CSCE 970 Lecture 5: More Properties of Bayes Nets

Stephen D. Scott

Introduction

So far, have introduced Bayes nets and discussed the Markov
condition

As mentioned previously, Markov condition entails conditional
independencies among variables

Does not imply any entailed dependencies

Throughout lecture, unless otherwise stated, assume that (P, G)
satisfies Markov condition

Outline

e Entailed conditional independencies

e Markov equivalence

e Entailing dependencies: faithfulness and embedded faithfulness

e Minimality

e Markov blankets and Markov boundaries

Entailed Conditional Independencies
Tail-to-Tail Connections

Are a and b independent? Conditionally independent given ¢?

Entailed Conditional Independencies
Tail-to-Tail Connections (contd)

e Factorization via Theorem 1.4:

P(a,b,c) = P(a|c)P(b|c)P(c)

e When c unknown, get P(a,b) by marginalizing:
P(a,b) =} P(a| a)P(b| )P(c) ,
c

which generally does not equal P(a)P(b)

Entailed Conditional Independencies
Tail-to-Tail Connections (cont'd)

e But when conditioning on ¢, get:
P(a,b,c) _ P(c)P(a|c)P(b|c)

b9 ="p0 P(o)

=P(alc)P(b]|c)

e Thus a and b conditionally independent given ¢

e Say that connection between a and b is blocked by ¢ when it is ob-
served and unblocked when unobserved

e Always true for uncoupled tail-to-tail connections a < ¢ — b (where
there’s no edge between a and b)




Entailed Conditional Independencies
Head-to-Tail Connections

Are a and b independent? Conditionally independent given c¢?

Entailed Conditional Independencies
Head-to-Tail Connections (contd)

e Factorization via Theorem 1.4:

P(a,b,c) = P(a)P(c|a)P(b]|c)

e When c unknown, get P(a,b) by marginalizing:
P(a,b) = P(a)Y_P(c|a)P(b|c) = P(a)P(b|a) ,
(&

which generally does not equal P(a)P(b)

Entailed Conditional Independencies
Head-to-Tail Connections (contd)

e But when conditioning on ¢, get:

__ P(a,b,c) _P(a)P(c|a)P(b|c) _
P(a,b|c) = Pl o) =P(alc)P(b|c)

e Thus a and b conditionally independent given ¢

e Say that connection between a and b is blocked by ¢ when it is ob-
served and unblocked when unobserved

e Always true for uncoupled head-to-tail connections a — ¢ — b

Entailed Conditional Independencies
Head-to-Head Connections

Are a and b independent? Conditionally independent given c?

Entailed Conditional Independencies
Head-to-Head Connections (contd)

e Factorization via Theorem 1.4:

P(a,b,c) = P(a)P(b)P(c| a,b)

e When c unknown, get P(a,b) by marginalizing:

P(a,b) = P(a)P(b) > P(c|a,b) = P(a)P(b)

Entailed Conditional Independencies
Head-to-Head Connections (cont'd)

e But when conditioning on ¢, get:

P(a,b,c) _ P(a)P(b)P(c]a,b)
P(c) P(c) ’

which generally does not equal P(a | ¢)P(b | ¢)

P(a,b|c) =

e Say that connection between a and b is blocked by ¢ when it is unobserved
and unblocked when observed (also unblocks if one of ¢’s descendants
is observed)

e Always true for uncoupled head-to-head connections a — ¢ < b




D-Separation
e Let a chain of nodes be a sequence of vertices in the DAG G that are
pairwise adjacent, ignoring direction of the edges
— E.g. on the next slide, [W,Y, X, Z, S, R] is a chain

e Two nodes X and Y from G are d-separated by a set of nodes A C V
if every chain from X to Y is blocked by some node in A
e This generalizes to sets of nodes X and Y if every pair of nodes (one
from X and one from Y) is d-separated by a node from .4
e Theorem 2.1: Based on the Markov condition, a DAG G entails all and
only the conditional independencies that are identified by d-separation
inG
— lLe.if (P, G) satisfies the Markov condition, then if one finds a Cl in
P implied by G, this Cl will also be found via d-separation in G
— Won't necessarily find all Cls in P, since some Cls may not be
captured in G

D-Separation
Example
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e WandT:
— Chain [W,Y, R, T] is blocked by Y or R
— Chain [W,Y, X, Z, R, T] is blocked by X or Z or R
— Chain [W,Y, X, Z, S, R, T] is blocked by X or Z or R but not by S
since observing S unblocks the chain

D-Separation
Example (cont’d)
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e YandT:
— Chain [Y, R, T] is blocked by R
— Chain [Y, X, Z, R, T] is blocked by X or Z or R
— Chain[Y, X, Z, S, R, T] is blocked by X or Z or R

D-Separation
Example (cont’d)
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e W andS: &
— Chain [W,Y, R, S] is blocked by Y or R
— Chain [W,Y, X, Z, R, S] is blocked by X or Z or R
— Chain [W,Y, X, Z, S] is blocked by X or Z
— Chain [W,Y, R, Z, S] is blocked by Y or Z

D-Separation
Example (cont’d)
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e YandS:
— Chain [Y, R, S] is blocked by R
— Chain [Y, R, Z, S] is blocked by Z
— Chain [Y, X, Z, R, S] is blocked by X or Z or R
— Chain [Y, X, Z, S] is blocked by X or Z
e Thus we say that {W,Y} and {S,T'} are conditionally independent
given {R, Z},i.e. Ic({W,Y},{S, T} | {R,Z})

D-Separation
Another Example
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e Wand X:
— Chain [W,Y, X] is blocked by Y when not observed
— Chain [W,Y, R, Z, X] is blocked by R when not observed
— Chain [W,Y, R, S, Z, X] is blocked by S when not observed

e Thus we say that W and X are independent, i.e. Io({W},{X} | 0)
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Finding D-Separations
e Problem: Given a DAG G = (V, &), and disjoint subsets A, B C V,
find the set of nodes D that is d-separated from B by A
— l.e. find the set of nodes D that are blocked from those in 5 by A

— l.e. if there is an active path from a node X € B to some node
Y ¢ AU B (a path from X to Y not blocked by something in .A),
then Y is NOT in D

e Thus we'll find

R ={Y :Y € Bor3X € Bthat can reach Y with no block from A}
(the set of reachable nodes) andset D =V \ (AU R)

Finding D-Separations
(cont'd)
o How does node Z block a chain?

1. By being in a head-to-tail or tail-to-tail arrangement in the chain and
being in A
OR

2. By being in a head-to-head arrangement in the chain not being in
A and not having a descendent in A

e Since we're initially seeking (sort of) the complement of D, we'll turn
the above two conditions on their heads and look for a set of nodes R
that are reachable from B via active chains

e A chain is active iff each of its 3-node subchains U — V' — W satisfies
one of

1. U —V — W is not head-to-head at V .and V ¢ A
2. U -V — W is head-to-head at V and V' € A or a descendent of
Visin A
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Finding D-Separations (cont'd)

[ R el 5 ]

o LetB={W,Y}and A= {X}

— Then the active chains out of nodes in B are [Y, R, T], [Y, R, S],
W)Y, R, T], [W,Y, R, S], and [W,Y, R]

= D-separation from {Z}
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Finding D-Separations (cont'd)

[ R el 5 ]

|

o letB={W,Y}and A = {X,T}

— Then the active chains out of nodes in B are [Y, R, Z], [Y, R, S],
[Y)R,Z,S], WY, R], [W,Y, R, Z], [W,Y, R, S],and [W, Y, R, Z, 5]

= D-separation from
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Finding D-Separations
(contd)

e This problem is a node reachability problem with restrictions to
legal pairs of edges

e Define a pair of edges ((U, V'), (V, W)) to be legal iff they satisfy one
of the two active chain conditions described earlier

e Then R is the set of nodes reachable from a node in B via only legal
pairs of edges
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Finding D-Separations (cont'd)
WS
pTa

W

e letB={W,Y}and A = {X}
— Then the set of legal pairs of edges is (excluding symmetries)
L={(X,2),(Z,R),((X,2),(2,5)), (X,Y), (Y, R)),
((WY), (Y, R), (Y, R), (R, T)), (Y, R), (R, 9)),
((Z,R),(R,T)),(Z,R),(R,S)), (R, Z),(Z,8))}
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Finding D-Separations (cont'd)

[ R el 5 ]

o letB={W,Y}and A= {X,T}
— Then the set of legal pairs of edges is (excluding symmetries) the
same as before, but add ((Y, R), (R, Z)) and ((W,Y), (Y, X))
(why?)
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Finding D-Separations
The Algorithm

1. Given G = (V, £), B, and A, compute the set of legal edge pairs £

2. Create G’ = (V, &’), which is G with opposite edges added:
E=cu{(X,Y):(Y,X) €&}

e Because the reachability algorithm respects edges’ directions, but
d-separation does not

3. Run as a subroutine an algorithm to return R, the set of nodes in G’
that are reachable from B via edge pairs from £

4. The set of nodes that are d-separated from Bby Ais D = V\ (AUR)
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Finding D-Separations
Reachability Subroutine

o A breadth-first search of graph G’, but over edges rather than nodes

1. Initialize « = 1 and

R=BU{V:VeVvand(X,V)c & forsome X € B}

2. Label each such edge (X, V) with a 1

3. While new nodes added to R

(a) Foreach V such that edge (U, V) is labeled i
i. For each unlabeled edge (V,W) s.t. ((U,V),(V,W)) e L
A R=RU{W}
B. Label (V,W) with: 4+ 1

(b) i++
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Finding D-Separations
Team Exercise

e letB={W,Y}and A= {X}

e Everybody join one of four teams (even if you're just sitting in), draw
this graph, and simulate the algorithm, including labeling edges
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Markov Equivalence
e Many DAGs with the same set of vertices have the same d-separations

e DAGs G1 = (V,&1) and Gy = (V, &) are Markov equivalent if for
every three mutually disjoint subsets A,B,C C V, A and B are d-
separated by C in G iff A and B are d-separated by C in G,

- le. Ig,(A,B | C) & Ig,(A,B|C)

N

¥
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Markov Equivalence
(contd)

Theorem 2.4: DAGs G1 and G, are Markov equivalent iff they have the

same links (ignoring edge direction) and the same set of uncoupled head-
to-head matchings
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Markov Equivalence

(contd)
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DAG Patterns

e Can represent a set of Markov equivalent DAGs in a single graph

e If an edge can be directed either way and still yield a Markov equivalent
DAG, then the edge in the DAG pattern is undirected

e If the edge must be oriented only one way, then the edge in the DAG
pattern remains directed
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DAG Patterns
(contd)

33

Entailing Dependencies

aneaaaeee
ddQQ

P is uniform Var | Values Outcomes
V | {v1,v2} | obj with “17/"2”
S | {s1,s2} | square/round
C | {c1,c2} | black/white
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Entailing Dependencies (cont'd)

We earlier showed that Ip({V'},{S} | {C}). All of the following three
graphs have the Markov property with P.

@ (b) (e

Graphs (b) and (c) have no independencies, so they satisfy the Markov
condition with any distribution P
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Entailing Dependencies
Faithfulness

e Given a DAG G and a distribution P, (G, P) satisfies the faithfulness
condition if both of these conditions hold
1. (G, P) satisfies the Markov condition

2. All conditional independencies in P are entailed by G, based on
the Markov condition

36




Entailing Dependencies
Faithfulness Example

anaaanoecee
ddQQ

P is uniform

c| s | v |PW)|P(@)|P,s)

¢l sl | vl |5/13|8/13| 3/13

Var | Values | Outcomes cl|sliv2]8/13|5/13| 5/13
Vo, v2] Tobjwithwrzr| | €L |2 |vl|5/13|8/13] 2/13
S | {s1,s2} | square/round cl|s2|v2|8/135/13 | 3/13
C | {c1.c2} | blackwhite | | 2|1 |v1|5/13/8/13 | 3/13
] c2|s1|v2|8/13|5/13| 5/13
c2|s2|vl|5/13|8/13| 2/13

2 |s2|v2|8/13|5/13| 3/13

= ~Ip({V'},{S}). Can show P'sonly Clis Ip({V'},{S} | {C})
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Entailing Dependencies
Faithfulness Example (cont'd)

These are all faithful to P
ONC
, O

@) () (© @
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Entailing Dependencies
Another Faithfulness Example

O

P(xl)=a Pylx)=1=(b+¢) Plzllyl)=e
Px2)=1-a P(y2xl)=c P(z2ly1)=1—e
P(y3Jel) = b
P(zl[y2) = ¢
PyIx2) =1-(b+d)y P(z2y2)=1-¢
P(y2lx2) = d
P(y3|x2) = b P(zl|y3) = f

P(22y3)=1~f

G does not entail unconditional independence of X and Z, but P does
=- Markov property holds, but P not faithful to G
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Entailing Dependencies
Another Faithfulness Example (cont'd)

Turns out that P(X, Z) = P(X)P(Z). Eg.

P(y3) = ZP(y3 |z)P(z) =ba+b(1l—a)=5b
P(y2) = ZP(yl |z)P(z) =ca+d(l—a) =ca+d—da
Plyl) = 1-(0G+c))at+(1-0+d))(1-a)=1-act+ad-b-d
P(z1) = e(l—ac+ad—b—d)—+ e(ca+d—da)+ fb
= e—eb+ fb
= P(x21)P(z1) = a(e — eb+ fb)
P(z1,z1) = P(z1]|z1)P(zl) = P(zl)ZP(zl | y)P(y | =1)

Yy
= ale(1 — (b+c)) +ec+ fb] = ale —eb+ fb)
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Faithful DAG Representations

e Theorem 2.6: If (G, P) satisfies the faithfulness condition, then P sat-
isfies this with all and only those DAGs that are Markov equivalent with
G

e The graph pattern representing the class of Markov equivalent DAGs
that P is faithful to is called a perfect map of P

e P admits a faithful DAG representation if it is faithful to some DAG

— Not all distributions admit a faithful DAG representation
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Faithful DAG Representations (cont’d)

"y;

e Consider a joint distribution P(v, s, c, ¢, f) faithful to the above DAG G

e Only independencies (excluding those with C) are Ip({L},{F,S}),
Ip({LEASH, Ip({LYLA{FD, Ip({F}AL, V), Ip({F}A{V])

e Now consider marginal distribution P(v,s,#, f). If the marginal is
faithful to a DAG G’, then the above independencies imply G”s only
d-separations
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Faithful DAG Representations (cont’d)

e Iftwo nodes cannot be d-separated, then they must be adjacent (Lemma
24),s0G' haslinks L —V,V —S,and S — F

e Since I({L}, {S}), the uncoupled meeting L —V — S must be head-
to-head

e Also, since I/({V'},{F}), the uncoupled meeting V' — S — F' must
be head-to-head
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Faithful DAG Representations (cont’d)

G D
G

Thus G’ doesn'’t exist as a DAG, and the marginal P(v, s, ¢, f) does not
admit a faithful DAG representation
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Embedded Faithfulness

i

e So P(v,s, ¥, f) does not admit a faithful DAG representation, but if we
allow node C' to exist as well, then everything works

e Let P be a distribution over V C W and let G = (V, ) be a DAG.
(@G, P) satisfies the embedded faithfulness condition if

1. The Cls entailed by G (when restricting to nodes in V') all exist in
P

2. Al Cls in P are entailed by G

e P also embedded faithfully in DAG G’ that is Markov equivalent to G
(and possibly others)
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Minimality

auaEERsee
Here’s that distribution again: 4393 , etc.

The only Clis Ip({V'},{S} | C), so these have the Markov property:

(a) (b) ()
o If we remove edge (V, S) from (b), it still has the Markov property
e Can we remove any edge from (a) or (c) and still satisfy Markov?

e Given distribution P and DAG G = (V, £), (G, P) satisfies the
minimality condition if (1) (G, P) satisfies the Markov condition and (2)
removing any edge from G results in a graph that does not

e Faithfulness = Minimality, but Minimality #- Faithfulness
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Markov Blankets and Boundaries

e Let V be a set of RVs, P their joint distribution, and X € V. A
Markov blanket M x of X is any set of variables such that X is CI
of all other variables given M x:

Ip({X}V\ (Mx U{X}) | Mx)

o If no proper subset of M x is a Markov blanket, then M x is a
Markov boundary
e Theorem 2.13: If (G, P) satisfies the Markov condition, then the set of
X’s parents, children, and co-parents (other parents of X’s children)
form a Markov blanket of X
— “Parent” respects edge direction

e Theorem 2.14: If (G, P) satisfies the faithfulness condition, then the
set of X'’s parents, children, and co-parents form the unique Markov
boundary of X
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Markov Blankets and Boundaries
Example

o If the faithfulness condition is satisfied, then what is X’s Markov
boundary?

e What if the edge (7', X) is deleted?
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