
CSCE 970 Lecture 5: More Properties of Bayes Nets

Stephen D. Scott
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Introduction

• So far, have introduced Bayes nets and discussed the Markov
condition

• As mentioned previously, Markov condition entails conditional
independencies among variables

• Does not imply any entailed dependencies

• Throughout lecture, unless otherwise stated, assume that (P, G)

satisfies Markov condition
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Outline

• Entailed conditional independencies

• Markov equivalence

• Entailing dependencies: faithfulness and embedded faithfulness

• Minimality

• Markov blankets and Markov boundaries
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Entailed Conditional Independencies
Tail-to-Tail Connections

Are a and b independent? Conditionally independent given c?
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Entailed Conditional Independencies
Tail-to-Tail Connections (cont’d)

• Factorization via Theorem 1.4:

P (a, b, c) = P (a | c)P (b | c)P (c)

• When c unknown, get P (a, b) by marginalizing:

P (a, b) =
∑

c
P (a | c)P (b | c)P (c) ,

which generally does not equal P (a)P (b)
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Entailed Conditional Independencies
Tail-to-Tail Connections (cont’d)

• But when conditioning on c, get:

P (a, b | c) =
P (a, b, c)

P (c)
=

P (c)P (a | c)P (b | c)

P (c)
= P (a | c)P (b | c)

• Thus a and b conditionally independent given c

• Say that connection between a and b is blocked by c when it is ob-
served and unblocked when unobserved

• Always true for uncoupled tail-to-tail connections a ← c → b (where
there’s no edge between a and b)
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Entailed Conditional Independencies
Head-to-Tail Connections

Are a and b independent? Conditionally independent given c?
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Entailed Conditional Independencies
Head-to-Tail Connections (cont’d)

• Factorization via Theorem 1.4:

P (a, b, c) = P (a)P (c | a)P (b | c)

• When c unknown, get P (a, b) by marginalizing:

P (a, b) = P (a)
∑

c
P (c | a)P (b | c) = P (a)P (b | a) ,

which generally does not equal P (a)P (b)
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Entailed Conditional Independencies
Head-to-Tail Connections (cont’d)

• But when conditioning on c, get:

P (a, b | c) =
P (a, b, c)

P (c)
=

P (a)P (c | a)P (b | c)

P (c)
= P (a | c)P (b | c)

• Thus a and b conditionally independent given c

• Say that connection between a and b is blocked by c when it is ob-
served and unblocked when unobserved

• Always true for uncoupled head-to-tail connections a → c → b
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Entailed Conditional Independencies
Head-to-Head Connections

Are a and b independent? Conditionally independent given c?
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Entailed Conditional Independencies
Head-to-Head Connections (cont’d)

• Factorization via Theorem 1.4:

P (a, b, c) = P (a)P (b)P (c | a, b)

• When c unknown, get P (a, b) by marginalizing:

P (a, b) = P (a)P (b)
∑

c
P (c | a, b) = P (a)P (b)
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Entailed Conditional Independencies
Head-to-Head Connections (cont’d)

• But when conditioning on c, get:

P (a, b | c) =
P (a, b, c)

P (c)
=

P (a)P (b)P (c | a, b)

P (c)
,

which generally does not equal P (a | c)P (b | c)

• Say that connection between a and b is blocked by c when it is unobserved
and unblocked when observed (also unblocks if one of c’s descendants
is observed)

• Always true for uncoupled head-to-head connections a → c ← b
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D-Separation

• Let a chain of nodes be a sequence of vertices in the DAG G that are
pairwise adjacent, ignoring direction of the edges

– E.g. on the next slide, [W, Y, X, Z, S, R] is a chain

• Two nodes X and Y from G are d-separated by a set of nodes A ⊂ V
if every chain from X to Y is blocked by some node in A

• This generalizes to sets of nodes X and Y if every pair of nodes (one
from X and one from Y) is d-separated by a node from A

• Theorem 2.1: Based on the Markov condition, a DAG G entails all and
only the conditional independencies that are identified by d-separation
in G

– I.e. if (P, G) satisfies the Markov condition, then if one finds a CI in
P implied by G, this CI will also be found via d-separation in G

– Won’t necessarily find all CIs in P , since some CIs may not be
captured in G
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D-Separation
Example

• W and T :
– Chain [W, Y, R, T ] is blocked by Y or R

– Chain [W, Y, X, Z, R, T ] is blocked by X or Z or R

– Chain [W, Y, X, Z, S, R, T ] is blocked by X or Z or R but not by S
since observing S unblocks the chain
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D-Separation
Example (cont’d)

• Y and T :
– Chain [Y, R, T ] is blocked by R

– Chain [Y, X, Z, R, T ] is blocked by X or Z or R

– Chain [Y, X, Z, S, R, T ] is blocked by X or Z or R
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D-Separation
Example (cont’d)

• W and S:
– Chain [W, Y, R, S] is blocked by Y or R

– Chain [W, Y, X, Z, R, S] is blocked by X or Z or R

– Chain [W, Y, X, Z, S] is blocked by X or Z

– Chain [W, Y, R, Z, S] is blocked by Y or Z
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D-Separation
Example (cont’d)

• Y and S:
– Chain [Y, R, S] is blocked by R

– Chain [Y, R, Z, S] is blocked by Z

– Chain [Y, X, Z, R, S] is blocked by X or Z or R

– Chain [Y, X, Z, S] is blocked by X or Z

• Thus we say that {W, Y } and {S, T} are conditionally independent
given {R, Z}, i.e. IG({W, Y }, {S, T} | {R, Z})
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D-Separation
Another Example

• W and X:
– Chain [W, Y, X] is blocked by Y when not observed
– Chain [W, Y, R, Z, X] is blocked by R when not observed
– Chain [W, Y, R, S, Z, X] is blocked by S when not observed

• Thus we say that W and X are independent, i.e. IG({W}, {X} | ∅)
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Finding D-Separations

• Problem: Given a DAG G = (V, E), and disjoint subsets A,B ⊂ V,
find the set of nodes D that is d-separated from B by A

– I.e. find the set of nodes D that are blocked from those in B by A

– I.e. if there is an active path from a node X ∈ B to some node
Y �∈ A ∪ B (a path from X to Y not blocked by something in A),
then Y is NOT in D

• Thus we’ll find

R = {Y : Y ∈ B or ∃X ∈ B that can reach Y with no block from A}
(the set of reachable nodes) and set D = V \ (A ∪R)
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Finding D-Separations
(cont’d)

• How does node Z block a chain?

1. By being in a head-to-tail or tail-to-tail arrangement in the chain and
being in A
OR

2. By being in a head-to-head arrangement in the chain not being in
A and not having a descendent in A

• Since we’re initially seeking (sort of) the complement of D, we’ll turn
the above two conditions on their heads and look for a set of nodes R
that are reachable from B via active chains

• A chain is active iff each of its 3-node subchains U − V − W satisfies
one of

1. U − V − W is not head-to-head at V and V �∈ A
2. U − V − W is head-to-head at V and V ∈ A or a descendent of

V is in A
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Finding D-Separations (cont’d)

• Let B = {W, Y } and A = {X}

– Then the active chains out of nodes in B are [Y, R, T ], [Y, R, S],
[W, Y, R, T ], [W, Y, R, S], and [W, Y, R]

⇒ D-separation from {Z}
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Finding D-Separations (cont’d)

• Let B = {W, Y } and A = {X, T}

– Then the active chains out of nodes in B are [Y, R, Z], [Y, R, S],
[Y, R, Z, S], [W, Y, R], [W, Y, R, Z], [W, Y, R, S], and [W, Y, R, Z, S]

⇒ D-separation from ∅
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Finding D-Separations
(cont’d)

• This problem is a node reachability problem with restrictions to
legal pairs of edges

• Define a pair of edges ((U, V ), (V, W )) to be legal iff they satisfy one
of the two active chain conditions described earlier

• Then R is the set of nodes reachable from a node in B via only legal
pairs of edges
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Finding D-Separations (cont’d)

• Let B = {W, Y } and A = {X}
– Then the set of legal pairs of edges is (excluding symmetries)

L = {((X, Z), (Z, R)), ((X, Z), (Z, S)), ((X, Y ), (Y, R)),

((W, Y ), (Y, R)), ((Y, R), (R, T )), ((Y, R), (R, S)),

((Z, R), (R, T )), ((Z, R), (R, S)), ((R, Z), (Z, S))}
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Finding D-Separations (cont’d)

• Let B = {W, Y } and A = {X, T}

– Then the set of legal pairs of edges is (excluding symmetries) the
same as before, but add ((Y, R), (R, Z)) and ((W, Y ), (Y, X))
(why?)
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Finding D-Separations
The Algorithm

1. Given G = (V, E), B, and A, compute the set of legal edge pairs L

2. Create G′ = (V, E′), which is G with opposite edges added:

E′ = E ∪ {(X, Y ) : (Y, X) ∈ E}

• Because the reachability algorithm respects edges’ directions, but
d-separation does not

3. Run as a subroutine an algorithm to return R, the set of nodes in G′
that are reachable from B via edge pairs from L

4. The set of nodes that are d-separated from B by A is D = V \(A∪R)
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Finding D-Separations
Reachability Subroutine

• A breadth-first search of graph G′, but over edges rather than nodes

1. Initialize i = 1 and

R = B ∪ {V : V ∈ V and (X, V ) ∈ E′ for some X ∈ B}

2. Label each such edge (X, V ) with a 1

3. While new nodes added to R
(a) For each V such that edge (U, V ) is labeled i

i. For each unlabeled edge (V, W ) s.t. ((U, V ), (V, W )) ∈ L
A. R = R∪ {W}
B. Label (V, W ) with i + 1

(b) i + +
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Finding D-Separations
Team Exercise

• Let B = {W, Y } and A = {X}

• Everybody join one of four teams (even if you’re just sitting in), draw
this graph, and simulate the algorithm, including labeling edges
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Markov Equivalence

• Many DAGs with the same set of vertices have the same d-separations

• DAGs G1 = (V, E1) and G2 = (V, E2) are Markov equivalent if for
every three mutually disjoint subsets A,B, C ⊆ V, A and B are d-
separated by C in G1 iff A and B are d-separated by C in G2

– I.e. IG1
(A,B | C) ⇔ IG2

(A,B | C)
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Markov Equivalence
(cont’d)

Theorem 2.4: DAGs G1 and G2 are Markov equivalent iff they have the
same links (ignoring edge direction) and the same set of uncoupled head-
to-head matchings
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Markov Equivalence
(cont’d)
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DAG Patterns

• Can represent a set of Markov equivalent DAGs in a single graph

• If an edge can be directed either way and still yield a Markov equivalent
DAG, then the edge in the DAG pattern is undirected

• If the edge must be oriented only one way, then the edge in the DAG
pattern remains directed
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DAG Patterns
(cont’d)
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Entailing Dependencies

P is uniform Var Values Outcomes
V {v1, v2} obj with “1”/“2”
S {s1, s2} square/round
C {c1, c2} black/white
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Entailing Dependencies (cont’d)

We earlier showed that IP ({V }, {S} | {C}). All of the following three
graphs have the Markov property with P .

Graphs (b) and (c) have no independencies, so they satisfy the Markov
condition with any distribution P
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Entailing Dependencies
Faithfulness

• Given a DAG G and a distribution P , (G, P ) satisfies the faithfulness
condition if both of these conditions hold

1. (G, P ) satisfies the Markov condition

2. All conditional independencies in P are entailed by G, based on
the Markov condition

36



Entailing Dependencies
Faithfulness Example

P is uniform

Var Values Outcomes
V {v1, v2} obj with “1”/“2”
S {s1, s2} square/round
C {c1, c2} black/white

c s v P (v) P (s) P (v, s)
c1 s1 v1 5/13 8/13 3/13
c1 s1 v2 8/13 5/13 5/13
c1 s2 v1 5/13 8/13 2/13
c1 s2 v2 8/13 5/13 3/13
c2 s1 v1 5/13 8/13 3/13
c2 s1 v2 8/13 5/13 5/13
c2 s2 v1 5/13 8/13 2/13
c2 s2 v2 8/13 5/13 3/13

⇒ ¬IP ({V }, {S}). Can show P ’s only CI is IP ({V }, {S} | {C})
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Entailing Dependencies
Faithfulness Example (cont’d)

These are all faithful to P
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Entailing Dependencies
Another Faithfulness Example

G does not entail unconditional independence of X and Z, but P does
⇒ Markov property holds, but P not faithful to G
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Entailing Dependencies
Another Faithfulness Example (cont’d)

Turns out that P (X, Z) = P (X)P (Z). E.g.

P (y3) =
∑

x
P (y3 | x)P (x) = ba + b(1 − a) = b

P (y2) =
∑

x
P (y1 | x)P (x) = ca + d(1 − a) = ca + d − da

P (y1) = (1 − (b + c))a + (1 − (b + d))(1 − a) = 1 − ac + ad − b − d

P (z1) = e(1 − ac + ad − b − d) + e(ca + d − da) + fb

= e − eb + fb

⇒ P (x1)P (z1) = a(e − eb + fb)

P (z1, x1) = P (z1 | x1)P (x1) = P (x1)
∑

y
P (z1 | y)P (y | x1)

= a[e(1 − (b + c)) + ec + fb] = a(e − eb + fb)
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Faithful DAG Representations

• Theorem 2.6: If (G, P ) satisfies the faithfulness condition, then P sat-
isfies this with all and only those DAGs that are Markov equivalent with
G

• The graph pattern representing the class of Markov equivalent DAGs
that P is faithful to is called a perfect map of P

• P admits a faithful DAG representation if it is faithful to some DAG

– Not all distributions admit a faithful DAG representation
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Faithful DAG Representations (cont’d)

• Consider a joint distribution P (v, s, c, �, f) faithful to the above DAG G

• Only independencies (excluding those with C) are IP ({L}, {F, S}),
IP ({L}, {S}), IP ({L}, {F}), IP ({F}, {L, V }), IP ({F}, {V })

• Now consider marginal distribution P (v, s, �, f). If the marginal is
faithful to a DAG G′, then the above independencies imply G′’s only
d-separations
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Faithful DAG Representations (cont’d)

• If two nodes cannot be d-separated, then they must be adjacent (Lemma
2.4), so G′ has links L − V , V − S, and S − F

• Since IG′({L}, {S}), the uncoupled meeting L−V −S must be head-
to-head

• Also, since IG′({V }, {F}), the uncoupled meeting V − S − F must
be head-to-head
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Faithful DAG Representations (cont’d)

Thus G′ doesn’t exist as a DAG, and the marginal P (v, s, �, f) does not
admit a faithful DAG representation
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Embedded Faithfulness

• So P (v, s, �, f) does not admit a faithful DAG representation, but if we
allow node C to exist as well, then everything works

• Let P be a distribution over V ⊆ W and let G = (V, E) be a DAG.
(G, P ) satisfies the embedded faithfulness condition if

1. The CIs entailed by G (when restricting to nodes in V ) all exist in
P

2. All CIs in P are entailed by G

• P also embedded faithfully in DAG G′ that is Markov equivalent to G

(and possibly others)
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Minimality

Here’s that distribution again: , etc.
The only CI is IP ({V }, {S} | C), so these have the Markov property:

• If we remove edge (V, S) from (b), it still has the Markov property

• Can we remove any edge from (a) or (c) and still satisfy Markov?

• Given distribution P and DAG G = (V, E), (G, P ) satisfies the
minimality condition if (1) (G, P ) satisfies the Markov condition and (2)
removing any edge from G results in a graph that does not

• Faithfulness ⇒ Minimality, but Minimality �⇒ Faithfulness
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Markov Blankets and Boundaries

• Let V be a set of RVs, P their joint distribution, and X ∈ V . A
Markov blanket MX of X is any set of variables such that X is CI
of all other variables given MX :

IP ({X},V \ (MX ∪ {X}) | MX)

• If no proper subset of MX is a Markov blanket, then MX is a
Markov boundary

• Theorem 2.13: If (G, P ) satisfies the Markov condition, then the set of
X ’s parents, children, and co-parents (other parents of X ’s children)
form a Markov blanket of X

– “Parent” respects edge direction

• Theorem 2.14: If (G, P ) satisfies the faithfulness condition, then the
set of X ’s parents, children, and co-parents form the unique Markov
boundary of X
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Markov Blankets and Boundaries
Example

• If the faithfulness condition is satisfied, then what is X ’s Markov
boundary?

• What if the edge (T, X) is deleted?
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