
CSCE 970 Lecture 6: Inference on Discrete Variables

Stephen D. Scott

1

Introduction

• Now that we know what a Bayes net is and what its properties are, we
can discuss how they’re used

• Recall that a parameterized Bayes net defines a joint probability distri-
bution over its nodes

• We’ll take advantage of the factorization properties of the distribution
defined by a Bayes net to do inference

– Given values for a subset of the variables, what is the marginal
probability distribution over a subset of the rest of them?

2

Introduction : Example

• Above figure is distribution over smoking history, bronchitis, lung can-
cer, fatigue, and chest X-ray

• If H = h1 (“yes” on smoking history) and C = c1 (positive chest X-
ray), what are probabilities of lung cancer (P (`1 | h1, c1)) and bron-
chitis (P (b1 | h1, c1))?
– Each query conditioned on two vars and marginalizes over two

3

Outline

• Inference examples

• Pearl’s message-passing algorithm

– Binary trees

– Singly-connected networks

– Multiply-connected networks

– Time complexity

• The noisy OR-gate model

• The SPI algorithm

4

Inference Example

P (y1) = P (y1 | x1)P (x1) + P (y1 | x2)P (x2) = 0.84

P (z1) = P (z1 | y1)P (y1) + P (z1 | y2)P (y2) = 0.652

P (w1) = P (w1 | z1)P (z1) + P (w1 | z2)P (z2) = 0.5348

5

Inference Example (cont’d)

Instantiating X to x1:

P (y1 | x1) = 0.9

6

Inference Example (cont’d)

Instantiating X to x1:
P (z1 | x1) = P (z1 | y1, x1)P (y1 | x1) + P (z1 | y2, x1)P (y2 | x1)

= P (z1 | y1)P (y1 | x1) + P (z1 | y2)P (y2 | x1)

= (0.7)(0.9) + (0.4)(0.1) = 0.67

(Second equality comes from CI result of Markov property)
7

Inference Example (cont’d)

Instantiating X to x1:
P (w1 | x1) = P (w1 | z1, x1)P (z1 | x1) + P (w1 | z2, x1)P (z2 | x1)

= P (w1 | z1)P (z1 | x1) + P (w1 | z2)P (z2 | x1)

= (0.5)(0.67) + (0.6)(0.33) = 0.533

Can think of passing messages down the chain

8

Another Inference Example

Now, instead instantiate W to w1:

P (z1 | w1) =
P (w1 | z1)P (z1)

P (w1)
=

(0.5)(0.652)

0.5348
= 0.6096

9

Another Inference Example (cont’d)

Still instantiating W to w1:
P (y1 | w1) =

P (w1 | y1)P (y1)

P (w1)
=

(0.53)(0.84)

0.5348
= 0.832

where

P (w1 | y1) = P (w1 | z1)P (z1 | y1) + P (w1 | z2)P (z2 | y1)

= (0.5)(0.7) + (0.6)(0.3) = 0.53
10

Another Inference Example (cont’d)

Still instantiating W to w1:
P (x1 | w1) =

P (w1 | x1)P (x1)

P (w1)

where
P (w1 | x1) = P (w1 | y1)P (y1 | x1) + P (w1 | y2)P (y2 | x1)

Can think of passing messages up the chain

11

Combining the “Up” and “Down” Messages

• Instantiate W to w1

• Use upward propagation to get P (y1 | w1) and P (x1 | w1)

• Then use downward propagation to get P (z1 | w1) and then
P (t1 | w1)

12

Pearl’s Message Passing Algorithm
• Uses the message-passing principles just described

• Will have two kinds of messages
– A λ message gets sent from a node to its parent (if it exists)
– A π message gets sent from a node to its child (if it exists)

• At a node, the λ and π messages arriving from its children and parent
are combined into λ and π values

• There is a set of messages and a value at X for each possible value
x of X

– E.g. in previous example, node X will get λ messages λY (x1),
λY (x2), λZ(x1), and λZ(x2), and will compute λ values λ(x1)
and λ(x2)

– Also in previous example, node Z will get π messages πZ(x1) and
πZ(x2), and will compute π values π(z1) and π(z2)

13

Pearl’s Message Passing Algorithm (cont’d)

• What do the messages and values represent?

• Let A ⊆ V be the set of variables instantiated and let a be the values
of those variables (the evidence)

• Further, let a+
X be the evidence that can be accessed from X through

its parent and a−X be the evidence that can be accessed from X

through its children

14

Pearl’s Message Passing Algorithm (cont’d)
• Then we’ll define things such that

λ(x) = P (a−X | x) and π(x) ∝ P (x | a+
X)

• And this is all we need, since

P (x | a) = P (x | a+
X , a−X) =

P (a+
X , a−X | x)P (x)

P (a+
X , a−X)

=
P (a+

X | x)P (a−X | x)P (x)

P (a+
X , a−X)

=
P (a+

X , x)P (a−X | x)
P (a+

X , a−X)

=
P (x | a+

X)P (a+
X)P (a−X | x)

P (a+
X , a−X)

= π(x)λ(x)P (a+
X)/P (a+

X , a−X)

(Why does the third equality hold?)

• Can ignore the constant terms until the end, then just renormalize

15

Pearl’s Message Passing Algorithm
λ Messages

When we instantiated W to w1, we based calculation of P (y1 | w1) on

λ(y1) = P (w1 | y1) = P (w1 | z1)P (z1 | y1) + P (w1 | z2)P (z2 | y1)

=
∑
z

P (w1 | z)P (z | y1) =
∑
z

λ(z)P (z | y1)

16

Pearl’s Message Passing Algorithm
λ Messages (cont’d)

• That’s when Y has only one child

• What happens when a node has multiple children?

• Since we’re conditioning on Y , all its children are d-separated:

λ(y1) =
∏

U∈CH(Y)

(∑
u

P (u | y1)λ(u)

)
,

where CH(Y) is the set of children of Y (not necessarily binary)

• Thus the message that child Z sends to parent Y for value y1 is

λZ(y1) =
∑
z

P (z | y1)λ(z)

and Y ’s λ value for y1 is

λ(y1) =
∏

U∈CH(Y)

λU(y1)

17

Pearl’s Message Passing Algorithm
λ Messages (cont’d)

• Some special cases:

– If a node X is instatiated to value x̂, then λ(x̂) = 1 and λ(x) = 0

for x 6= x̂

– If X is uninstantiated and is a leaf, then λ(x) = 1 for all x

18

Pearl’s Message Passing Algorithm
π Messages

Now need to get

π(x) ∝ P (x | a+
X) =

∑
z

P (x | z)P (z | a+
X) ,

where Z is X ’s parent

19

Pearl’s Message Passing Algorithm
π Messages (cont’d)

Partition a+
X into a+

Z and a−T , where T is X ’s sibling

20

Pearl’s Message Passing Algorithm
π Messages (cont’d)

∑
z

P (x | z)P (z | a+
X) =

∑
z

P (x | z)P (z | a+
Z , a−T)

=
∑
z

P (x | z)
P (a+

Z , a−T | z)P (z)

P (a+
Z , a−T)

=
∑
z

P (x | z)
P (a+

Z | z)P (a−T | z)P (z)

P (a+
Z , a−T)

=
∑
z

P (x | z)
P (z | a+

Z)P (a+
Z)P (a−T | z)P (z)

P (z)P (a+
Z , a−T)

∝
∑
z

P (x | z)π(z)λT (z)

because

P (a−T | z) =
∑
t

P (t | z)P (a−T | t) =
∑
t

P (t | z)λ(t) = λT (z)

21

Pearl’s Message Passing Algorithm
π Messages (cont’d)

We’ve now established

P (x | a+
X) ∝

∑
z

P (x | z)π(z)λT (z)

Thus we can define

π(x) =
∑
z

P (x | z)πX(z)

where

πX(z) = π(z)λT (z)

Z is X ’s parent, T is X ’s sibling
What if the tree is not binary?

22

Pearl’s Message Passing Algorithm
π Messages (cont’d)

• Some special cases:

– If a node X is instatiated to value x̂, then π(x̂) = 1 and π(x) = 0

for x 6= x̂

– If X is uninstantiated and is the root, then a+
X = ∅ and

π(x) = P (x) for all x

23

Pearl’s Message Passing Algorithm

• Now we’re ready to describe the algorithm

• In presentation of algorithms, will get as input a DAG G = (V, E) and
distribution P (expressed as parameters in nodes)

• Will first initialize message variables for each node in G assuming
nothing is instantiated

• Then will, one at a time, instantiate variables for which values are
known

– Add newly-instantiated variable to A ⊆ V

– Pass messages as needed to update distribution

• Continue to assume that G is a binary tree

24

Pearl’s Message Passing Algorithm
Initialization

• A = a = ∅

• For each X ∈ V

– For each value x of X: λ(x) = 1

– For each value z of X ’s parent Z: λX(z) = 1

• For each value r of the root R: π(r) = P (r | a) = P (r)

• For each child Y of R

– R sends a π message to Y

25

Pearl’s Message Passing Algorithm
Updating After Instantiating V to v̂

• A = A ∪ {V }, a = a ∪ {v̂}

• λ(v̂) = 1, π(v̂) = 1, P (v̂ | a) = 1

• For each value v 6= v̂: λ(v) = 0, π(v) = 0, P (v | a) = 0

• If V is not root and V ’s parent Z 6∈ A

– V sends a λ message to Z

• For each child X of V such that X 6∈ A

– V sends a π message to X

26

Pearl’s Message Passing Algorithm
Y sends a λ message to X

• For each value x of X:

λY (x) =
∑
y

P (y | x)λ(y)

λ(x) =
∏

U∈CH(X)

λU(x)

P (x | a) = λ(x)π(x)

• Normalize P (x | a)
• If X not root and X ’s parent Z 6∈ A

– X sends a λ message to Z

• For each child W of X such that W 6= Y and W 6∈ A
– X sends a π message to W

27

Pearl’s Message Passing Algorithm
Z sends a π message to X

• For each value z of Z:

πX(z) = π(z)
∏

Y ∈CH(Z)\{X}
λY (z)

• For each value x of X:

π(x) =
∑
z

P (x | z)πX(z)

P (x | a) = λ(x)π(x)

• Normalize P (x | a)

• For each child Y of X such that Y 6∈ A

– X sends a π message to Y

28

Pearl’s Message Passing Algorithm
Singly-Connected Networks (aka Polytrees)

• Can generalize algorithm to singly-connected networks, where there
is at most one path between any pair of nodes (i.e. trees where nodes
can have multiple parents)

29

Pearl’s Message Passing Algorithm
Singly-Connected Networks: π Values

• Need π(x) ∝ P (x | a+
X), where a+

X defined over parents Z1, . . . , Zj

• Since X depends on all j of its parents, need to sum over all combinations
of values of Z1, . . . , Zj:

π(x) =
∑

z1,...,zj

P (x | z1, . . . , zj)
j∏

i=1

πX(zi)

• Sum over combinations for P (x | z1, . . . , zj) since x not independent

of its parents

• Multiply over πX(zi) since parents independent of each other when x

uninstantiated

• π messages are the same as for trees

30

Pearl’s Message Passing Algorithm
Singly-Connected Networks: λ Messages

• In computing Y ’s λ message to one of its parents X, now need to
account for its other parents as well

• Let Y be X ’s child, and W1, . . . , Wk be Y ’s other parents:

λY (x) =
∑
y

 ∑
w1,...,wk

P (y | x, w1, . . . , wk)
k∏

i=1

πY (wi)

λ(y)

• Sum over combinations for P (y | x, w1, . . . , wj) since y not indepen-
dent of its parents

• Multiply over πY (wi) since parents independent of each other when y
uninstantiated

• λ values are the same as for trees

31

Pearl’s Message Passing Algorithm
Multiply-Connected Networks

• When a DAG is multiply-connected, cannot use algorithms already
presented since messages may get passed indefinitely

• But can use conditioning on a node to turn a multiply-connected net-
work into multiple singly-connected networks

• E.g. conditioning on X blocks the chain Y −X − Z

32

Pearl’s Message Passing Algorithm
Multiply-Connected Networks (cont’d)

When U instantiated to u1,

P (w1 | u1) = P (w1 | x1, u1)P (x1 | u1) + P (w1 | x2, u1)P (x2 | u1)

where P (w1 | xi, u1), i ∈ {1,2} come from running the old algorithm on
(b) and (c) above, and P (xi | u1) = P (u1 | xi)P (xi)/P (u1) (first term
comes from algorithm, last from normalization)
Averaging results of the two assumptions on X

33

Pearl’s Message Passing Algorithm
Multiply-Connected Networks (cont’d)

When U instantiated to u1 and Y to y1,

P (w1 | u1, y1) = P (w1 | x1, u1, y1)P (x1 | u1, y1)+P (w1 | x2, u1, y1)P (x2 | u1, y1)

where P (w1 | xi, u1, y1) come from running old algorithm, and
P (xi | u1, y1) = P (u1, y1 | xi)P (xi)/P (u1, y1), where

P (u1, y1 | xi) = P (u1 | y1, xi)P (y1 | xi)

34

Pearl’s Message Passing Algorithm
Multiply-Connected Networks (cont’d)

• A set of nodes C ⊆ V is a loop cutset if for each (undirected) loop ` in
the DAG there is a vertex from vi ∈ C with an outgoing edge in `

– E.g. {v1, v7} above, as well as {v1, v3}, etc., but not {v5}

• NP-hard to find a minimally-sized C
35

Pearl’s Message Passing Algorithm
Multiply-Connected Networks (cont’d)

• If C is loop cutset, E is set of instantiated nodes, then for each node
X ∈ V \ (E ∪ C),

P (xi) =
∑
c

P (xi | e, c)P (c | e)

(c goes over all combinations of values of nodes in C)

• Get P (xi | e, c) from old algorithm

• Also, if e = {e1, . . . , ek},

P (c | e) ∝ P (c)P (e | c)
= P (c)P (ek | c, ek−1, . . . , e1)P (ek−1 | c, ek−2, . . . , e1) · · ·P (e1 | c)

– Each term above comes from old algorithm

36

Pearl’s Message Passing Algorithm
Multiply-Connected Networks (cont’d)

• P (c) easily computed if all nodes in C are roots (how?)

• If not, then can compute by ordering C’s nodes by predecessor rela-
tionship, instantiating them one at a time, and running old algorithm to
pass messages [Suermondt & Cooper, 1991]

– In running algorithm, block messages of all nodes in C, even if not
yet instantiated

37

Pearl’s Message Passing Algorithm
Time Complexity

• Trees with n nodes, each with ≤ k values and ≤ c children:

– Need k2 steps to compute node Y ’s λ messages to its parent X,
kc steps to compute node X ’s λ values, kc steps to compute Z ’s π

messages to all children, and k2 steps to compute X ’s π values

– Repeat for each node ⇒ O(n(k2 + kc)) total time

• Singly-connected networks with ≤ p parents/node:

– Only changes were to π values (k · kp · p steps) and λ messages
(k · k · kp · p steps)

– Can be big, but still polynomial in size of conditional prob. tables

• Multiply-connected networks with loop cut set C: Run singly-connected
algorithm Ω(k|C|) times

38

Noisy OR-Gate Model

• An alternative (restricted) representation of probability distributions, re-
ducing the computational and storage complexity

• Assumptions:

– Each variable takes on two possible values

– Causal Inhibition: There is a mechanism that inhibits a cause from
bringing about its effect, and the cause’s presence results in the
effect’s presence iff the mechanism is off

– Exception Independence: Each cause’s inhibitor is independent of
the others

– Accountability: An effect can occur iff at least one of its causes is
present and uninhibited

39

Noisy OR-Gate Model
Causal Inhibition

• Bronchitis, Other, Lung Cancer, Fatigue

• Causal inhibition states that bronchitis results in fatigue iff its inhibitor
is absent

40

Noisy OR-Gate Model
Exception Independence

• Bronchitis, Other, Lung Cancer, Fatigue

• Exception independence states that the mechanism inhibiting bron-
chitis from causing fatigue is independent of that which inhibits lung
cancer from causing fatigue and that which inhibits other causes of
fatigue

41

Noisy OR-Gate Model
Accountability

• Bronchitis, Other, Lung Cancer, Fatigue

• Accountability states that fatigue cannot be present unless one of bron-
chitis, lung cancer, or other is present and uninhibited

42

Noisy OR-Gate Model
Representing Assumptions as a Bayes Net

• Causes of Y are X1, . . . , Xn, cause Xj potentially inhibited by Ij
⇒ Aj is on iff Xj present and uninhibited by Ij
• It’s a noisy OR gate since Y = 1 (= “ON”) iff some Xj = 1 and its

corresponding inhibitor Ij is OFF
• IfW = {X1, . . . , Xn}with values w = {x1, . . . , xn}, then it’s straight-

forward to see that

P (Y = 2 | W = w) =
∏

j:xj=1

qj

43

Noisy OR-Gate Model
Representing Assumptions as a Bayes Net (cont’d)

• The formula on the preceding slide allows us to simplify the represen-
tation, where pj = 1− qj is Xj ’s causal strength:

pj = P (Y = 1 | Xj = 1, Xi = 2 ∀ i 6= j)

• E.g.
P (Y = 2 | X1 = 1, X2 = 2, X3 = 1, X4 = 1) = (1−p1)(1−p3)(1−p4) = 0.012

44

Noisy OR-Gate Model
Advantage of the Model

• This simplified model is more limiting than a general Bayes net, but
has advantages

• E.g. to estimate causal strength of lung cancer for fatigue, need look
only at fraction of lung cancer patients who are fatigued

– In contrast, parameterizing more general Bayes net requires large
numbers of patients with lung cancer and bronchitis, with lung can-
cer and no bronchitis, with no lung cancer and bronchitis, etc.

• Inference also simpler

45

Noisy OR-Gate Model
Inference: λ Messages

• Let node Y have parents X1, . . . , Xn, and pj = 1− qj be Xj ’s causal
strength for Y

• Let x+
j denote that Xj is present, x−j denote absence

• Recall old formula for λ messages in singly-connected networks:

λY (xj) =
∑
y

 ∑
x1,...,xj−1,xj+1,...,xn

P (y | x1, . . . , xn)
∏
i 6=j

πY (xi)

λ(y)

• Can simplify this in noisy OR model:

λY (x+
j) = λ(y−)qjPj + λ(y+)(1− qjPj)

λY (x−j) = λ(y−)Pj + λ(y+)(1− Pj)

Pj =
∏
i6=j

(
1− piπY (x+

i)
)

46

Noisy OR-Gate Model
Inference: π Values

• Recall old formula for π values in singly-connected networks:

π(y) =
∑

x1,...,xn

P (y | x1, . . . , xn)
n∏

j=1

πY (xj)

• Can simplify this in noisy OR model:

π(y+) = 1−
n∏

j=1

(
1− pjπY (x+

j)
)

π(y−) =
n∏

j=1

(
1− pjπY (x+

j)
)

47

