
CSCE 970 Lecture 7: Parameter Learning

Stephen D. Scott
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Introduction

• Now we’ll discuss how to parameterize a Bayes net

• Assume that the structure is given

• Start by representing prior beliefs, then incorporate results from data
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Outline

• Learning a single parameter

– Uniform prior belief

– Beta distributions

– Learning a relative frequency

• Beta distributions with nonintegral parameters

• Learning parameters in a Bayes net

– Urn examples

– Equivalent sample size

• Learning with missing data items
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Learning a Single Parameter
All Relative Frequencies Equally Probable

• Assume urn with 101 coins, each with different probability f of heads

• If we choose a specific coin f from the urn and flip it,

P (Side = heads | f) = f
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Learning a Single Parameter
All Relative Frequencies Equally Probable (cont’d)

• If we choose the coin from the urn uniformly at random, then can rep-
resent with an augmented Bayes net

• Shaded node represents belief about a relative frequency
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Learning a Single Parameter
All Relative Frequencies Equally Probable (cont’d)

P (Side = heads) =
1.0∑

f=0.0

P (Side = heads | f)P (f) =
1.0∑

f=0.0

f/101

=

(
1

(100)(101)

) 100∑
f=0

f

=

(
1

(100)(101)

)(
(100)(101)

2

)
= 1/2

Get same result if a continuous set of coins
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Learning a Single Parameter
All Relative Frequencies Not Equally Probable

• Don’t necessarily expect all coins to be equally likely

• E.g. may believe that coins more likely with P (Side = heads) ≈ 0.5

• Further, need to characterize the strength of this belief with some mea-
sure of concentration (i.e. lack of variance)

• Will use the beta distribution
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Learning a Single Parameter
All Relative Frequencies Not Equally Probable

Beta Distribution

• The beta distribution has parameters a and b and is denoted beta(f ; a, b)

• Think of a and b as frequency counts in a pseudosample (for a prior)
or in a real sample (based on training data)
– a is the number of times coin came up heads, b tails

• If N = a+ b, beta’s probability density function is:

ρ(f) =
Γ(N)

Γ(a)Γ(b)
fa−1(1− f)b−1

where

Γ(x) =
∫ ∞

0
tx−1e−tdt

is generalization of factorial

• Special case of Dirichlet distribution (Defn 6.4, p. 307)
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Learning a Single Parameter
All Relative Frequencies Not Equally Probable

Beta Distribution (cont’d)

beta(f ; 3,3) beta(f ; 50,50) beta(f ; 18,2)

• Concentration of mass is at E(F ) = P (heads) = a/(a+ b)

• The larger N is, the more concentrated the pdf is (i.e. less variance)

• Thus relative values of a and b can represent prior beliefs, and
N = a+ b represents strength of prior

• What does beta(f ; 1,1) look like?
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Learning a Single Parameter
All Relative Frequencies Not Equally Probable

Updating the Beta Distribution

• Say we’re representing our prior as beta(f ; a, b) and then we see a
data set with s heads and t tails

• Then the updated beta distribution that reflects the data d has a pdf

ρ(f | d) = beta(f ; a+ s, b+ t)

• I.e. we just add the data counts to the pseudocounts to reparameterize
the beta distribution

• Further, the probability of seeing the data is

P (d) =
Γ(N)

Γ(N +M)

Γ(a+ s)Γ(b+ t)

Γ(a)Γ(b)
,

where N = a+ b and M = s+ t
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Learning a Single Parameter
All Relative Frequencies Not Equally Probable

Updating the Beta Distribution (example)

Bold curve is beta(f ; 3,3) and light curve is beta(f ; 11,5), after seeing
data d = {1,1,2,1,1,1,1,1,2,1}
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Learning a Single Parameter
The Meaning of Beta Parameters

• If a = b = 1, then we assume nothing about what value is more likely,
and let the data override our uninformed prior

• If a, b > 1, then we believe that the distribution centers on a/(a + b),
and the strength of this belief is related to the magnitudes of the values

• If a, b < 1, then we believe that one of the two values (heads, tails)
dominates the other, but we don’t know which one

– E.g. if a = b = 0.1 then our prior on heads is 0.1/0.2 = 1/2, but
if heads comes up after one coin toss, then posterior is 1.1/1.2 =
0.917

• If a < 1 and b > 1, then we believe that “heads” is uncommon
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Learning a Single Parameter
a, b < 1

U-shaped curve is beta(f ; 1/360,19/360), other curve is beta(f ; 3 +

1/360,19/360), after seeing three “heads,” and probability of next one
being heads is (3 + 1/360)/(3 + 20/360) = 0.983
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Learning Parameters in a Bayes Net
Example: Two Independent Urns

Experiment: Independently draw a coin from each urn X1 and X2, and
repeatedly flip them

14



Learning Parameters in a Bayes Net
Example: Two Independent Urns (cont’d)

If prior on each urn is uniform (beta(fi1; 1,1)), then get above augmented
Bayes net
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Learning Parameters in a Bayes Net
Example: Two Independent Urns (cont’d)

Marginalizing and noting independence of coins yields the above
embedded Bayes net with joint distribution (“1” = ”heads”):

P (X1 = 1, X2 = 1) = P (X1 = 1)P (X2 = 1) = (1/2)(1/2) = 1/4

P (X1 = 1, X2 = 2) = P (X1 = 1)P (X2 = 2) = (1/2)(1/2) = 1/4

P (X1 = 2, X2 = 1) = P (X1 = 2)P (X2 = 1) = (1/2)(1/2) = 1/4

P (X1 = 2, X2 = 2) = P (X1 = 2)P (X2 = 2) = (1/2)(1/2) = 1/4
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Learning Parameters in a Bayes Net
Example: Two Independent Urns (cont’d)

• Now sample one coin from each urn and toss each one 7 times

• End up with a set of pairs of outcomes, each of the form (X1, X2):
d = {(1,1), (1,1), (1,1), (1,2), (2,1), (2,1), (2,2)}
• I.e. coin X1 got s11 = 4 heads and t11 = 3 tails and coin X2 got
s21 = 5 heads and t21 = 2 tails

• Thus

ρ(f11 | d) = beta(f11; a11 + s11, b11 + t11) = beta(f11; 5,4)

ρ(f21 | d) = beta(f21; a21 + s21, b21 + t21) = beta(f21; 6,3)
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Learning Parameters in a Bayes Net
Example: Two Independent Urns (cont’d)

Marginalizing yields the above embedded Bayes net with joint distribution:

P (X1 = 1, X2 = 1) = P (X1 = 1)P (X2 = 1) = (5/9)(2/3) = 10/27

P (X1 = 1, X2 = 2) = P (X1 = 1)P (X2 = 2) = (5/9)(1/3) = 5/27

P (X1 = 2, X2 = 1) = P (X1 = 2)P (X2 = 1) = (4/9)(2/3) = 8/27

P (X1 = 2, X2 = 2) = P (X1 = 2)P (X2 = 2) = (4/9)(1/3) = 4/27
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Learning Parameters in a Bayes Net
Example: Three Dependent Urns

Experiment: Independently draw a coin from each urn X1, X2 | X1 = 1,
and X2 | X1 = 2, then repeatedly flip X1’s coin

• If X1 flip is heads, flip coin from urn X2 | X1 = 1

• If X1 flip is tails, flip coin from urn X2 | X1 = 2
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Learning Parameters in a Bayes Net
Example: Three Dependent Urns (cont’d)

If prior on each urn is uniform (beta(fij; 1,1)), then get above augmented
Bayes net
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Learning Parameters in a Bayes Net
Example: Three Dependent Urns (cont’d)

Marginalizing yields the above embedded Bayes net with joint distribution:

P (X1 = 1, X2 = 1) = P (X2 = 1 | X1 = 1)P (X1 = 1) = (1/2)(1/2) = 1/4
P (X1 = 1, X2 = 2) = P (X2 = 2 | X1 = 1)P (X1 = 1) = (1/2)(1/2) = 1/4
P (X1 = 2, X2 = 1) = P (X2 = 1 | X1 = 2)P (X1 = 2) = (1/2)(1/2) = 1/4
P (X1 = 2, X2 = 2) = P (X2 = 2 | X1 = 2)P (X1 = 2) = (1/2)(1/2) = 1/4
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Learning Parameters in a Bayes Net
Example: Three Dependent Urns (cont’d)

• Now continue experiment until you get a set of 7 pairs of outcomes,
each of the form (X1, X2):
d = {(1,1), (1,1), (1,1), (1,2), (2,1), (2,1), (2,2)}
• I.e. coin X1 got s11 = 4 heads and t11 = 3 tails, coin X2 got s21 =

3 heads when X1 was heads and t21 = 1 tail when X1 was heads,
and coin X2 got s22 = 2 heads when X1 was tails and t22 = 1 tail
when X1 was tails
• Thus

ρ(f11 | d) = beta(f11; a11 + s11, b11 + t11) = beta(f11; 5,4)
ρ(f21 | d) = beta(f21; a21 + s21, b21 + t21) = beta(f21; 4,2)
ρ(f22 | d) = beta(f22; a22 + s22, b22 + t22) = beta(f21; 3,2)
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Learning Parameters in a Bayes Net
Example: Three Dependent Urns (cont’d)

Marginalizing yields the above embedded Bayes net with joint distribution:

P (X1 = 1, X2 = 1) = P (X2 = 1 | X1 = 1)P (X1 = 1) = (2/3)(5/9) = 10/27
P (X1 = 1, X2 = 2) = P (X2 = 2 | X1 = 1)P (X1 = 1) = (1/3)(5/9) = 5/27
P (X1 = 2, X2 = 1) = P (X2 = 1 | X1 = 2)P (X1 = 2) = (3/5)(4/9) = 12/45
P (X1 = 2, X2 = 2) = P (X2 = 2 | X1 = 2)P (X1 = 2) = (2/5)(4/9) = 8/45
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Learning Parameters in a Bayes Net

• When all the data are completely specified, the algorithm for parame-
terizing the network is very simple

– Define the prior and initialize the parameters of each node’s condi-
tional probability table with that prior (in the form of pseudocounts)

– When a fully-specified example is presented, update the counts by
matching the attribute values to the appropriate row in each CPT

– To compute a conditional probability, simply normalize each count
table
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Prior Equivalent Sample Size
The Problem

Given the above Bayes net and the following data set
d = {(1,2), (1,1), (2,1), (2,2), (2,1), (2,1), (1,2), (2,2)},
what is P (X2 = 1)?
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Prior Equivalent Sample Size
The Problem (cont’d)

• Wait a minute...We started with a uniform prior over both X1 and X2,
saw the same number of “1”s as “2”s for X2 in d, and yet the marginal
for X2 is not 1/2?!?!?!?!?

• The problem is that there are two parents for X2 versus one for X1:

– X1’s prior of beta(f11; 1,1) implies that in our prior, X1 took the
value 1 once in two trials

– On the other hand, X2’s prior of two beta distributions implies that
X2 took the value 1 twice in four trials
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Prior Equivalent Sample Size
Another Problem

Given the above Bayes net and the same data set
d = {(1,2), (1,1), (2,1), (2,2), (2,1), (2,1), (1,2), (2,2)},
what is P (X2 = 1)?
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Prior Equivalent Sample Size
Another Problem (cont’d)

• Wait a minute...Now we have an embedded BN that’s Markov equiva-
lent to the previous one, but we get a different marginal?

• How do we fix this?

28



Prior Equivalent Sample Size
Equivalent Sample Size

• Changing X1’s prior to beta(f11; 2,2) retains the prior probability of
1/2 over X1’s values, but match its pseudosample size to that of X2

• Given the above Bayes net and the same data set
d = {(1,2), (1,1), (2,1), (2,2), (2,1), (2,1), (1,2), (2,2)},
what is P (X2 = 1)?

• Similar result if we double X2’s sample size in X2 → X1 network
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Prior Equivalent Sample Size

• Consider a binomial augmented Bayes net with densities beta(fij; aij, bij)
for all i and j

• If there is some N such that for all i and j,

Nij = aij + bij = P (paij)N ,

then the network has equivalent sample size N

• paij is an instantiation of the parents NAi of node Xi

• If the network has an equivalent sample size N , then for each node
Xi, i ∈ {1, . . . , n} (qi is number of instantiations of Xi’s parents),

qi∑
j=1

Nij =
qi∑
j=1

N · P (paij) = N
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Prior Equivalent Sample Size
Example (N = 15)

a11 + b11 = 10 + 5 = 15 N · P (pa11) = 15 · 1 = 15

(pa11 = ∅)
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Prior Equivalent Sample Size
Example (N = 15) (cont’d)

a22 + b22 = 9 + 6 = 15 N · P (pa22) = 15 · 1 = 15

(pa22 = ∅)
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Prior Equivalent Sample Size
Example (N = 15) (cont’d)

a31+b31 = 2+4 = 6 N ·P (pa31) = 15·P (X1 = 1, X2 = 1) = 15(2/3)(3/5) = 6

a32+b32 = 3+1 = 4 N ·P (pa32) = 15·P (X1 = 1, X2 = 2) = 15(2/3)(2/5) = 4

a33+b33 = 2+1 = 3 N ·P (pa33) = 15·P (X1 = 2, X2 = 1) = 15(1/3)(3/5) = 3

a34+b34 = 1+1 = 2 N ·P (pa34) = 15·P (X1 = 2, X2 = 2) = 15(1/3)(2/5) = 2
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Prior Equivalent Sample Size
Group Exercise

Does the above network have an equivalent sample size?
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Prior Equivalent Sample Size
Creating a Network with an Equivalent Sample Size

Can get a uniform prior with pseudosample size N by setting

aij = bij = N/(2qi)

q1 = 1 since pa1 = ∅, q2 = 2 since pa2 = {{1}, {2}}; N = 4
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Prior Equivalent Sample Size
Creating a Network with an Equivalent Sample Size (cont’d)

Can get a nonuniform prior with pseudosample size N by setting

aij = P (Xi = 1 | paij)P (paij)N

bij = P (Xi = 2 | paij)P (paij)N

Probabilities in embedded network; N = 15

36



Prior Equivalent Sample Size
Choosing the Value of N

• We’ve established that beta(f ; 1,1) is our ultimate uninformed prior

• But when establishing equivalent sample sizes, placing beta(f ; 1,1)

at nonroots resulted in stronger priors at the roots (e.g., beta(f ; 2,2))

• To remain truly uninformed, recommended that we start with beta(f ; 1,1)

at the roots (N = 2) and then use fractional parameters at the internal
nodes (they still sum to 2)
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Handling Missing Attribute Values

• How do we update the Bayes net when we see partially-specified data
d = {(1,1), (1, ?), (1,1), (1,2), (2, ?)}?
• Can handle specified values as before, e.g. number of times X1 = 1

is s11 = 4, yielding beta(f11; 6,3)

• Since we already have a probability distribution over the values, we
can fractionalize the examples with unspecified attributes, e.g. num-
ber of times X1 = 1 and X2 = 1 is s21 = 2 + 1/2, and number
of times times X1 = 1 and X2 = 2 is t21 = 1 + 1/2, yielding
beta(f21; 7/2,5/2)

– The “1/2” fractions came from P (X2 = 1 | X1 = 1), etc., from
the embedded network
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Handling Missing Attribute Values

• After updating, get the above network
• Hmmmmm. Now P (X2 = 1 | X1 = 1) 6= 1/2, which is what we

used in our fractional update
• What if we used the new probabilities to fractionalize the data?
• Then we still get s11 = 4 and s22 = 1/2 (why?), but now have
s21 = 2 + 7/12 and t21 = 1 + 5/12

⇒ beta(f11; 6,3), beta(f21; 43/12,29/12), beta(f22; 3/2,3/2)

⇒ P (X2 = 1 | X1 = 1) = 43/72

• Can repeat again, and again, ...
• What does this look like?
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Handling Missing Attribute Values
The Algorithm

• Yes, it’s our old friend, the EM Algorithm!

• First, initialize f ′ij either to aij/(aij+bij) (deterministic) or to arbitrary
values (to avoid local optima)

• Then compute (M = number of examples)

s′ij = E(sij | d, f ′) =
M∑
h=1

P (X(h)
i = 1,paij | x(h), f ′)

t′ij = E(tij | d, f ′) =
M∑
h=1

P (X(h)
i = 2,paij | x(h), f ′)

• Then compute

MAP: ρ(f | d)︷ ︸︸ ︷
f ′ij =

aij + s′ij
aij + s′ij + bij + t′ij

or

ML: P (d | f)︷ ︸︸ ︷
f ′ij =

s′ij
s′ij + t′ij
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Handling Missing Attribute Values
The Algorithm

Example

d = {(1,1), (1, ?), (1,1), (1,2), (2, ?)}, f ′ = {2/3,7/12,1/2}

s′21 = E(s21 | d, f ′) =
5∑

h=1

P (X(h)
1 = 1, X(h)

2 = 1 | x(h), f ′)

= P (X(1)
1 = 1, X(1)

2 = 1 | (1,1), f ′) + P (X(2)
1 = 1, X(2)

2 = 1 | (1, ?), f ′)

+P (X(3)
1 = 1, X(3)

2 = 1 | (1,1), f ′) + P (X(4)
1 = 1, X(4)

2 = 1 | (1,2), f ′)

+P (X(5)
1 = 1, X(5)

2 = 1 | (2, ?), f ′)
= 1 + 7/12 + 1 + 0 + 0 = 31/12
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