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Introduction

• Shifting now from sequential data to single (non-sequential) fixed length
feature vectors

• E.g. each vector represents a medical patient and the vector’s compo-
nents (features) correspond to results of particular medical tests

• Common problem: given a data set of training vectors, infer a model
for the entire space of possible vectors

– Will use this model to make predictions on new (previously unseen)
instances

– Similar to HMMs, except no sequential nature
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Introduction
(cont’d)

• Many ways to approach this; we’ll focus on developing probabilistic
models via Bayesian networks

– Model joint probability distributions by decomposing them into con-
ditional probabilities

– Algorithms can determine the probability of certain attribute values
of a feature vector given others
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Outline

• Preliminaries

• Naı̈ve Bayes learning

• Introduction to Bayesian networks
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Preliminaries
Probability

• Given a set Ω = {e1, . . . , en} of elements, a function P(·) that as-
signs a real number P(E) to each event E ⊆ Ω is a probability function
if

1. 0 ≤ P({ei}) ≤ 1 for all i ∈ {1, . . . , n}

2.
∑n

i=1 P({ei}) = 1

3. For each event E = {ei1, ei2, . . . , eik} such that |E| �= 1,

P(E) =
k∑

j=1

P({eij})

• Given such a probability space, a random variable is a function on Ω
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Preliminaries
Probability (Example 1.7)

• Let Ω contain all outcomes of a throw of a pair of fair dice:

Ω = {(1,1), (1,2), . . . , (1,6), (2,1), (2,2), . . . , (6,5), (6,6)}

• Let RV X be the sum of each ordered pair and Y = “odd” if both dice
read odd numbers and “even” otherwise:

e X(e) Y (e)
(1,1) 2 odd
(1,2) 3 even

... ... ...
(6,6) 12 even

• Then X = 3 represents event {(1,2), (2,1)} and P(X = 3) =

1/18

• Uppercase letters (“X”) represent RVs and lowercase (“x”) represent
specific values
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Preliminaries
Joint Distributions

• In previous example, X ranged over the integers 2–12 and Y ranged
over {odd,even}

– Each value in each range had its own probability

• If we consider joint events (one from X ’s range, one from Y ’s) we get
a joint probability distribution P(x, y) = P(X = x, Y = y)

• E.g. x = 4 and y = odd represents the event {(1,3), (3,1)} and
P(x, y) = 1/18
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Preliminaries
Marginal Probability

• If we have a handle on a joint distribution, we can sum across values
of an RV to get the marginal probability distribution of another RV

• For two RVs X and Y ,

P(X = x) =
∑

y
P(X = x, Y = y)

• E.g.

P(X = 4) =
∑

y
P(X = 4, Y = y)

= P(X = 4, Y = odd) + P(X = 4, Y = even)
= 1/18 + 1/36 = 1/12

• Also see Example 1.15
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Preliminaries
Conditional Probability

• Let E and F be events with P(F) > 0

• The conditional probability of E given F is

P(E | F) =
P(E ∩ F)

P(F)

• E.g. if x = 6 and y = even then

P(X = x) =

P(X = x, Y = y) =

P(X = x | Y = y) =
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Preliminaries
Bayes’ Theorem

• An identity for conditional probabilities

• Given two events E and F with P(E), P(F) > 0

P(E | F) =
P(F | E)P(E)

P(F)

(Way to remember: the event named after the line goes in the denom-
inator)

• E.g. When x = 6 and y = even,

P(x | y) =
P(y | x)P(x)

P(y)
=

(2/5)(5/36)

27/36
= 2/27
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Preliminaries
Independence of Events

• Two events E and F are independent if one of the following holds:

1. P(E | F) = P(E) and P(E), P(F) �= 0

(can switch roles of E and F for same result)

2. P(E) = 0 or P(F) = 0

• E and F are independent iff P(E ∩ F) = P(E)P(F)

• E.g. is the event X = 6 independent of Y = even?

• Is the event X = 10 ∪X = 12 independent of Y = odd?
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Preliminaries
Conditional Independence of Events

• Can also have independence conditioned on other variables

• Events E and F are conditionally independent given G if P(G) > 0

and one of the following holds

1. P(E | F ∩G) = P(E | G) and P(E | G), P(F | G) > 0

2. P(E | G) = 0 or P(F | G) = 0
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Preliminaries
Conditional Independence of Events

Example

• Define third RV Z, defined as the product of the two dice results

P(X = 5 | Y = even) =
4/36

27/36
= 4/27 �= 4/36 = P(X = 5)

P(X = 5 | Y = even∩Z = 4) =
2/36

3/36
= 2/3 = P(X = 5 | Z = 4)

• Thus the event X = 5 is not independent of Y = even, but is condi-
tionally independent of it given Z = 4
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Preliminaries
Independence of Random Variables

• Given probability space (Ω, P), two RVs A and B are independent
(written IP (A, B)) if, for all values a of A and b of B, the events A = a

and B = b are independent

• I.e. for all values a and b, either P(a) = 0 or P(b) = 0 or
P(a | b) = P(a)

• Generalizes to sets of RVs
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Preliminaries
Independence of Random Variables

Example 1.16

Ω = set of all cards in a deck, P uniform

Variable Values Outcomes
R {r1, r2} royal/nonroyal cards
T {t1, t2} tens & jacks/not t & j
S {s1, s2} spades/nonspades

s r t P(r, t | s) P(r, t)
s1 r1 t1 1/13 4/52 = 1/13
s1 r1 t2 2/13 8/52 = 2/13
s1 r2 t1 1/13 4/52 = 1/13
s1 r2 t2 9/13 36/52 = 9/13
s2 r1 t1 3/39 = 1/13 4/52 = 1/13
s2 r1 t2 6/39 = 2/13 8/52 = 2/13
s2 r2 t1 3/39 = 1/13 4/52 = 1/13
s2 r2 t2 27/39 = 9/13 36/52 = 9/13

Thus P(r, t | s) = P(r, t)⇒ IP ({R, T}, {S})
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Preliminaries
Conditional Independence of Random Variables

• Given probability space (Ω, P), two RVs A and B are
conditionally independent given C (written IP (A, B | C)) if, for all
values a of A, b of B, and c of C, the events A = a and B = b are
conditionally independent given event C = c

• I.e. for all values a and b and c, either P(a | c) = 0 or P(b | c) = 0 or
P(a | b, c) = P(a | c)

• Generalizes to sets of RVs
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Preliminaries
Conditional Independence of Random Variables, Example 1.17

P is uniform

Var Values Outcomes
V {v1, v2} obj with “1”/“2”
S {s1, s2} square/round
C {c1, c2} black/white

c s v P(v | s, c) P(v | c)
c1 s1 v1 1/3 3/9 = 1/3
c1 s1 v2 2/3 6/9 = 2/3
c1 s2 v1 1/3 3/9 = 1/3
c1 s2 v2 2/3 6/9 = 2/3
c2 s1 v1 1/2 2/4 = 1/2
c2 s1 v2 1/2 2/4 = 1/2
c2 s2 v1 1/2 2/4 = 1/2
c2 s2 v2 1/2 2/4 = 1/2

Thus P(v | s, c) = P(v | c)⇒ IP ({V }, {S} | {C})
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Basic Formulas for Probabilities

• Product Rule: probability P(A ∩B) of conjunction of events A and B:

P(A ∩B) = P(A | B)P(B) = P(B | A)P(A)

• Sum Rule: probability of a disjunction of two events A and B:

P(A ∪ B) = P(A) + P(B)− P(A ∩B)

• Theorem of total probability: if events A1, . . . , An are mutually exclu-
sive with

∑n
i=1 P(Ai) = 1, then

P(B) =
n∑

i=1

P(B | Ai)P(Ai)

• If X takes on real values, then its expected value is

E(X) =
∑

x
xP(x)
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Naı̈ve Bayes Classification

• Naı̈ve Bayes classifiers are like Bayesian networks taken to the ex-
treme in their conditional independence assumption

• Generally, the assumption is so unrealistic that NB is ineffective in pre-
dicting probabilities

• Still good at classification, however

• Successfully applied to text classification, diagnosis
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Naı̈ve Bayes Classification
(cont’d)

• Assume target function f : X → V , where each instance x described
by attributes 〈a1, a2, . . . , an〉

• Most probable value of f(x) is:

vMAP = argmax
vj∈V

P(vj | a1, a2, . . . , an)

= argmax
vj∈V

P(a1, a2, . . . , an | vj)P(vj)

P(a1, a2, . . . , an)

= argmax
vj∈V

P(a1, a2, . . . , an | vj)P(vj)

(Second equality comes from where?)

• Thus all we have to do is model the joint distribution over the attributes
conditioned on the labels

• Can we just frequency count our way out of this?
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Naı̈ve Bayes Classification
(cont’d)

• Problem with estimating probs from training data: estimating P(vj) eas-
ily done by counting, but there are exponentially (in n) many combs. of
values of a1, . . . , an, so can’t get estimates for most combs

• Naı̈ve Bayes assumption:

P(a1, a2, . . . , an | vj) =
∏

i

P(ai | vj)

so naı̈ve Bayes classifier:

vNB = argmax
vj∈V

P(vj)
∏

i

P(ai | vj)

• Now have only polynomial number of probs to estimate
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Naı̈ve Bayes Algorithm

Naı̈ve Bayes Learn

1. For each target value vj

(a) P̂(vj)← estimate P(vj) = fraction of exs with vj

(b) For each attribute value ai of each attrib a

i. P̂(ai | vj) ← estimate P(ai | vj) = fraction of vj-labeled exs
with ai

Classify New Instance(x)

vNB = argmax
vj∈V

P̂ (vj)
∏

ai∈x

P̂ (ai | vj)
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Naı̈ve Bayes Example
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Example to classify: 〈Outlk = sun, Temp = cool, Humid = high, Wind = strong〉

Assign label vNB = argmaxvj∈V P(vj)
∏

i P(ai | vj)

P(y) · P(sun | y) · P(cool | y) · P(high | y) · P(strong | y)

= (9/14) · (2/9) · (3/9) · (3/9) · (3/9) = 0.0053

P(n) P(sun | n) P(cool | n) P(high | n) P(strong | n)

= (5/14) · (3/5) · (1/5) · (4/5) · (3/5) = 0.0206
So vNB = n
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Naı̈ve Bayes
Subtleties

• Conditional independence assumption is often violated, i.e.

P(a1, a2, . . . , an | vj) �=
∏

i

P(ai | vj)

. . . but it works surprisingly well anyway. Note don’t need estimated
posteriors P̂ (vj | x) to be correct; need only that

argmax
vj∈V

P̂ (vj)
∏

i

P̂ (ai | vj) = argmax
vj∈V

P (vj)P (a1, . . . , an | vj)

• Sufficient conditions given in [Domingos & Pazzani, 1996]

• But not really trustworthy for probability estimates!
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Bayesian Belief Networks

• Sometimes naı̈ve Bayes assumption of conditional independence too
restrictive

• But inferring probabilities is intractable without some such assump-
tions

• Bayesian belief networks (also called Bayes Nets) describe conditional
independence among subsets of variables

• Allows combining prior knowledge about dependencies among vari-
ables with observed training data
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Bayesian Belief Networks
Directed Acyclic Graphs

• A graph G = (V, E) consists of a set of vertices V , which are con-
nected to each other with edges from a set E

• A directed graph is a graph in which each edge (x, y) is an ordered
pair, with direction from its head x to its tail y

– x is y’s parent

• A directed acyclic graph (DAG) G is a directed graph where there is no
path from a node to itself

– If there’s a path from x to y, then y is a descendent of x and x is
an ancestor of y
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Bayesian Belief Networks
The Markov Property

• Consider a joint probability distribution P and a DAG G = (V, E).
(G, P) satisfies the Markov condition if for each RV X ∈ V , the set
{X} is conditionally independent of the set of its nondescendents
given the set of its parents, i.e. if PAX is the set of parents and NDX

nondescendents, then IP ({X}, NDX | PAX)

• If (G, P) satisifes the Markov condition, then (G, P) is a Bayesian network
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Bayesian Belief Networks

Each node in the DAG corresponds to a RV, and has a probability distribu-
tion on that RV conditioned on its parents
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Bayesian Belief Networks
Example 1.29

P is uniform Var Values Outcomes
V {v1, v2} obj with “1”/“2”
S {s1, s2} square/round
C {c1, c2} black/white

We already showed that IP ({V }, {S} | {C}). Which of the following DAGs
make a Bayes net with P?
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Bayesian Belief Networks
Example 1.29 (cont’d)
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Bayesian Belief Networks
Example 1.29 (cont’d)

(a) V ’s conditional probability distribution depends on only C. When C is
known, then V ’s distribution depends on no other variables (similarly
for S)

(b) V ’s distribution depends on nothing; S depends on only C. When C is
fixed, then S depends on nothing.

(c) Same as (b).
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Bayesian Belief Networks
Example 1.29 (cont’d)

(d) When C is unknown, then V and S are independent, and C ’s distri-
bution depends on V and S. But say that e.g. V ∈ {0,1} indicates
whether a car’s battery is dead or alive, S ∈ {0,1} indicates if a car’s
tank is empty or full, and C ∈ {0,1} indicates whether a gas guage
reads empty or full.

– V and S are independent if C unknown

– Knowing C suddenly relates V and S since e.g. V = 0 influences
the probability that S = 0

– We’ll discuss this more later
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Bayesian Belief Networks
Team Exercise

What are the conditional independencies in a distribution P if (G, P) is a
Bayes net with the following graph G?
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Bayesian Belief Networks
Factorization of a Joint Distribution

• We already discussed the problems with directly estimating a joint dis-
tribution

– Exponential number of combinations of attribute values makes it
impossible to get enough training data to estimate the distribution

– Also, the need to sum over all combinations of values makes marginal-
izing intractable

• Markov condition simplifies this problem by allowing factorization of the
joint distribution
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Bayesian Belief Networks
Factorization of a Joint Distribution

• Theorem 1.4: If (G, P) satisfies the Markov condition, then P equals
the product of its conditional distributions of allnodes given values of
their parents (when they exist)

• E.g. P(f, c, b, �, h) = P(f | b, �)P(c | �)P(b | h)P(� | h)P(h)

Can estimate each conditional probability separately

35

Bayesian Belief Networks
Factorization of a Joint Distribution (example)

P(v, s, c) = P(v | c)P(s | c)P(c)

Earlier we showed P(v1, s1, c1) = 2/13. Factorization yields

P(v1 | c1)P(s1 | c1)P(c1) = (1/3)(2/3)(9/13) = 2/13

Also works for DAGs (b) and (c)
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Bayesian Belief Networks
Generalization of Naı̈ve Bayes

Now it’s obvious how Bayes nets generalize naı̈ve Bayes.

How?
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Bayesian Belief Networks
Starting with the DAG

• The process also works in reverse

– Start with a DAG G = (V, E) where each node in V is a RV with
a discrete conditional distribution

– Then the joint distribution P that comes from multiplying the condi-
tional distributions satisfies the Markov condition with G

• This is how we’ll typically work: define local conditional distributions
with a DAG and then analyze the resultant joint distribution

• Also works with some continuous distributions, e.g. Gaussian
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Bayesian Belief Networks
Starting with the DAG (example)

• H = smoking history, B = bronchitis, L = lung cancer, F = fatigue,
C = chest X-ray result

• Scientific studies and experts’ opinions define conditional distribs
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