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Introduction

• Idea: Given a collection S of related biological sequences, build a (pro-
file) hidden Markov model M to generate the sequences

• Then test new sequence X against M using (which algorithm?) to pre-
dict X ’s membership in S

• Can also align X against M using (which algorithm?) to see how X

matches up position by position against sequences in S
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Introduction (cont’d)

• Will build M based on a multiple alignment of sequences in S:

... V - - - - N V D E V ...

... V E A - - D V A G H ...

... V K G - - - - - - D ...

... V Y S - - T Y E T S ...

... F N A - - N I P K H ...

... I A G A D N G A G V ...

... V G A - - H A G E Y ...

• In alignments, will differentiate matches, insertions, and deletions
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Outline

• Ungapped regions

• Insert and delete states

• Deriving profile HMMs from multiple alignments

• Searching with profile HMMs

• Variants for non-global alignments

• Estimating probabilities
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Organization of a Profile HMM

• Start with a trivial HMM M (not really hidden at this point)

B
1 M1

1 M Ei
1 1 1

• Each match state has its own set of emission probs, so we can com-
pute prob of a new sequence x being part of this family:

P(x | M) =
L
∏

i=1

ei(xi)

5



Organization of a Profile HMM
(cont’d)

• But this assumes ungapped alignments!

• To handle gaps, consider insertions and deletions

– Insertion: part of x that doesn’t match anything in multiple align-
ment (use insert states)

Mi

iI
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Organization of a Profile HMM
(cont’d)

- Deletion: parts of multiple alignment not matched by any residue (sym-
bol) in x (use silent delete states)

Mi

Di
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General Profile HMM Structure

EB
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Handling non-Global Alignments

• Original profile HMMs model entire sequence

• Add flanking model states (or free insertion modules) to generate non-
local residues

B E
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Building a Model

• Given a multiple alignment, how to build an HMM?

– General structure defined, but how many match states?

... V - - - - N V D E V ...

... V E A - - D V A G H ...

... V K G - - - - - - D ...

... V Y S - - T Y E T S ...

... F N A - - N I P K H ...

... I A G A D N G A G V ...

... V G A - - H A G E Y ...
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Building a Model
(cont’d)

• Given a multiple alignment, how to build an HMM?

– General structure defined, but how many match states?

– Heuristic: if more than half of characters in a column are non-gaps,
include a match state for that column

... V - - - - N V D E V ...

... V E A - - D V A G H ...

... V K G - - - - - - D ...

... V Y S - - T Y E T S ...

... F N A - - N I P K H ...

... I A G A D N G A G V ...

... V G A - - H A G E Y ...
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Building a Model
(cont’d)

• Now, find parameters

• Multiple alignment + HMM structure → state sequence

match state

Gap in match column ->
delete state

Non-gap in insert column ->
insert state

Gap in insert column ->
ignore

Durbin Fig 5.4, p. 109

Non-gap in match column ->

... V - - - - N V D E V ...

... V E A - - D V A G H ...

... V K G - - - - - - D ...

... V Y S - - T Y E T S ...

... F N A - - N I P K H ...

... I A G A D N G A G V ...

... V G A - - H A G E Y ...

M1 D3 I3
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Building a Model
(cont’d)

• Count number of transitions and emissions and compute:

akl =
Akl

∑

l′ Akl′

ek(b) =
Ek(b)

∑

b′ Ek(b
′)

• Still need to beware of some counts = 0
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Weighted Pseudocounts

• Let cja = observed count of residue a in position j of multiple align-
ment

eMj
(a) =

cja + Aqa
∑

a′ cja′ + A

• qa = background probability of a, A = weight placed on pseudo-
counts (sometimes use A ≈ 20)

• Also called a prior distribution
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Dirichlet Mixtures

• Can be thought of a mixture of pseudocounts

• The mixture has different components, each representing a different
context of a protein sequence

– E.g. in parts of a sequence folded near protein’s surface, more
weight (higher qa) can be given to hydrophilic residues (ones that
readily bind with water)

• Will find a different mixture for each position of the alignment based on
the distribution of residues in that column
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Dirichlet Mixtures
(cont’d)

• Each component k consists of a vector of pseudocounts ~αk (so αk
a

corresponds to Aqa) and a mixture coefficient (mk, for now) that is the
probability that component k is selected

• Pseudocount model k is the “correct” one with probability mk

• We’ll set the mixture coefficients for each column based on which vec-
tors best fit the residues in that column

– E.g. first column of our example alignment is dominated by V, so
any vector ~αk that favors V will get a higher mk
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Dirichlet Mixtures
(cont’d)

• Let ~cj be vector of counts in column j

eMj
(a) =

∑

k

P
(

k | ~cj

) cja + αk
a

∑

a′
(

cja′ + αk
a′

)

• P
(

k | ~cj

)

are the posterior mixture coefficients, which are easily com-
puted [Sjölander et al. 1996], yielding:

eMj
(a) =

Xa
∑

a′ Xa′
,

where

Xa =
∑

k

mk0 exp
(

lnB
(

~αk
a + ~cj

)

− lnB
(

~αk
a

)) cja + ~αk
a

∑

a′
(

cja′ + αk
a′

) ,

lnB(~x) =
∑

i

lnΓ(xi) − lnΓ





∑

i

xi
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Dirichlet Mixtures
(cont’d)

• Γ is gamma function, and ln Γ is computed via lgamma and related
functions in C

• mk0 is prior probability of component k (= q in Sjölander Table 1):

...
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Searching for Homologues

• Score a candidate match x by using log-odds:

– P(x, π∗ | M) is probability that x came from model M via most
likely path π∗

⇒ Find using Viterbi

– Pr(x | M) is probability that x came from model M summed over
all possible paths
⇒ Find using forward algorithm

– score(x) = log(P(x | M)/P(x | φ))

∗ φ is a “null model”, which is often the distribution of amino acids
in the training set or AA distribution over each individual column

∗ If x matches M much better than φ, then score is large and
positive
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Viterbi Equations

• V M
j (i) = log-odds score of best path matching x1...i to the model,

where xi emitted by state Mj (similarly define V I
j (i) and V D

j (i))

• Rename B as M0, V M
0 (0) = 0, rename E as ML+1 (V M

L+1 = final)

V M
j (i) = log

(

eMj
(xi)

qxi

)

+ max















V M
j−1(i − 1) + log aMj−1Mj

V I
j−1(i − 1) + log aIj−1Mj

V D
j−1(i − 1) + log aDj−1Mj

V I
j (i) = log

(

eIj
(xi)

qxi

)

+ max















V M
j (i − 1) + log aMjIj

V I
j (i − 1) + log aIjIj

V D
j (i − 1) + log aDjIj

V D
j (i) = max















V M
j−1(i) + log aMj−1Dj

V I
j−1(i) + log aIj−1Dj

V D
j−1(i) + log aDj−1Dj
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Forward Equations

FM
j (i) = log

(

eMj
(xi)

qxi

)

+ log
[

aMj−1Mj
exp

(

FM
j−1(i − 1)

)

+

aIj−1Mj
exp

(

F I
j−1(i − 1)

)

+ aDj−1Mj
exp

(

FD
j−1(i − 1)

)]

F I
j (i) = log

(

eIj
(xi)

qxi

)

+ log
[

aMjIj
exp

(

FM
j (i − 1)

)

+

aIjIj
exp

(

F I
j (i − 1)

)

+ aDjIj
exp

(

FD
j (i − 1)

)]

FD
j (i) = log

[

aMj−1Dj
exp

(

FM
j−1(i)

)

+ aIj−1Dj
exp

(

F I
j−1(i)

)

+aDj−1Dj
exp

(

FD
j−1(i)

)]

• exp(·) needed to use sums and logs
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Aligning a Sequence with a Model (Multiple Alignment)

• Given a string x, use Viterbi to find most likely path π∗ and use the
state sequence as the alignment

• More detail in Durbin, Section 6.5

– Also discusses building an initial multiple alignment and HMM si-
multaneously via Baum-Welch
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