CSCE 970 Lecture 6: Inference on Discrete Variables

Stephen D. Scott

Introduction

e Now that we know what a Bayes net is and what its properties are, we
can discuss how they’re used

e Recall that a parameterized Bayes net defines a joint probability distri-
bution over its nodes

e We'll take advantage of the factorization properties of the distribution
defined by a Bayes net to do inference

— Given values for a subset of the variables, what is the marginal
probability distribution over a subset of the rest of them?

Introduction : Example
PM) = 2

P(b1hl) = 25
P(b1|h2) = 05

PR = 003
P(l1[h2) = 00005

PALINY =175 Pall) =6
PifIBLIZ) = 10 Plelli?) = 02
P2 01y = 5
P(1B2,i2) = 05
e Above figure is distribution over smoking history, bronchitis, lung can-

cer, fatigue, and chest X-ray
e If H = h1 (“yes” on smoking history) and C' = c1 (positive chest X-

ray), what are probabilities of lung cancer (P(¢1 | h1,c1)) and bron-
chitis (P(b1 | h1,c1))?

— Each query conditioned on two vars and marginalizes over two
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Outline
e Inference examples

e Pearl's message-passing algorithm
— Binary trees
— Singly-connected networks
— Multiply-connected networks

— Time complexity
e The noisy OR-gate model

o The SPI algorithm

Inference Example

FPixl}= 4
- x )
° Pxl) =4 Pix2) = 6

Piyllel) = 9 ¥ Piyl) = 84

Piyljs2) = 8 Ply2) = 16
o Pizllyl) =7 z Pizl) = 652

Pzily2) = 4 - J P2y = 348

Plullzl) = 5 w P} = 5348

Plul|z2) = 6 Piul) = 4652
(a) (b)

P(yl) = P(yl | 21)P(z1) + P(yl | 22)P(z2) = 0.84
P(z1) = P(21 | y1)P(yl) + P(21 | y2)P(y2) = 0.652
P(wl) = P(wl | 21)P(21) 4+ P(wl | 22)P(22) = 0.5348

Inference Example (cont’d)

FPixl}= 4
- x )
° Pl = 4 Pix2) = 6

Piyllel) = 9 ¥ Piyl) = 84
Piylle2) = 8 Ply2) = 16
o Pizllyl) =7 z Pizl) = 652
Pzily2) = 4 - J P2y = 348
Plullzl) = 5 P} = 5348
W ) Pt = 6 @ Plud) = 4652

(@ (b)

Instantiating X to z1:

P(yl|z1l) =0.9




Inference Example (cont’d)

x - x ) Pty =4
O“'” ! P2 = 6
Pyllel) = 8 v Ll =8
Piylle2) = & Piy2) = 16
7)) Pty = 7 Pizl) = 652
Plaily2) = 4 Plz2) = 348
Pletfel) = 5 W Pl = 5348
Plal]e2) = 6 ) = 4652

(a)

b}

Inference Example (cont’d)

x - x ) Pty =4
O“'” ! P2 = 6
Pyllel) = 8 v Ll =8
Piylle2) = & Piy2) = 16
7)) Pty = 7 Pizl) = 652
Plaily2) = 4 Plz2) = 348
Pletfel) = 5 W) Pl = 538
Plal]e2) = 6 ) = 4652

(a)

b}

Instantiating X to z1:

P(z1]z1l) = P(21]|yl,z1)P(yl|zl)+ P(21]|y2,z1)P(y2|x1)

= P(z1|yl)P(yl|21) + P(21|y2)P(y2 | z1)
(0.7)(0.9) + (0.4)(0.1) = 0.67

(Second equality comes from Cl result of Markov property)

Instantiating X to z1:

P(wl|z1l) = P(wl|z1,21)P(21|21) + P(wl | 22,21)P(22 | z1)

P(wl | 21)P(21 | 1) + P(wl | 22) P(22 | z1)
(0.5)(0.67) + (0.6)(0.33) = 0.533
Can think of passing messages down the chain
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Another Inference Example (cont’d)
Another Inference Example -
g OL RN O}~
OLU DI
o - 4 v) e
Piylel) = 8 Piyl) = 84
Piytled) = & ) rons
7)) Pty = 7 Pzl = 652
Pizily2) = 4 Plz2) = 348
7)) Pty = 7 Pzl = 652
Pizily2) = 4 Plz2) = 348
Plwllel) = .5 W Pilul) = 5348
Plal]e2) = 6 ) = 4652
A OY -1 @
w i Still instantiating W to w1:
ok 1% OB |y 1)P(L)  (053)(0.84) 0552
Now, instead instantiate W to w1: yriws) = P(wl) T 05348
P(wl | z1)P(z1 0.5)(0.652
PG wl) = LW Pl(z i) G _( 0)5(348 ) — 0.6096 where
v ' P(wl|yl) = P(wl|z1)P(21]|yl)+ P(wl|22)P(22]|yl)
= (0.5)(0.7) + (0.6)(0.3) = 0.53
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Another Inference Example (cont’d) Combining the “Up” and “Down” Messages
Plzl) = 1
OLU DI p
Piyljel) = 8 Piyl) =84 rllst) = =
POl2) = 8 Y) R i ° ° pad =
7)) Pty = 7 Pzl = 652
Pizily2) = 4 Plz2) = 348
Pyl = 9 Pirlzt) = 8
Pludlyzy= 3 Pirl2) = .1
Plwllel) = .5 W Plul) = 5348
Plal]e2) = 6 ) = 4652
0
" o o Instantiate W to wl
Still instantiating W to w1:
9 _ P(wl|l)P(el)
Pzl |wl) = P(wl) o Use upward propagation to get P(y1 | wl) and P(z1 | wl)
where
P(wl|z1) = P(wl|yl)P(yl|21) + P(wl|y2)P(y2]|21) o Then use downward propagation to get P(z1 | w1) and then
Can think of passing messages up the chain P(t1 | wl)
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Pearl’s Message Passing Algorithm
e Uses the message-passing principles just described

e Will have two kinds of messages
— A X message gets sent from a node to its parent (if it exists)
— A 7 message gets sent from a node to its child (if it exists)

e At anode, the A and m messages arriving from its children and parent
are combined into A and 7 values

e There is a set of messages and a value at X for each possible value
zof X
— E.g. in previous example, node X will get A\ messages Ay (z1),
Ay (22), Az(z1), and Az (z2), and will compute X values A(x1)
and \(z2)
— Also in previous example, node Z will get * messages w(x1) and
mz(22), and will compute 7 values 7(21) and 7 (22)

Pearl’s Message Passing Algorithm (cont’d)
e What do the messages and values represent?

e Let A C V be the set of variables instantiated and let a be the values
of those variables (the evidence)

e Further, let a}’; be the evidence that can be accessed from X through
its parent and a5 be the evidence that can be accessed from X
through its children

Pearl’s Message Passing Algorithm (cont’d)
e Then we’ll define things such that

AMz) = P(ay |2) and =(z) « P(z | af)

e And this is all we need, since
P(at,ay | 2)P(z)
P(a;7 ay)
P(at | 2)P(ay | 2)P(2) _ P(at,2)P(ay | z)
P(aj<7 ay) P(a;,a;{)
Pz |al)P(a)P(ay | )
P(a}t, ay)
(@) A@) P(a¥})/P(a¥, ay)
(Why does the third equality hold?)
e Can ignore the constant terms until the end, then just renormalize

P(z|a) = P(z|af,ay) =
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Pearl’s Message Passing Algorithm

A Messages
=~
X ) A= 4 x ) Pty =
( ) Pid) = &
) Pirllel) = 9 ) ot = 4
Piyilez) = & Piy2) = .16
7)) Pty =7 Pizl) = 652
iyl = a C ) Pizl) = 348
W) Plelel) =5 O Pl = 5308
Plud|e2) = 6 Piu) = 4852

@ (O]
When we instantiated W to w1, we based calculation of P(y1 | wl) on

Ayl) = P(wl|yl) = P(wl|21)P(21 | yl) + P(wl | 22)P(22 | y1)
= > P(wl|2)P(z|yl) =Y A=)P(z | yl)

Pearl’s Message Passing Algorithm
A Messages (cont'd)

e That's when Y has only one child
e What happens when a node has multiple children?
e Since we're conditioning on Y, all its children are d-separated:
o= I (Sreime) .
UeCH(y) \ ¢
where CH(Y) is the set of children of Y (not necessarily binary)

e Thus the message that child Z sends to parent Y for value y1 is
Az(yl) =3 Pz | yLA(2)
z
and Y’s A value for y1 is

Ay = I @D
UeCH(Y)

Pearl’s Message Passing Algorithm
A Messages (cont'd)
e Some special cases:

— If anode X is instatiated to value z, then A(Z) = 1 and A\(z) = 0
forxz £z

— If X is uninstantiated and is a leaf, then A\(xz) = 1 for all =




Pearl’s Message Passing Algorithm
m Messages

Now need to get
m(x) < P(z|akf) =3 P(z|2)P(z|a}),
z

where Z is X’s parent

Pearl’s Message Passing Algorithm
7 Messages (contd)

Ny

Ny

Dy

Partition a}"(' into a}' and aj,, where T is X''s sibling
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Pearl’s Message Passing Algorithm
7 Messages (contd)

S P(z|2)P(z|a%) = Y. P(z|2)P(z|a},az)

P(a},as | 2)P(2)

- ;P(JHZ) P(a}@%)
P(a} | 2)P(az | 2)P(2)
= P(z | z)
§ ! P(a},ar)

= | PG aD) P Par | 2)P(2)
;P( %) P(2)P(a},a7)
ZP(I | 2)7(2)Mp(2)

R

because

Plagp |z) = Y P(t|2)P(ag |t) =3 P(t] 2)A®) = Ar(2)
t t
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Pearl’s Message Passing Algorithm
7w Messages (contd)
We've now established
Pe|a) « 3 P(@ | n()Ar(2)
Thus we can define
m(z) = XZ: Pz | 2)mx(2)
where

mx(2) = m(2)Ar(2)

Z is X’s parent, T'is X'’s sibling
What if the tree is not binary?
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Pearl’s Message Passing Algorithm
m Messages (cont'd)
e Some special cases:

— If anode X is instatiated to value z, then 7(zZ) = 1 and n(z) = 0
forz #

— If X is uninstantiated and is the root, then a}’; =0 and
m(x) = P(z) forallz
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Pearl’s Message Passing Algorithm

o Now we're ready to describe the algorithm

In presentation of algorithms, will get as input a DAG G = (V, £) and
distribution P (expressed as parameters in nodes)

Will first initialize message variables for each node in G assuming
nothing is instantiated

Then will, one at a time, instantiate variables for which values are
known

— Add newly-instantiated variable to A C V

— Pass messages as needed to update distribution

Continue to assume that G is a binary tree

24




Pearl’s Message Passing Algorithm
Initialization

A=a=10

Foreach X € Vv

— For each value z of X: \(z) =1

— For each value z of X’s parent Z: Ax(z) =1

For each value r of the root R: n(r) = P(r | a) = P(r)

For each child Y of R

— Rsends ammessagetoY
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Pearl’s Message Passing Algorithm
Updating After Instantiating V' to ©

A=AU{V},a=auU {0}

Ao)=1,7(v) =1,P(w|a)=1

For each value v # o: A(v) = 0, 7(v) =0, P(v|a) =0

If V is not root and V’s parent Z ¢ A

— V sends a A message to Z

For each child X of V such that X ¢ A

— V sends a m message to X
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Pearl’s Message Passing Algorithm
Y sends a A\ message to X

e For each value z of X:

Ay (2) =Y Py | 2)M(y)
Y

May= I 2w
UeCH(Xx)

P(z | a) = A=) (x)

e Normalize P(z | a)
e If X notrootand X’s parent Z ¢ A

— X sends a A message to Z

e For each child W of X suchthat W #Y and W ¢ A

— X sends a m message to W
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Pearl’s Message Passing Algorithm
Z sends a m message to X

For each value z of Z:

mx(2) = w(2) II Ay (2)
YeCH(2)\{X}

For each value z of X:
w(x) =) Px|2)7rx(2)
z
Pz | a) = A(z)n(z)
Normalize P(z | a)
For each child Y of X suchthatY ¢ A

— X sends a ™ message to Y
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Pearl’s Message Passing Algorithm
Singly-Connected Networks (aka Polytrees)

O

e Can generalize algorithm to singly-connected networks, where there

is at most one path between any pair of nodes (i.e. trees where nodes
can have multiple parents)
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Pearl’s Message Passing Algorithm
Singly-Connected Networks: 7 Values

Need 7 (z) < P(z | a}’;), where a}; defined over parents Z1, ..., Z;

Since X depends on all j of its parents, need to sum over all combinations

of values of Z1, ..., Z;:

)

Z15--9%j i=1

J
m(z) = Z (P(ac | 215005 25) H ﬂx(zi))

Sum over combinations for P(z | 21, .. ., 2;) since = not independent
of its parents

Multiply over 7 x (z;) since parents independent of each other when z
uninstantiated

m messages are the same as for trees
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Pearl’s Message Passing Algorithm
Singly-Connected Networks: A Messages

In computing Y’s A message to one of its parents X, now need to
account for its other parents as well

e LetY be X'’s child, and W1, ..., W}, be Y’s other parents:

k
Ay(z) =3 [ > (P(y |z, wi,. . wg) [] 77Y(“’i)>:| A(y)
i=1

Y | wiewy

e Sum over combinations for P(y | z, w1, ..., w;) since y not indepen-
dent of its parents

Multiply over my (w;) since parents independent of each other when y
uninstantiated

e )\ values are the same as for trees

31

Pearl’s Message Passing Algorithm
Multiply-Connected Networks

Xmxl X=x2
Pty =Rpilt) P =Pl Pl =PoilR) P = Pk

®» @ IO
W (D ® @®
0) O

(b) (©)

e When a DAG is multiply-connected, cannot use algorithms already
presented since messages may get passed indefinitely

e But can use conditioning on a node to turn a multiply-connected net-
work into multiple singly-connected networks

e E.g. conditioning on X blocks the chainY — X — Z
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Pearl’s Message Passing Algorithm
Multiply-Connected Networks (cont'd)

Xmxl X=x2
Piyl) = Byipd)  Pz)=Pzill)  P(rl) = B{pll2)  Po(z1) = Pz1l2)

®» @ DEO
W (D ® @
0) O

(b) (©)

When U instantiated to u1,

P(wl|ul) = P(wl|zl,ul)P(zl|ul) + P(wl | z2,ul)P(z2 | ul)
where P(wl | zi,ul), ¢ € {1,2} come from running the old algorithm on
(b) and (c) above, and P(zi | ul) = P(ul | zi) P(xi)/P(ul) (first term
comes from algorithm, last from normalization)

Averaging results of the two assumptions on X
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Pearl’s Message Passing Algorithm
Multiply-Connected Networks (cont'd)

Xmxl X=x2
Pty =Rpilt) P =Pl Pl =PoilR) P = Pk
®» @ IO

W (D ® @®
0) O

(b) (€
When U instantiated to u1 and Y to y1,
P(wl |ul,yl) = P(wl | z1,ul,y1)P(zl | ul,yl)+P(wl | 22,ul,yl)P(z2 | ul,yl)

where P(wl | zi,ul,y1) come from running old algorithm, and
P(zi|ul,yl) = P(ul,yl | xi)P(zi)/P(ul,yl), where

P(ul,yl | zi) = P(ul | yl,zi)P(yl | x3)

34

Pearl’s Message Passing Algorithm
Multiply-Connected Networks (cont'd)

e A setof nodes C C Vis aloop cutset if for each (undirected) loop ¢ in
the DAG there is a vertex from v; € C with an outgoing edge in ¢

— E.g. {v1,v7} above, as well as {v1,v3}, etc., but not {vs}

e NP-hard to find a minimally-sized C
35

Pearl’s Message Passing Algorithm
Multiply-Connected Networks (cont'd)

e If C is loop cutset, £ is set of instantiated nodes, then for each node
X eV\(Euo),

P(xi) =) P(xzi|e,c)P(c|e)
c
(c goes over all combinations of values of nodes in C)
e Get P(zi | e,c) from old algorithm
e Also,ife = {e1,...,er},

P(c|le) < P(c)P(e]|c)
= P(c)P(e;|c,ep-1,...,e1)P(ep-1|c ep—2,...,e1)---P(exr | c)

— Each term above comes from old algorithm
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Pearl’s Message Passing Algorithm
Multiply-Connected Networks (cont'd)

e P(c) easily computed if all nodes in C are roots (how?)

e If not, then can compute by ordering C’s nodes by predecessor rela-
tionship, instantiating them one at a time, and running old algorithm to
pass messages [Suermondt & Cooper, 1991]

— In running algorithm, block messages of all nodes in C, even if not
yet instantiated
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Pearl’s Message Passing Algorithm
Time Complexity

e Trees with n nodes, each with < k values and < ¢ children:

— Need k2 steps to compute node Y’s A messages to its parent X,
ke steps to compute node X'’s X values, kc steps to compute Z'’s m
messages to all children, and k2 steps to compute X’s 7 values

— Repeat for each node = O(n(k2 + kc)) total time

e Singly-connected networks with < p parents/node:

— Only changes were to 7 values (k - kP - p steps) and A messages
(k- k- kP - psteps)
— Can be big, but still polynomial in size of conditional prob. tables

e Multiply-connected networks with loop cut set C: Run singly-connected
algorithm Q(k/Cl) times
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Noisy OR-Gate Model

e An alternative (restricted) representation of probability distributions, re-
ducing the computational and storage complexity

e Assumptions:
— Each variable takes on two possible values
— Causal Inhibition: There is a mechanism that inhibits a cause from
bringing about its effect, and the cause’s presence results in the

effect’s presence iff the mechanism is off

— Exception Independence: Each cause’s inhibitor is independent of
the others

— Accountability: An effect can occur iff at least one of its causes is
present and uninhibited
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Noisy OR-Gate Model
Causal Inhibition

e Bronchitis, Other, Lung Cancer, Fatigue

e Causal inhibition states that bronchitis results in fatigue iff its inhibitor
is absent
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Noisy OR-Gate Model
Exception Independence

e Bronchitis, Other, Lung Cancer, Fatigue

e Exception independence states that the mechanism inhibiting bron-
chitis from causing fatigue is independent of that which inhibits lung
cancer from causing fatigue and that which inhibits other causes of
fatigue
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Noisy OR-Gate Model
Accountability

e Bronchitis, Other, Lung Cancer, Fatigue

e Accountability states that fatigue cannot be present unless one of bron-
chitis, lung cancer, or other is present and uninhibited
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Noisy OR-Gate Model
Representing Assumptions as a Bayes Net
Pily= ON) =g, Fil,= ON)= g,

® e 0 ®

pury

PA, = ON|[, = OFF X, =1}=1
MA, = ON|I, = OFF. X, = 2) =0
PlA, = ON| [, = ON X, = 1) = 0
PA, = ON|[, = ONX,=2)=0

LA, = ON I = OFF, X, = 1) -\I
FiA; = ON| 1 = OFF X, = 2) =0
PA, = ON| I = OK.X;=1)=0
PlA) = ON| Iy = ON Xy =2) =0

PY = 2|4, = OFF, A; = OFF, . A, = OFF) = 1
FY = 2|4, = ON for some f} = 0

e Causes of Y are X, ..., Xp, cause X; potentially inhibited by 7;
= A;is on iff X; present and uninhibited l7)y I
e It's a noisy OR gate since Y = 1 (= "ON’) iff some X; = 1 and its
corresponding inhibitor 7; is OFF
o IfW = {Xy,...,X,}withvaluesw = {z1, ..., zn}, thenit’s straight-
forward to see that

Py=2w=w)= ][] g
Jiwj=1
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Noisy OR-Gate Model
Representing Assumptions as a Bayes Net (cont'd)

e The formula on the preceding slide allows us to simplify the represen-

tation, where p; = 1 — q; is X;’s causal strength:

E.g.
PY=2[X1=1,X2=2,X3=1,X4=1) = (1-p1)(1-p3)(1—ps) = 0.012
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Noisy OR-Gate Model
Advantage of the Model

e This simplified model is more limiting than a general Bayes net, but
has advantages

e E.g. to estimate causal strength of lung cancer for fatigue, need look
only at fraction of lung cancer patients who are fatigued
— In contrast, parameterizing more general Bayes net requires large

numbers of patients with lung cancer and bronchitis, with lung can-
cer and no bronchitis, with no lung cancer and bronchitis, etc.

e Inference also simpler
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Noisy OR-Gate Model
Inference: A Messages

Let node Y have parents X, ..., Xp, and p; = 1 —q; be X’s causal
strength for Y

Let z;" denote that X is present, :c; denote absence
Recall old formula for A messages in singly-connected networks:

Ay (z) =" [ > (P(y |21, zn) [ WY(“%’)):| A(y)

Y [®15 %1% 541550 %]
Can simplify this in noisy OR model:
Ay (@) = My )aP; + Ay (L - ¢;P)
Av(@)) =My )P+ AN (- P)

P =T (1 -pmv(D)

i)
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Noisy OR-Gate Model
Inference: = Values

e Recall old formula for 7 values in singly-connected networks:

MO (P(yml,‘..,xn)ﬁw(xj))
=1

T1,erTn j

e Can simplify this in noisy OR model:
n
iy =1- [ (1-pmvD)
Jj=1

n

() = I (1-pmy (@)

j=1
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