

- P admits a faithful DAG representation if it is faithful to some DAG
 - Not all distributions admit a faithful DAG representation

41

• Now consider marginal distribution $P(v, s, \ell, f)$. If the marginal is

d-separations

faithful to a DAG G', then the above independencies imply G''s only

Faithful DAG Representations (cont'd)

- If two nodes cannot be d-separated, then they must be adjacent (Lemma 2.4), so G^\prime has links $L-V,\,V-S,$ and S-F
- Since $I_{G'}(\{L\},\{S\}),$ the uncoupled meeting L-V-S must be head-to-head
- Also, since $I_{G'}(\{V\},\{F\}),$ the uncoupled meeting V-S-F must be head-to-head

43

Faithful DAG Representations (cont'd)

Thus G' doesn't exist as a DAG, and the marginal $P(v,s,\ell,f)$ does not admit a faithful DAG representation

- So $P(v, s, \ell, f)$ does not admit a faithful DAG representation, but if we allow node C to exist as well, then everything works
- Let P be a distribution over $\mathcal{V} \subseteq \mathcal{W}$ and let $G = (\mathcal{V}, \mathcal{E})$ be a DAG. (G, P) satisfies the <u>embedded faithfulness condition</u> if
 - 1. The CIs entailed by ${\cal G}$ (when restricting to nodes in V) all exist in P
 - 2. All CIs in P are entailed by G
- *P* also embedded faithfully in DAG *G'* that is Markov equivalent to *G* (and possibly others)

45

Markov Blankets and Boundaries

• Let \mathcal{V} be a set of RVs, P their joint distribution, and $X \in \mathcal{V}$. A <u>Markov blanket</u> \mathcal{M}_X of X is any set of variables such that X is CI of all other variables given \mathcal{M}_X :

 $I_P({X}, \mathcal{V} \setminus (\mathcal{M}_X \cup {X}) \mid \mathcal{M}_X)$

- If no proper subset of \mathcal{M}_X is a Markov blanket, then \mathcal{M}_X is a Markov boundary
- <u>Theorem 2.13</u>: If (*G*, *P*) satisfies the Markov condition, then the set of *X*'s parents, children, and co-parents (other parents of *X*'s children) form a Markov blanket of *X*
 - "Parent" respects edge direction
- <u>Theorem 2.14</u>: If (*G*, *P*) satisfies the faithfulness condition, then the set of *X*'s parents, children, and co-parents form the unique Markov boundary of *X*

- Can we remove any edge from (a) or (c) and still satisfy Markov?
- Given distribution P and DAG G = (V, E), (G, P) satisfies the minimality condition if (1) (G, P) satisfies the Markov condition and (2) removing any edge from G results in a graph that does not
- Faithfulness \Rightarrow Minimality, but Minimality \Rightarrow Faithfulness
- 46

(c)

44

- If the faithfulness condition is satisfied, then what is X's Markov boundary?
- What if the edge (T, X) is deleted?