)
P(X1=2,Xo=1)
P(X1=2,X,=2)

P(Xo=1|X1=1)P(X1=1)=(1/2)(1/2) =1/4
P(Xo=2|X1=1)P(X1=1)=(1/2)(1/2) =1/4
P(Xo=1|X1 =2)P(X1=2)=(1/2)(1/2) =1/4
P(Xo=2| X1 =2)P(X1=2)=(1/2)(1/2) =1/4
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Learning Parameters in a Bayes Net
Example: Three Dependent Urns (cont'd)

e Now continue experiment until you get a set of 7 pairs of outcomes,
each of the form (X1, X5):
d={(1,1),(1,1),(1,1),(1,2),(2,1),(2,1),(2,2)}

e l.e. coin X7 got s1; = 4 heads and t11 = 3 tails, coin X, got so1 =
3 heads when X7 was heads and ¢t = 1 tail when X7 was heads,
and coin X» got s»b» = 2 heads when X7 was tails and t»,>, = 1 tall
when X1 was tails

e Thus
p(fi1]d) = beta(fi1;a11 + s11,b11 + t11) = beta(f11;5,4)
p(f211d) = beta(fo1;a21 + s21,b21 + t21) = beta(f21;4,2)
p(f22|d) = beta(faz; a2z + s22,b22 + t22) = beta( f21;3,2)

beta(f;:5,4) beta(f>34,2) beta( f27:3,2)

- - P(X, = 1X;=1,/) = [
PX, =1} fu) = Ju P(:’i’i - 1|X: =2 o) = fr
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Learning Parameters in a Bayes Net
Example: Three Dependent Urns (cont'd)

(—®)

. - =1)=213
P(X, =1) =50 P(X, = 11X,
=D P(X, = 11X, =2) =35

Marginalizing yields the above embedded Bayes net with joint distribution:

P(X;=1,Xo=1) P(Xo=1[X1=1)P(X1=1) =(2/3)(5/9) = 10/27
P(X1=1,X,=2) P(Xo=2|X1 =1)P(X1=1)=(1/3)(5/9) =5/27
P(X1=2,Xo=1) P(X2=1|X1=2)P(X1=2)=(3/5)(4/9) = 12/45
P(X;=2,X,=2) P(Xo=2]X1 =2)P(X1 =2)=(2/5)(4/9) = 8/45
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Learning Parameters in a Bayes Net
e When all the data are completely specified, the algorithm for parame-
terizing the network is very simple

— Define the prior and initialize the parameters of each node’s condi-
tional probability table with that prior (in the form of pseudocounts)

— When a fully-specified example is presented, update the counts by
matching the attribute values to the appropriate row in each CPT

— To compute a conditional probability, simply normalize each count
table

24



Prior Equivalent Sample Size

The Problem
bffﬂ{f“; I__ lJ hﬂlﬂ{le; 1, ]) bffﬂ(fzz; 1, ]_:l

PX,=1)=12 P(X,=1X,=1)=12
(%) P = 1y = 2) = 12

Given the above Bayes net and the following data set

d={(1,2),(1,1),(2,1),(2,2),(2,1),(2,1),(1,2),(2,2)},
what is P(Xo = 1)?

25



Prior Equivalent Sample Size
The Problem (cont’d)

e Wait a minute...We started with a uniform prior over both X7 and X»,
saw the same number of “1”s as “2”s for X5 in d, and yet the marginal

e The problem is that there are two parents for X, versus one for X7:

— X4’s prior of beta(f11;1,1) implies that in our prior, X took the
value 1 once in two trials

— On the other hand, X5’s prior of two beta distributions implies that
X» took the value 1 twice in four trials

26



Prior Equivalent Sample Size

Another Problem
beta(fy,:1,1) beta(fi5:1.1) bera(fy:1,1)

o 9 PG =1, =1)=12 P(X,=1)=12

Given the above Bayes net and the same data set

d={(1,2),(1,1),(2,1),(2,2),(2,1),(2,1),(1,2),(2,2)},
what is P(Xo = 1)?

27



Prior Equivalent Sample Size
Another Problem (cont'd)

e Wait a minute...Now we have an embedded BN that’s Markov equiva-
lent to the previous one, but we get a different marginal?

e How do we fix this?

28



Prior Equivalent Sample Size
Equivalent Sample Size
beta(f11;2,2)  beta(fo;1,1)  beta(fyy; 1,1)

@ e IJ{X|=IJ=1!!2 P{Xl?:lrlr":l]z‘lﬂ
P{XI = ']|j:',| ] 2} = 1/2
e Changing Xq’s prior to beta(f11;2,2) retains the prior probability of

1/2 over X1’s values, but match its pseudosample size to that of X5

e Given the above Bayes net and the same data set
d=1{(1,2),(1,1),(2,1),(2,2),(2,1),(2,1),(1,2),(2,2) },
what is P(Xo = 1)?

e Similar result if we double X5’s sample size in Xo — X1 network

29



Prior Equivalent Sample Size

Consider a binomial augmented Bayes net with densities beta( f;;; a;;, b;;)

for all 7 and j

If there is some NN such that for all 7 and j,

N;; = a;; + bj; = P(pa;;)N
then the network has equivalent sample size N

pa;; is an instantiation of the parents NA; of node X;

If the network has an equivalent sample size N, then for each node

X;, 1€ {1,...,n} (g; is number of instantiations of X;’s parents),

30



Prior Equivalent Sample Size
Example (N = 15)
beta(f;,,10,5) beta( f>5; 9, 6)

bffﬂ'(f:;]: 2-4:' bfﬁﬂ{fj‘}; 21 1} P(Xl =1)=2/3 P(XE =1)=13/5

beta(f3;3,1) beta(fi4,1,1)

P(X:‘ = I|Xl = 1,X2 = 1) =173
P(X;=1X,=1,X, =2)=3/4

P(Xy=1|X, = 2,X, = 1) = 273
Py = 10X, =2, X, =2) = 112
aj1 +b11 =10+5=15 N -P(payj;) =15-1 =15

(paj; = 0)
31



Prior Equivalent Sample Size
Example (N = 15) (cont'd)
beta(f;,,10,5) beta( f>5; 9, 6)

bffﬂ'(f:;]: 2-4:' bfﬁﬂ{fj‘}; 21 1} P(Xl =1)=2/3 P(XE =1)=13/5

beta(f3;3,1) beta(fi4,1,1)

P(X:‘ = I|Xl = 1,X2 = 1) =173
P(X;=1X,=1,X, =2)=3/4

P(Xy=1|X, = 2,X, = 1) = 273
Py = 10X, =2, X, =2) = 112
a>o> +bopop =946 =15 N - P(payy,) =15-1 =15

(pagy = 0)
32



Prior Equivalent Sample Size
Example (N = 15) (cont'd)

beta(f;,; 10, 5) beta( f,; 9, 6)

P(X, =1) =273 P(X,=1)=3/5

beta( f;;2,4) beta{f33:2,1)

beta(f;5;3,1) beta(fy,,1,1)

PX; = 11X, = 1,X,=1) = 13

P(X; = 1|X, =2, X, = 2) = 112

az1+b31 =2+4 =6 N-P(pa3;) = 15-P(X1 =1,X,=1) = 15(2/3)(3/5) =6
azo+bs =3+1 =4 N-P(pas,) = 15-P(X; = 1,Xs =2) = 15(2/3)(2/5) = 4
azz+bsz =2+1 =3 N-P(pas3) = 15-P(X; =2,X, =1) = 15(1/3)(3/5) = 3
azs+bzs =14+1 =2 N-P(pag,) = 15-P(X1 =2, X, =2) = 15(1/3)(2/5) =2

33



Prior Equivalent Sample Size

Group Exercise
bera(f,.8,2) beta(fy;2,6)  beta(fy;1,1)  beta(fyy,2,1)  beta(f3y;3,4)

A

P(X,=1X,=1)=1/4 P(Xy=1X,=1)=2/3
P(X,=1)=4/5 PX,=1X,=2)=12 P(X;=1]X,=2)=37

D 10

Does the above network have an equivalent sample size?

34



Prior Equivalent Sample Size
Creating a Network with an Equivalent Sample Size

Can get a uniform prior with pseudosample size NV by setting

a;; = bjj = N/(2¢q;)

beta(f;;2,2)  beta(fy;:1,1)  beta(fry;1,1)

g1 = 1 since pa; = 0, go = 2 since pa, = {{1},{2}}; N =4

35



Prior Equivalent Sample Size
Creating a Network with an Equivalent Sample Size (cont'd)

Can get a nonuniform prior with pseudosample size N by setting
ajj = P(X;=1]pa;;)P(pa;;)N
b P(X; = 2| pa;;)P(pa;; )N

iJ

beta(f,; 10,5) beta(f,; 9, 6)

P(X, =1) =273 P(X,=1)=3/5

beta(fy,;2,4) beta(f13:2,1)

beta(f1;;3,1) beta(f34,1.1)

PX; = 11X, = 1,X,=1) =13

P(X; = 1|X, =2, X, = 2) = 112

Probabilities in embedded network: N = 15
36



Prior Equivalent Sample Size
Choosing the Value of N

e We've established that beta(f; 1, 1) is our ultimate uninformed prior

e But when establishing equivalent sample sizes, placing beta(f; 1,1)
at nonroots resulted in stronger priors at the roots (e.g., beta(f; 2,2))

e To remain truly uninformed, recommended that we start with beta(f; 1, 1)
at the roots (N = 2) and then use fractional parameters at the internal
nodes (they still sum to 2)

beta(fi1;1,1) beta(fr:1,1)

beta(fy; 25, 25) beta( f13; .25, 25)

beta(fy2; .25, 25) beta( fg; 25,.25)

37



Handling Missing Attribute Values
beta(fy,:2,2) beta(f51;1,1) beta(fry;1,1)

P(X,=1)= 12 P(X,=1lX,=1) =12

X
‘ P(X;=1)X,=2) =112

How do we update the Bayes net when we see partially-specified data

d={(1,1),(1,7),(1,1),(1,2),(2,7)}?

Can handle specified values as before, e.g. number of times X7 = 1

IS s11 = 4, yielding beta(f11; 6, 3)

Since we already have a probability distribution over the values, we

can fractionalize the examples with unspecified attributes, e.g. num-

ber of times X1 = 1 and Xo = 1is sp1 = 2 + 1/2, and number

of times times X1 = 1 and Xp = 2 istpy; = 1 4 1/2, yielding

beta(fa1;7/2,5/2)

— The “1/2” fractions came from P(X> = 1 | X1 = 1), etc., from
the embedded network
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Handling Missing Attribute Values

beta(fy,:6,3) beta(fy;7/2,5/2) beta(fy,;3/2,3/2)
P(X,=1)=23 P(X,=1X,=1)="712
0 | @ P(X,=1|X, =2) =112
After updating, get the above network

Hmmmmm. Now P(Xo> = 1 | X7 = 1) # 1/2, which is what we
used in our fractional update

What if we used the new probabilities to fractionalize the data?

Then we still get s11 = 4 and sp» = 1/2 (why?), but now have
so1 =2+ 7/12andty; =1+ 5/12

= beta(f11;6,3), beta(fr1;43/12,29/12), beta(fr2;3/2,3/2)
= P(Xo=1|X;=1)=43/72

Can repeat again, and again, ...
What does this look like?

39



Handling Missing Attribute Values
The Algorithm

e Yes, it's our old friend, the EM Algorithm!

e First, initialize fi’j either to a;;/(a;; + b;;) (deterministic) or to arbitrary
values (to avoid local optima)

e Then compute (M = number of examples)

M
h

siio= E(siyj|d,f) =Y P(XM =1,pa; | x"M, )
h=1
L h

ti, = E(ty;|d,f) =Y P(X" =2pa;|x" )
h=1

e Then compute
MAP: o(f | d) ML: P(d | f)
f’ _ CMJ"‘SZJ or f’ _ SZJ
7

/ / 7 / /
ajj + 835 + bij + b, S5 T tij

40



$21

beta(fy;

Handling Missing Attribute Values
The Algorithm

Example
ﬁ, 3‘} bela(f:.; 112, 5!'1} bﬁtﬂ.Uzz; 34"2, 3.!"2}

()——(x)

P(X,=1)=23 PX,=1X,=1)=712
o - @ P(X,=1]X, =2) = 12

d=1{(1,1),(1,7),(1,1),(1,2), (2,7}, ' ={2/3,7/12,1/2}

5
E(so1|d,f) =) P(x{"” =1,x{"=1|x".¢)
h=1
P(x®P =1,xP=1|10,1),")+PxP =1,x2 =1|(@1,7),)
+P(x® =1,xPF =110,1),)+Px®P=1,xY=1](@1,2),f)
+P(xP® =1, X(5> =11(2,7),f)
1+7/12+1+o+o_31/12
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