CSCE 970 Lecture 6: Inference on Discrete Variables

Stephen D. Scott



Introduction

e Now that we know what a Bayes net is and what its properties are, we
can discuss how they’re used

e Recall that a parameterized Bayes net defines a joint probability distri-
bution over its nodes

o We'll take advantage of the factorization properties of the distribution
defined by a Bayes net to do inference

— Given values for a subset of the variables, what is the marginal
probability distribution over a subset of the rest of them?



Introduction : Example

P(b1h1) = 25
P(b1|h2) = .05

P(Ik1) = .003
P(11|h2) = 00005

5 Pll))=6
P(flpL12) = .10  Plcl|2) = 02

P(f1)b2,11) = .5

P(f1|p2.12) = .05 . N
e Above figure is distribution over smoking history, bronchitis, lung can-

cer, fatigue, and chest X-ray

o If H = hl (“yes” on smoking history) and C' = c1 (positive chest X-
ray), what are probabilities of lung cancer (P(¢1 | h1,cl)) and bron-
chitis (P(b1 | h1,c1))?
— Each query conditioned on two vars and marginalizes over two

P(f1|b1,11) = 75
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Outline

e Inference examples

e Pearl’s message-passing algorithm
— Binary trees
— Singly-connected networks
— Multiply-connected networks

— Time complexity

e The noisy OR-gate model

e The SPI algorithm



Inference Example

1 = Pixl)= A4

o Plx) = 4 o P(x2) = .6
o P(yllx1) = .9 o Pyl) = 84
P(yl|x2) = 8 P(y2) = .16

o Pizllyl) =7 P(z1) = 652
P{z1|y2) = 4 P(z2) = .348
Plul|zl)= .5 Pwl) = 5348
P(wl|z2) = 6 P{u2) = 4652
(a) (b)

P(yl) = P(yl | x1)P(x1) 4+ P(yl | x2)P(x2) = 0.84
P(z1) = P(z1 |y1)P(yl) 4+ P(z1 | y2)P(y2) = 0.652
P(wl) = P(wl | 21)P(2z1) + P(wl | 22)P(22) = 0.5348



Inference Example (cont’d)

o P(x1) = 4

o Plzlly1) = .7
Pizl|y2) = 4
o Plul|z1) = .5

Plwl|z2) = 6

(a)

Instantiating X to x1:

P{z1) = 652
P(z2) = 348
Plwl) = 5348
P{ul) = 4652

(b)

P(yl|x1) =0.9



Inference Example (cont’d)
1) = P(x1) = 4

1!

Pyl) = 84
C}D P(y2) = 16

° Pizi|y1) = .7 Piz1) = 652
Pizl]y2) = 4 P(z2) = 348
Plut|z1) = .5 P(wl) = 5348
Pluwl|z2) = .6 P(12) = 4652
(a) (b)

Instantiating X to z1:
P(zl|zl) = P(z1]|yl,21)P(yl|xl)+ P(z1|y2,21)P(y2|x1)

P(z1 |y1)P(yl | 1) + P(21 | y2)P(y2 | 1)
(0.7)(0.9) + (0.4)(0.1) = 0.67

(Second equality comes from CI result of Markov property)



Inference Example (cont’d)
1) = P(x1) = 4

1!

Pyl) = 84
C}D P(y2) = 16

° Pizllyl) = .7 P(z1) = 652
Pizl]y2) = 4 P(z2) = 348
Plul|z1) =5 P(wl) = 5348
P(wl|z2) = 6 P(2) = 4632
(a) (b)

Instantiating X to z1:
P(wl|xl) = P(wl]|z1l,21)P(z1|x1)+ P(wl|22,z1)P(z2|x1)

P(wl | 2z1)P(z1 | 21) + P(wl | 22)P(22 | x1)
(0.5)(0.67) + (0.6)(0.33) = 0.533

Can think of passing messages down the chain




Another Inference Example

o Pixl)= 4

(a)

P(yl[x1) = .9
P(yllx2) = .8

P(zllyl) = 7
P(zl|y2) = 4

Plul|zl) = .5
P(wl|z2) = 6

Now, instead instantiate W to w1l:

P(z1 | wl)

P(wl | 2z1)P(z1) _ (0.5)(0.652)

(b)

P(wl)

Pixl)= 4
Plx2} = 6

Piyl) = 84
P(y2) = .16

I

P(z1) = 652
P(z2) = .348

Plwl) = 5348
P{ul) = 4652

0.5348

= 0.6096



Still instantiating W to w

P(yl | wl)
where
P(wl | yl)

Another Inference Example (cont’d)

o Pixl)= 4

o P(zllyl) = 7
P(z1|y2) = 4
Plullzl) = 5
P(wl|z2) = 6

(a)

(’wl [ y1)P(yl) _

@ Pix) = 4
P(x2) = 6
!

P(yl) = 84
GD P(y2) = 16

Piz]l) = 652
Piz2) = 348

Plwl) = 5348
P(i2) = .4652

(b)

(0.53)(0.84)

P(wl)

0.5348

= 0.832

P(wl | 2z1)P(z1|yl) + P(wl | 22)P(z2 | yl)
(0.5)(0.7) + (0.6)(0.3) = 0.53
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Another Inference Example (cont’d)
1) = P(x1) = 4

1!

Pyl) = 84
C}D P(y2) = 16

° Pizi|y1) = .7 Piz1) = 652
Pizl]y2) = 4 P(z2) = 348
Plut|z1) = .5 P(wl) = 5348
Pluwl|z2) = .6 P(12) = 4652
(a) (b)

Still instantiating W to w1l:

P(z1 | wl) P(wl | z1)P(x1)

P(wl)

where
P(wl|xl) = P(wl|yl)P(yl|xl)+ P(wl|y2)P(y2|xl)

Can think of passing messages up the chain
11



Combining the “Up” and “Down” Messages
P(x1) = .1

P(yljx1)= 6
P(yljx2) = 2

e Instantiate W to w1l
e Use upward propagation to get P(y1 | wl) and P(z1 | wl)

e Then use downward propagation to get P(z1 | wl) and then
P(t1 | wl)
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Pearl’'s Message Passing Algorithm
Uses the message-passing principles just described

Will have two kinds of messages
— A )\ message gets sent from a node to its parent (if it exists)
— A ™ message gets sent from a node to its child (if it exists)

At a node, the A and ™ messages arriving from its children and parent
are combined into A and 7 values

There is a set of messages and a value at X for each possible value
x of X
— E.g. in previous example, node X will get A messages Ay (z1),
Ay (22), Ayz(21), and Az (x2), and will compute X values A\(x1)
and \(z2)
— Also in previous example, node Z will get # messages 7w (x1) and
w7 (x2), and will compute 7 values 7 (z1) and 7 (22)

13



Pearl’s Message Passing Algorithm (cont'd)

e What do the messages and values represent?

o Let A C V be the set of variables instantiated and let a be the values
of those variables (the evidence)

e Further, let aj(' be the evidence that can be accessed from X through

its parent and a,- be the evidence that can be accessed from X
through its children

14



Pearl’s Message Passing Algorithm (cont'd)
e Then we’ll define things such that

Az) = P(ay | z) and =(z) x P(z |a¥)

e And this is all we need, since

P(a¥,ay | z)P(x)

P(z|a) = P(z|af,ay)=

P(a},a)})
_ P(a¥ | z)P(ay | z) P(x) _ P(a¥,z)P(ay | x)
P(a}t,a)_() P(a},a;()
P(z | a})P(a})P(ay | z)

P(a}, ay )
= n(z) Mz)P(a})/P(af,ax)
(Why does the third equality hold?)
e Can ignore the constant terms until the end, then just renormalize

15



Pearl’'s Message Passing Algorithm
A Messages

o P{I” = 4 o P(I]} = 4
P(x2)= 6

o P(yllx1) = .9 o P(yl) = 84
P(yllx2) = .8 P(y2) = .16

When we instantiated W to w1, we based calculation of P(y1 | wl) on

P(wl |yl) = P(wl|z1)P(z1|yl)+ P(wl|22)P(z2|yl)
> P(wl|z)P(z|yl) =) Az)P(z]|yl)

A(yl)

o Plzllyl) = .7
P(zl|y2) = 4
o Plullz1) = 5

Plwl|z2) = .6

(a)

o P(z1) = 652
P(z2) = .348

Plwl) = 5348
P(2) = 4652

(b)
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Pearl’'s Message Passing Algorithm
A Messages (cont'd)

That's when Y has only one child
What happens when a node has multiple children?

Since we're conditioning on Y, all its children are d-separated:

Ayl) = ]] (ZP(U | yl)>x(U)> :

UcCH(y) ‘¢
where CH(Y) is the set of children of Y (not necessarily binary)

Thus the message that child Z sends to parent Y for value y1 is
Az(yl) =) P(z|y1)A(2)
z
and Y'’s \ value for y1 is

Ayl)= ][ Avl)
UcCH(Y)



Pearl’s Message Passing Algorithm
A Messages (cont'd)

e Some special cases:

— If a node X is instatiated to value z, then A(z) = 1 and A(x) = 0O
forz ==z

— If X is uninstantiated and is a leaf, then A(x) = 1 for all =

18



Pearl’s Message Passing Algorithm
m Messages

Now need to get
w(z) « P(z|a})=> P(z|2)P(z]|al),
A

where Z is X'’s parent
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Pearl’'s Message Passing Algorithm
7 Messages (cont'd)

Ny

Partition a} into a'Z" and a., where T'is X's sibling

20



Pearl’'s Message Passing Algorithm
7 Messages (cont'd)

SN P(x|2)P(z|af) = Y P(z]|2)P(z|a},ar)

P(ay,ar | z)P(z)

) P x| z
Z; e P(ay,ap)
S AL DI DILO
z P(ay,ar)

P(z |af)P(a})P(as | 2) P(2)

= P(x | z
; (] =) P(z)P(a,,ar)
x Y P(x|z)n(2)Ar(2)

because

P(ap|2) = Y P(t| 2)P(ag | 1) = . P(t | DA®) = A(2)
t t

21



Pearl’s Message Passing Algorithm
7 Messages (cont'd)

We've now established
Pz | a}) o< 3 Pz | Hm()Ar(2)
Thus we can define
n(2) =3 Pl] mx(2)

where

mx(2) = 7(2)Ar(2)

Z 1s X's parent, T' is X's sibling
What if the tree is not binary?

22



Pearl’s Message Passing Algorithm
7 Messages (cont'd)
e Some special cases:

— If anode X is instatiated to value z, then 7(z) = 1 and n(x) = O
forxz ==z

— If X is uninstantiated and is the root, then a} = () and
m(x) = P(x) for all x

23



Pearl’'s Message Passing Algorithm
Now we're ready to describe the algorithm

In presentation of algorithms, will get as input a DAG G = (V, £) and
distribution P (expressed as parameters in nodes)

WIill first initialize message variables for each node in G assuming
nothing is instantiated

Then will, one at a time, instantiate variables for which values are
known

— Add newly-instantiated variable to A C V

— Pass messages as needed to update distribution

Continue to assume that GG is a binary tree

24



Pearl’'s Message Passing Algorithm
Initialization

A=a=1

Foreach X € V
— Foreach value z of X: A\(x) =1

— For each value z of X’s parent Z: Ax(z) =1

For each value r of the root R: w(r) = P(r | a) = P(r)

For each child Y of R

— Rsends amwmessagetoY

25



Pearl’'s Message Passing Algorithm
Updating After Instantiating V' to v

A=AU{V}, a=auU {5}

A@®) =1,7(3) =1, P( ] a) = 1

For each value v # v: A(v) = 0, n(v) =0, P(v |a) =0

If V' is not root and V’s parent Z &€ A

— V sends a A message to Z

For each child X of V suchthat X ¢ A

— V sends a m message to X

26



Pearl’'s Message Passing Algorithm
Y sends a A message to X

e For each value x of X:

Ay(z) = Py | z)A(y)
Y

AMz)= [ v
UcCH(X)

P(z |a) = A(z)n(x)

e Normalize P(x | a)
e If X notrootand X'’s parent Z € A

— X sends a A message to Z

e For each child W of X suchthat W #Y and W ¢ A
— X sends a m message to W

27



Pearl’'s Message Passing Algorithm
Z sends a m message to X

For each value z of Z:

mx(2) = m(2) 11 Ay (2)
YeCH(2)\{X}

For each value x of X:

() =Y Pz | )mx(2)

P(x | a) = Xz)n(x)

Normalize P(x | a)
For each child Y of X suchthatY & A

— X sends a m messageto Y

28



Pearl’'s Message Passing Algorithm
Singly-Connected Networks (aka Polytrees)

e Can generalize algorithm to singly-connected networks, where there
is at most one path between any pair of nodes (i.e. trees where nodes
can have multiple parents)

29



Pearl’s Message Passing Algorithm
Singly-Connected Networks: 7 Values

Need 7(x) o< P(x | a;g), where a;g defined over parents 71, ..., Z;

Since X depends on all 5 of its parents, need to sum over all combinations
of values of Z1,..., Z;:

J
m(z) = ) (P(w | 21,4, 25) 11 WX(Zz'))
i=1

Z]_,...,Zj

Sum over combinations for P(z | 21, ..., 2;) since x not independent
of its parents

Multiply over 7 x (z;) since parents independent of each other when «
uninstantiated

7 messages are the same as for trees

30



Pearl’'s Message Passing Algorithm
Singly-Connected Networks: A\ Messages

In computing Y's A message to one of its parents X, now need to
account for its other parents as well

Let Y be X’s child, and W+,..., W, be Y’s other parents:

k
Ay (z) =) { > (P(y |z, wy, . wg) 1] WYW@))] A(y)
i=1

Yy w1y, , Wk

Sum over combinations for P(y | =, w1, ...,w;) since y not indepen-
dent of its parents

Multiply over 7y (w;) since parents independent of each other when y
uninstantiated

)\ values are the same as for trees

31



Pearl’'s Message Passing Algorithm
Multiply-Connected Networks

(x) X = xl X=x2

P'(y1) = P(yljx1)  P'(z1) =P(zl|x1)  P*(y1) = P(y1x2) P*(z1) = P(z1}x2)

W (D w) (D ® (D
O 0 @)

(a) () ©

e When a DAG is multiply-connected, cannot use algorithms already
presented since messages may get passed indefinitely

e But can use conditioning on a node to turn a multiply-connected net-
work into multiple singly-connected networks

e E.g. conditioning on X blocks thechainyY — X — Z

32



Pearl’'s Message Passing Algorithm
Multiply-Connected Networks (cont’d)

(x) X=xl X=x2

P'(yl) = P(yil)  P(z1) =P(zllx1)  P'(y1) =P(yllx2)  P*(z1) = P(z1}x2)

W) (D) w) (D ) (D
O @) O

(a) (b) ()
When U instantiated to «1,

P(wl |ul) =P(wl | xl,ul)P(xl|ul)+ P(wl | z2,ul)P(z2 | ul)

where P(wl | xi,ul), i € {1,2} come from running the old algorithm on
(b) and (c) above, and P(xi | ul) = P(ul | i) P(xi)/P(ul) (first term
comes from algorithm, last from normalization)
Averaging results of the two assumptions on X

33



Pearl’'s Message Passing Algorithm
Multiply-Connected Networks (cont’'d)

(x) X = x1 X=x2
Py1)=P(kl)  Pzl)=P(zlll)  P*(1)=P(lk2)  P*(zl) = P(z1}x2)
v @ ¥ @ ¥ @

W (D w) (D @) (D
O 0 @)

(a) (b) (c)
When U instantiated to «1 and Y to y1,
P(wl |ul,yl) = P(wl | z1,ul,yl)P(xl | ul,yl)+P(wl | 22,ul,yl)P(z2 | ul,yl)

where P(wl | xi,ul,y1) come from running old algorithm, and
P(xzi|ul,yl) = P(ul,yl | i) P(xi)/P(ul,yl), where

P(ul,yl |xi) = P(ul | y1,zi)P(yl | xi)
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Pearl’'s Message Passing Algorithm
Multiply-Connected Networks (cont’'d)

e Asetofnodes C C Vis aloop cutset if for each (undirected) loop £ in
the DAG there is a vertex from v; € C with an outgoing edge in ¢

— E.g. {v1,v7} above, as well as {v1, v3}, etc., but not {vs}

e NP-hard to find a minimally-sized C
35



Pearl’s Message Passing Algorithm
Multiply-Connected Networks (cont’d)

e If C is loop cutset, £ is set of instantiated nodes, then for each node
X eV\(EUQl),

P(xzi) =Y P(zi|e,c)P(c]e)
C
(c goes over all combinations of values of nodes in C)
e Get P(xi | e, c) from old algorithm
o Also,ife ={eq,...,er},

P(c|e) o« P(c)P(e|c)
= P(c)P(ex|c,er-1,...,e1)P(ex-1|c,er2,...,e1) - P(e1 ] c)

— Each term above comes from old algorithm

36



Pearl’'s Message Passing Algorithm
Multiply-Connected Networks (cont’d)

e P(c) easily computed if all nodes in C are roots (how?)

e If not, then can compute by ordering C’s nodes by predecessor rela-
tionship, instantiating them one at a time, and running old algorithm to
pass messages [Suermondt & Cooper, 1991]

— In running algorithm, block messages of all nodes in C, even if not
yet instantiated

37



Pearl’'s Message Passing Algorithm
Time Complexity

e Trees with n nodes, each with < k values and < ¢ children:

— Need k2 steps to compute node Y’s X messages to its parent X,
kc steps to compute node X'’s X values, kc steps to compute Z’s «
messages to all children, and k2 steps to compute X’s 7 values

— Repeat for each node = O(n(k?2 + kc)) total time

e Singly-connected networks with < p parents/node:

— Only changes were to 7 values (k - kP - p steps) and A messages
(k- k- kP - p steps)

— Can be big, but still polynomial in size of conditional prob. tables

e Multiply-connected networks with loop cut set C: Run singly-connected
algorithm Q(k/C1) times
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Noisy OR-Gate Model

e An alternative (restricted) representation of probability distributions, re-
ducing the computational and storage complexity

e Assumptions:
— Each variable takes on two possible values

— Causal Inhibition: There is a mechanism that inhibits a cause from
bringing about its effect, and the cause’s presence results in the
effect’s presence iff the mechanism is off

— Exception Independence: Each cause’s inhibitor is independent of
the others

— Accountability: An effect can occur iff at least one of its causes is
present and uninhibited

39



Noisy OR-Gate Model
Causal Inhibition

e Bronchitis, Other, Lung Cancer, Fatigue

e Causal inhibition states that bronchitis results in fatigue iff its inhibitor
Is absent

40



Noisy OR-Gate Model
Exception Independence

® ©

e Bronchitis, Other, Lung Cancer, Fatigue

e Exception independence states that the mechanism inhibiting bron-
chitis from causing fatigue is independent of that which inhibits lung
cancer from causing fatigue and that which inhibits other causes of

fatigue

41



Noisy OR-Gate Model
Accountability

e Bronchitis, Other, Lung Cancer, Fatigue

e Accountability states that fatigue cannot be present unless one of bron-
chitis, lung cancer, or other is present and uninhibited

42



Noisy OR-Gate Model
Representing Assumptions as a Bayes Net

P(I;= ON) =g, P(1,=ON) = g,

P(A,=ON|I, = OFF,X,=1) =1
P(A,=ON|I,= OFF,X,=2)=0
P(A,=ON|I, = ON,X,=1) =0
P(A,=ON|I,= ON,X;=2)=0

P(A,=ON|1,=0FF X,=1)=1
P{(A,=ON|I,=0OFF X,=2)=0
P(A,=ON|I,=ON,X,=1)=0
P(A,=ON|Il,=0ON, X,=2)=0

P(Y =2|A, = OFF, A, = OFF,.. A, = OFF) =1
P(Y =2|A; = ON for some j) = 0

e Causesof Y are X1,...,Xn, cause X potentlally inhibited by I,
= Ajisoniff X; present and umnhlbltedf)
e It's a noisy OR gate since Y = 1 (= “ON”) iff some X; = 1 and its
corresponding inhibitor I, is OFF
o fW={Xq,...,Xn}withvaluesw = {z1,...,zn}, thenit’s straight-
forward to see that

PY=2|W=w)= ][] g
jsz].
43



Noisy OR-Gate Model
Representing Assumptions as a Bayes Net (cont’d)

e The formula on the preceding slide allows us to simplify the represen-
tation, where p; = 1 — ¢, is X;’s causal strength:

pJZP(Y:1|XJ=1,XZ=2VZ#])

e E.0.
P(Y=2|X1=1,X2=2,Xs=1,Xs = 1) = (1—p1)(1—p3) (1—pa) = 0.012
44



Noisy OR-Gate Model
Advantage of the Model

e This simplified model is more limiting than a general Bayes net, but
has advantages

e E.g. to estimate causal strength of lung cancer for fatigue, need look
only at fraction of lung cancer patients who are fatigued

— In contrast, parameterizing more general Bayes net requires large
numbers of patients with lung cancer and bronchitis, with lung can-
cer and no bronchitis, with no lung cancer and bronchitis, etc.

e Inference also simpler
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Noisy OR-Gate Model
Inference: \ Messages

e Letnode Y have parents X1,...,Xp,andp; = 1 —q; be X,’s causal
strength for Y

o Let x;'_ denote that X; is present, T denote absence
e Recall old formula for A messages in singly-connected networks:

Ay (z) =) { > (P(y | z1,...,z0) [] WY(CUi))] A(y)

Y a:l,...,xj_l,xj+1,...,a:n Z#]
e Can simplify this in noisy OR model:
Ay () = My )giPy + Ay ) (1 — ¢;F))
Ay (x7) = Ay )P+ Ay - P))

P =TI (1 - pimv (=)
Gl
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Noisy OR-Gate Model
Inference: « Values

e Recall old formula for 7 values in singly-connected networks:

(y) = ) (P(y |21, zn) ]] Wy(%))
=1

Zl',‘]_,...,ZUn ]

e Can simplify this in noisy OR model:

n

7=1

n

w(y7) = II (1 —pjmy (=)

=1
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