CSCE 970 Lecture 7: Parameter Learning

Stephen D. Scott

Introduction

o Now we'll discuss how to parameterize a Bayes net

o Assume that the structure is given

e Start by representing prior beliefs, then incorporate results from data

Outline

e Learning a single parameter
— Uniform prior belief
— Beta distributions

— Learning a relative frequency

e Beta distributions with nonintegral parameters

e Learning parameters in a Bayes net
— Urn examples

— Equivalent sample size

e Learning with missing data items

Learning a Single Parameter
All Relative Frequencies Equally Probable

e Assume urn with 101 coins, each with different probability f of heads
e |f we choose a specific coin f from the urn and flip it,

P(Side = heads | f) = f

Learning a Single Parameter
All Relative Frequencies Equally Probable (cont'd)
P(f)=1/101 00 <f<1.00
F
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P(Side = heads|f) = f
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o If we choose the coin from the urn uniformly at random, then can rep-
resent with an augmented Bayes net

e Shaded node represents belief about a relative frequency

Learning a Single Parameter
All Relative Frequencies Equally Probable (cont'd)

1.0 1.0
P(Side = heads) = Z P(Side = heads | f)P(f) = Z f/101
f=0.0 f=0.0
1 100
- (100)(101)) fgof

_ 1 (100)(101)\ _
B ((100)<101>>< 2 >_1/2

Get same result if a continuous set of coins




Learning a Single Parameter

All Relative Frequencies Not Equally Probable
Learning a Single Parameter Beta Distribution

All Relative Frequencies Not Equally Probable o The beta distribution has parameters a and b and is denoted beta(f; a, b)

o Don't necessarily expect all coins to be equally likely e Think of a and b as frequency counts in a pseudosample (for a prior)
or in a real sample (based on training data)

— a is the number of times coin came up heads, b tails
e E.g. may believe that coins more likely with P(Side = heads) =~ 0.5 . . o
e If N = a + b, beta’s probability density function is:

ry)

_ -1 b—1
e Further, need to characterize the strength of this belief with some mea- p(f) = Fa)r () fa=-n

sure of concentration (i.e. lack of variance) where

o0
r(z) =/0 t*le—tgy

o Will use the beta distribution . - .
is generalization of factorial

e Special case of Dirichlet distribution (Defn 6.4, p. 307)
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Learning a Single Parameter Learning a Single Parameter
All Relative Frequencies Not Equally Probable All Relative Frequencies Not Equally Probable
Beta Distribution (cont'd) Updating the Beta Distribution
- N\ | I"A'u ’ | e Say we're representing our prior as beta(f; a,b) and then we see a
e /7 \ Y f III : | I data set with s heads and ¢ tails
o .,-' '.‘ 3 II.
" / o I'l \ . | | e Then the updated beta distribution that reflects the data d has a pdf
ne 1 | |I 3 f |
. A [ : p(f 1 d) = beta(fia+s,b+1)
beta(f; 3,3) beta(f; 50, 50) beta(f; 18, 2) o l.e. we just add the data counts to the pseudocounts to reparameterize

e Concentration of mass is at E(F') = P(heads) = a/(a +b) ihe beta distriution

e The larger N is, the more concentrated the pdf is (i.e. less variance) o Further, the probability of seeing the data is

e Thus relative values of a and b can r(.epresent prior beliefs, and P(d) = Fr(N) T(a+s)rb+1) ’
N = a + b represents strength of prior (N + M) (a)r (b)

e What does beta(f; 1, 1) look like? where N=a+band M = s+t

Learning a Single Parameter

Learning a Single Parameter )
The Meaning of Beta Parameters

All Relative Frequencies Not Equally Probable
Updating the Beta Distribution (example)
' e If a = b = 1, then we assume nothing about what value is more likely,
and let the data override our uninformed prior

e If a,b > 1, then we believe that the distribution centers on a/(a + b),
and the strength of this belief is related to the magnitudes of the values

e If a,b < 1, then we believe that one of the two values (heads, tails)
dominates the other, but we don’t know which one

g — E.g.ifa = b= 0.1 then our prior on heads is 0.1/0.2 = 1/2, but
r if heads comes up after one coin toss, then posterioris 1.1/1.2 =
0.917

Bold curve is beta(f; 3,3) and light curve is beta(f; 11,5), after seeing
datad = {1,1,2,1,1,1,1,1,2,1} e Ifa < 1andb > 1, then we believe that “heads” is uncommon




Learning a Single Parameter
a,b<1
02 = Learning Parameters in a Bayes Net

0.18 = Example: Two Independent Urns
0.16 <
.14
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Experiment: Independently draw a coin from each urn X; and X5, and
U-shaped curve is beta(f;1/360,19/360), other curve is beta(f;3 + repeatedly flip them

1/360,19/360), after seeing three “heads,” and probability of next one
being heads is (3 + 1/360)/(3 + 20/360) = 0.983

Learning Parameters in a Bayes Net
Example: Two Independent Urns (cont'd) Learning Parameters in a Bayes Net
beta(f;; 1,1) beta(foy; 1,1) Example: Two Independent Urns (contd)

ONNO

PX;=1) =172 PX,=1)=172

Marginalizing and noting independence of coins yields the above
embedded Bayes net with joint distribution (“1” = "heads”):

P(X1=1,Xp=1) = P(X;=1)P(Xp=1)=(1/2)(1/2) =1/4
PX,=1£i) = f PX,=1]f21) = fa P(X1=1,X=2) = P(X;=1)P(Xo=2)=(1/2)(1/2) =1/4
P(X1=2,X,=1) = P(X;=2)P(Xp=1)=(1/2)(1/2) =1/4
P(X1=2,X,=2) = P(X;=2)P(Xp=2)=(1/2)(1/2) =1/4

If prior on each urn is uniform (beta(f;1; 1, 1)), then get above augmented
Bayes net

Learning Parameters in a Bayes Net
Example: Two Independent Urns (cont'd)

e Now sample one coin from each urn and toss each one 7 times Learning Parameters in a Bayes Net

e End up with a set of pairs of outcomes, each of the form (X1, X5): Example: Two Independent Urns (cont'd)

d={(1,1),(1,1),(1,1),(1,2),(2,1),(2,1),(2,2)} @ @
e l.e. coin X; got s11 = 4 heads and ¢t1; = 3 tails and coin X5 got
so1 = 5 heads and to; = 2 tails P(X,=1)=5/9 PlX,=1)=23
e Thus
o(f111d) = beta(fi1;a11 + s11,b11 + t11) = beta(f11;5,4) Marginalizing yields the above embedded Bayes net with joint distribution:
p(f211d) = beta(fa1;a21 + s21,b21 + t21) = beta(f21;6,3) P(X1=1,X,=1) = P(X;=1)P(Xp=1) = (5/9)(2/3) = 10/27

besa(fy:5,4) bera fy:6.3) P(X1=1,X0=2) = P(X;=1)P(Xp,=2)=(5/9)(1/3) =5/27
P(X1=2,Xo0=1) = P(X;=2)P(Xp,=1)=(4/9)(2/3) =8/27
P(X1=2,X0=2) = P(X;=2)P(Xo=2)=1(4/9)(1/3) =4/27

X
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Learning Parameters in a Bayes Net
Example: Three Dependent Urns

i |

XX =1 Xjx,=2
Experiment: Independently draw a coin from each urn X1, X» | X3 = 1,
and X5 | X1 = 2, then repeatedly flip X1’s coin

e If X flip is heads, flip coin fromurn X5 | X3 =1

o If X flip is tails, flip coin from urn X5 | X7 =2

Learning Parameters in a Bayes Net
Example: Three Dependent Urns (contd)

beta(fy:1,1) beta(fy):1,1) beta(fy;1,1)

PXy=1fy)=fiu PXy=1X;=1/y)=fu
PXy=1X,=2f)=fu

If prior on each urn is uniform (beta(f;;; 1, 1)), then get above augmented
Bayes net
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Learning Parameters in a Bayes Net
Example: Three Dependent Urns (cont'd)

P(X;=1)=172 PX,=1X,=1) =12
PX,=1X,=2)=12

Marginalizing yields the above embedded Bayes net with joint distribution:

P(X1=1,Xo=1) P(Xo=1|X1=1)P(X1=1)=(1/2)(1/2) =1/4
P(X1=1,Xo=2) P(X;=2|X1=1)P(X1=1)=(1/2)(1/2) =1/4
P(X1=2,Xo=1) P(X,=1]|X1 =2)P(X1=2)=(1/2)(1/2) =1/4
P(X1=2,X0=2) P(X,=2|X1=2)P(X1=2)=(1/2)(1/2) =1/4
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Learning Parameters in a Bayes Net
Example: Three Dependent Urns (cont'd)

e Now continue experiment until you get a set of 7 pairs of outcomes,
each of the form (X1, X5):
d={(1,1),(1,1),(1,1),(1,2),(2,1),(2,1),(2,2)}

e l.e. coin X1 got s1; = 4 heads and t11 = 3 tails, coin X5 got sp; =
3 heads when X; was heads and t»; = 1 tail when X; was heads,
and coin X5 got soo = 2 heads when X was tails and too = 1 tall
when X1 was tails

e Thus
p(fi11d) = beta(fi1;a11 + s11,b11 + t11) = beta(f11;5,4)
p(f211d) = beta(fa1; az1 + s21,b21 + t21) = beta(f1;4,2)
p(f22]d) = beta(fao; a2z + 822,b22 + t22) = beta(f1;3,2)
besalfyy:5.4) beralfyi4,7)  betalfi3.2)

wlfyh= S PO I = L=
PO = U= B T = 2if = f
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Learning Parameters in a Bayes Net
Example: Three Dependent Urns (contd)

o 1y = = =1)=23
P(X,=1)=59 P(X, 11X,
@ P(X = X, =2) =35

Marginalizing yields the above embedded Bayes net with joint distribution:

P(X1=1,X>2=1) P(X2=1|X1=1)P(X1=1)=(2/3)(5/9) =10/27
P(X1=1,X2=2) P(X2=2|X1=1)P(X1=1)=(1/3)(5/9) =5/27
P(X1=2,X>=1) P(X2=1]|X1 =2)P(X1=2)=(3/5)(4/9) =12/45
P(X1=2,X2=2) P(X2=2]| X1 =2)P(X1=2)=(2/5)(4/9) =8/45
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Learning Parameters in a Bayes Net
e When all the data are completely specified, the algorithm for parame-
terizing the network is very simple

— Define the prior and initialize the parameters of each node’s condi-
tional probability table with that prior (in the form of pseudocounts)

— When a fully-specified example is presented, update the counts by
matching the attribute values to the appropriate row in each CPT

— To compute a conditional probability, simply normalize each count
table

24




Prior Equivalent Sample Size

The Problem
beta(fi;1,1)  beta(fy;1,1)  beta(fp;1,1)

PX,=1)=12 P(Xp=1X,=1)=12
° @ P=1X,=2)=112

Given the above Bayes net and the following data set
d=1{(1,2),(1,1),(2,1),(2,2),(2,1),(2,1),(1,2),(2,2)},
what is P(Xp = 1)7?
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Prior Equivalent Sample Size
The Problem (cont'd)

e Wait a minute...We started with a uniform prior over both X; and X»,
saw the same number of “1”s as “2”s for X5 in d, and yet the marginal

e The problem is that there are two parents for X, versus one for X:

— Xy’s prior of beta(f11; 1, 1) implies that in our prior, X; took the
value 1 once in two trials

— On the other hand, X5’s prior of two beta distributions implies that
X5 took the value 1 twice in four trials
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Prior Equivalent Sample Size
Another Problem
bewa(fiy:1,1)  beta(fi1,1)  beta(f:1,1)

e e PXy=1|X=1)=12 P(X,=1)=172
PX, =1X,=2) =112

Given the above Bayes net and the same data set
d=1{(1,2),(1,1),(2,1),(2,2),(2,1),(2,1),(1,2),(2,2)},
what is P(Xp = 1)7?
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Prior Equivalent Sample Size
Another Problem (cont'd)

e Wait a minute...Now we have an embedded BN that's Markov equiva-
lent to the previous one, but we get a different marginal?

e How do we fix this?
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Prior Equivalent Sample Size
Equivalent Sample Size
bewa(fi1:2,2)  beta(fy;1,1)  beta(fy;1,1)

o e PXy=1)=12 P(X;=1[X,=1)=17
P(X, = 11X, =2) =172
e Changing X{'s prior to beta(f11;2,2) retains the prior probability of
1/2 over X7’s values, but match its pseudosample size to that of X,

e Given the above Bayes net and the same data set
d=1{(1,2),(1,1),(2,1),(2,2),(2,1),(2,1),(1,2),(2,2)},
whatis P(Xo = 1)?

o Similar result if we double X5's sample size in X5 — X network
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Prior Equivalent Sample Size

o Consider a binomial augmented Bayes net with densities beta(f;;; a;j, b;;)
for all 2 and j

e If there is some N such that for all  and 7,

Nij = ajj + b = P(pa;;)N ,
then the network has equivalent sample size N

e pa;; is an instantiation of the parents NA; of node X;

e If the network has an equivalent sample size N, then for each node
X, i € {1,...,n} (g; is number of instantiations of X;’s parents),

a a
> Nij= ) N-P(pa;) =N
Jj=1 Jj=1

30




Prior Equivalent Sample Size
Example (N = 15)
beta(fyy; 10, 5) beta(f:,9,6)

beta( fy:2.4) betal f15:2,1) P =) =2 Py = 1) = 35

beta(fi:3,1) betal f14;1,1)

P = X =L a=1)=13

PXy =Xy =2 X, = 1) =23
P = X, =X =2 =

Xy = U[X; = 2,0, = )= 12

a11+b11 =10+5=15 N-P(paj;)=15-1=15
(paj; = 0)
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Prior Equivalent Sample Size
Example (N = 15) (contd)
beta(fy;;10,5) beta{f,5:9,6)

beta( fy:2,4) betal f15:2,1) P =) =2 Py = 1) = 35

betw(fyy:3,1) betal f14;1,1)

Py =1 =L a=1)=13

PXy =Xy =2 X, = 1) =23
P =Xy =1, 0= =

Xy = U[X; = 2,0, = )= 12

a22+b22=9+6=15 N‘P(pa22)=15‘1=15
(pagy =0)
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Prior Equivalent Sample Size
Example (N = 15) (cont'd)
beta(fyy;10,5) betat f1:9,6) Prior Equivalent Sample Size
Group Exercise
beralfy):8,2) betafa;2,6)  beta(fz 1, 1) beta(fy:2,1)  besa(fip:3,4)
Xy =1y 2 PXy=1)= 5 \ /
betal f: 2,4) betof fiy:2,1)
X, \f’/' Xy
betalfizi3.1) _ betalfyg;1.1) P(X; =1|X, = 1) = 14 P(Xs=1X,=1)=2/3
plo okl e ) [ E s s P(X, = 1)=4/5 P(X, = 1]X, = 2) = 112 P(Xy=1|X,=2) =37
H—® ®
az1+bs =2+4 =6 N-P(pag;) = 15:P(X; = 1, X, = 1) = 15(2/3)(3/5) = 6 22 E
az+bz =3+1=4 N-P(pag,) = 15-P(X1 =1, X, =2) = 15(2/3)(2/5) = 4
asztbsz =2+1=3 N-P(pagz) = 15-P(X1=2,X>=1) =15(1/3)(3/5) =3 Does the above network have an equivalent sample size?
azatbza =141 =2 N-P(pas,) = 15-P(X1 = 2, X, = 2) = 15(1/3)(2/5) = 2
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Prior Equivalent Sample Size
Prior Equivalent Sample Size Creating a Network with an Equivalent Sample Size (cont'd)
Creating a Network with an Equivalent Sample Size Can get a nonuniform prior with pseudosample size N by setting
: P . , aij = P(X;=1]|pay)P(pa;)N
Can get a uniform prior with pseudosample size N by setting b = P(X;=2]| paij)P(paij)N
aij — bij — N/(2Qi) Bes(f} 12 10, 5) bt 1.9, 6)
beta(f11;2,2)  beta(fyy:1,1) beta(fy;1,1)
Xy =1y 2 PXy=1)= 5
e betal f: 2,4) betof fiy:2,1) Q
@ beta(fi3,1) i betal fy 1, 1)
PO = 1y =1L X = 1) =13 PG = 11X = 2 X = 1) =23
. . FXy =X =1 X =2 =2 BXy= X =2, X =)= 12
g1 = 1since pa; = 0, g = 2 since pa, = {{1},{2}}; N =4
Probabilities in embedded network; N = 15
35
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Prior Equivalent Sample Size
Choosing the Value of N

e We've established that beta(f; 1, 1) is our ultimate uninformed prior
e But when establishing equivalent sample sizes, placing beta(f;1,1)
at nonroots resulted in stronger priors at the roots (e.g., beta(f; 2,2))

e To remain truly uninformed, recommended that we start with beta(f; 1,1)
at the roots (IV = 2) and then use fractional parameters at the internal
nodes (they still sum to 2)

e fy; 1.1} el foi 1. 11

el fyy1 25, 25) e fy; 25, 350

!
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Handling Missing Attribute Values
beta(f1:2,2)  beta(f;;1,1)  beta(fyy;1,1)

e e P(Xlzl)z P(Xzz‘li)=‘uz

) PX,=1lX,=2)=112
How do we update the Bayes net when we see partially-specified data
d=1{(1,1),(1,7),(1,1),(1,2),(2,7)}?
Can handle specified values as before, e.g. number of times X; = 1
is s11 = 4, yielding beta(f11; 6,3)
Since we already have a probability distribution over the values, we
can fractionalize the examples with unspecified attributes, e.g. num-
ber of times X7 = 1 and X, = 1is sp; = 2 + 1/2, and number
of times times X7 = 1 and Xy = 2is ty; = 1 4 1/2, yielding
beta(f21;7/2,5/2)

— The “1/2” fractions came from P(X, = 1 | X; = 1), etc., from

the embedded network
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Handling Missing Attribute Values
beta(f;;:6,3) beta(fsy; 72, 572) betaifey; 372, 372)

PX,=1)=23 P(X,=1]X,=1) =712

X,
: P(X,=1|X, =2) =12

After updating, get the above network

e Hmmmmm. Now P(X> = 1 | X; = 1) # 1/2, which is what we
used in our fractional update

What if we used the new probabilities to fractionalize the data?

Then we still get s11 = 4 and soo = 1/2 (why?), but now have
sp1 =2+ 7/12andty; =1+5/12

= beta(f11;6,3), beta(f21;43/12,29/12), beta(f22;3/2,3/2)
= P(Xo=1]|X;=1)=43/72

Can repeat again, and again, ...
What does this look like?
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Handling Missing Attribute Values
The Algorithm
Yes, it's our old friend, the EM Algorithm!
First, initialize f{j either to a;j/(a;j +b;;) (deterministic) or to arbitrary
values (to avoid local optima)
Then compute (M = number of examples)

M
h
sij = Bsy|df) =}~ P(x{M = 1,pay; | x(M) )
h=1
L () h
ti; = Bt |d,f) =Y P(xX;" =2 pa;|[x",f)
h=1

Then compute
MAP: o(f | d) ML: P(d | f)
—_—
ajj + séj sl

L B N
/ / [/ /
a;;j + 835+ bij + b5 T s+t

/o
fij =
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Handling Missing Attribute Values
The Algorithm

Example
beta(fy;; 6,3) beta(fsy; 72, 572) betaifs: 32, 32)

P(X,=1)=23 P(X,=1]X,=1)=712
P(X;=1]X,=2) =12

d={(1,1),(1,7),(1,1),(1,2), (2,2}, ' = {2/3,7/12,1/2}

X

5
shy = E(sn|d, )= P(X{" =1,x{" =1[x",)
h=1
= PxP=1,xP =111,1,f)+ PXP =1,xP =1](1,7),f)
+P(XP =1,xP =1[(1,1),1) + P(xP =1,x{ =1(1,2),1)
+P(Xx® =1,xP =11(2,7),f)
= 147/124+14+040=31/12
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