CSCE 970 Lecture 3: HMM Application: Biological Sequence Analysis

Stephen D. Scott

Introduction

- <u>Idea:</u> Given a collection *S* of related biological sequences, build a (profile) hidden Markov model *M* to generate the sequences
- Then test new sequence X against M using (which algorithm?) to predict X's membership in S
- Can also align X against M using (which algorithm?) to see how X matches up position by position against sequences in S

• Will build M based on a multiple alignment of sequences in S:

• • •	V	G	А	—	_	Η	Α	G	Ε	Y	• • •
• • •	V	_	_	—	_	Ν	V	D	Ε	V	• • •
• • •	V	Ε	А	_	_	D	V	А	G	Η	• • •
• • •	V	K	G	—	_	_		—	_	D	• • •
• • •	V	Y	S	_	—	Т	Y	E	Т	S	• • •
• • •	F	Ν	А	—	_	Ν	Ι	Ρ	Κ	Η	• • •
• • •	I	А	G	А	D	Ν	G	А	G	V	• • •

• In alignments, will differentiate matches, insertions, and deletions

Outline

- Ungapped regions
- Insert and delete states
- Deriving profile HMMs from multiple alignments
- Searching with profile HMMs
- Variants for non-global alignments
- Estimating probabilities

Organization of a Profile HMM

• Start with a trivial HMM M (not really hidden at this point)

• Each <u>match state</u> has its own set of emission probs, so we can compute prob of a new sequence x being part of this family:

$$P(x \mid M) = \prod_{i=1}^{L} e_i(x_i)$$

Organization of a Profile HMM (cont'd)

- But this assumes ungapped alignments!
- To handle gaps, consider insertions and deletions
 - Insertion: part of x that doesn't match anything in multiple alignment (use <u>insert states</u>)

Organization of a Profile HMM (cont'd)

Deletion: parts of multiple alignment not matched by any residue (symbol) in x (use silent <u>delete states</u>)

General Profile HMM Structure

Handling non-Global Alignments

- Original profile HMMs model entire sequence
- Add flanking model states (or free insertion modules) to generate nonlocal residues

Building a Model

- Given a multiple alignment, how to build an HMM?
 - General structure defined, but how many match states?

• • •	V	G	А	—	—	Η	Α	G	E	Y	• • •
• • •	V	—	—	_	_	Ν	V	D	Ε	V	• • •
• • •	V	Ε	А	_	_	D	V	A	G	Η	• • •
• • •	V	Κ	G	_	_	_	_	_	_	D	• • •
• • •	V	Y	S	—	-	Т	Y	Ε	Т	S	• • •
• • •	F	Ν	А	—	_	Ν	Ι	Ρ	Κ	Η	• • •
• • •	I	А	G	А	D	Ν	G	А	G	V	• • •

Building a Model

(cont'd)

- Given a multiple alignment, how to build an HMM?
 - General structure defined, but how many match states?
 - <u>Heuristic</u>: if more than half of characters in a column are non-gaps, include a match state for that column

• • •	V	G	А	_	_	н	A	G	Ε	Y	• • •
• • •	V	_	_	_	—	Ν	V	D	Ε	V	• • •
• • •	V	Ε	А	-	—	D	V	А	G	Η	• • •
• • •	V	Κ	G	_	—	_	_	—	—	D	• • •
• • •	V	Y	S	_	—	Т	Y	Ε	Т	S	• • •
• • •	F	Ν	А	–	_	Ν	Ι	Ρ	Κ	Η	• • •
•••	Ι	А	G	А	D	Ν	G	А	G	V	• • •

Building a Model (cont'd)

- Now, find parameters
- Multiple alignment + HMM structure → state sequence

Building a Model (cont'd)

• Count number of transitions and emissions and compute:

$$a_{kl} = \frac{A_{kl}}{\sum_{l'} A_{kl'}}$$
$$e_k(b) = \frac{E_k(b)}{\sum_{b'} E_k(b')}$$

• Still need to beware of some counts = 0

Weighted Pseudocounts

• Let c_{ja} = observed count of residue a in position j of multiple alignment

$$e_{M_j}(a) = \frac{c_{ja} + Aq_a}{\sum_{a'} c_{ja'} + A}$$

- q_a = background probability of a, A = weight placed on pseudocounts (sometimes use $A \approx 20$)
- Also called a prior distribution

Dirichlet Mixtures

- Can be thought of a <u>mixture</u> of pseudocounts
- The mixture has different <u>components</u>, each representing a different context of a protein sequence
 - E.g. in parts of a sequence folded near protein's surface, more weight (higher q_a) can be given to hydrophilic residues (ones that readily bind with water)
- Will find a different mixture for each position of the alignment based on the distribution of residues in that column

Dirichlet Mixtures

(cont'd)

- Each component k consists of a vector of pseudocounts $\vec{\alpha}^k$ (so α_a^k corresponds to Aq_a) and a <u>mixture coefficient</u> (m_k , for now) that is the probability that component k is selected
- Pseudocount model k is the "correct" one with probability m_k
- We'll set the mixture coefficients for each column based on which vectors best fit the residues in that column
 - E.g. first column of our example alignment is dominated by V, so any vector $\vec{\alpha}^k$ that favors V will get a higher m_k

Dirichlet Mixtures

Let *c*_j be vector of counts in column *j*

$$e_{M_j}(a) = \sum_k P\left(k \mid \vec{c}_j\right) \frac{c_{ja} + \alpha_a^k}{\sum_{a'} \left(c_{ja'} + \alpha_{a'}^k\right)}$$

• $P(k | \vec{c_j})$ are the posterior mixture coefficients, which are easily computed [Sjölander et al. 1996], yielding:

$$e_{M_j}(a) = \frac{X_a}{\sum_{a'} X_{a'}} ,$$

where

$$X_a = \sum_k m_{k0} \exp\left(\ln B\left(\vec{\alpha}_a^k + \vec{c}_j\right) - \ln B\left(\vec{\alpha}_a^k\right)\right) \frac{c_{ja} + \vec{\alpha}_a^k}{\sum_{a'} \left(c_{ja'} + \alpha_{a'}^k\right)} ,$$
$$\ln B(\vec{x}) = \sum_i \ln \Gamma(x_i) - \ln \Gamma\left(\sum_i x_i\right)$$

Dirichlet Mixtures (cont'd)

- Γ is gamma function, and In Γ is computed via lgamma and related functions in C
- m_{k0} is prior probability of component $k \ (= q \text{ in Sjölander Table 1})$:

	Parameters of Dirichlet mixture prior Blocks9												
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	Comp. 6	Comp. 7	Comp. 8	Comp. 9				
\overline{q}	0.1829	0.0576	0.0898	0.0792	0.0831	0.0911	0.1159	0.0660	0.2340				
$\vec{\alpha}$	1.1806	1.3558	6.6643	2.0814	2.0810	2.5681	1.7660	4.9876	0.0995				
Α	-0.2706	0.0214	0.5614	0.0701	0.0411	0.1156	0.0934	0.4521	0.0051				
-C	0.0398	0.0103	0.0454	0.0111	0.0147	0.0373	0.0047	0.1146	0.0040				
D	0.0175	0.0117	0.4383	0.0194	0.0056	0.0124	0.3872	0.0624	0.0067				
Е	0.0164	0.0108	0.7641	0.0946	0.0102	0.0181	0.3478	0.1157	0.0061				
F	0.0142	0.3856	0.0873	0.0131	0.1536	0.0517	0.0108	0.2842	0.0034				
G	0.1319	0.0164	0.2591	0.0480	0.0077	0.0172	0.1058	0.1402	0.0169				
ŦŢ	0.0123	0.0761	0.2149	0.0770	0.0071	0.0049	0.0497	0.1003	0.0036				
Τ	0.0225	0.0353	0.1459	0.0329	0.2996	0.7968	0.0149	0.5502	0.0021				
К	0.0203	0.0139	0.7622	0.5766	0.0108	0.0170	0.0942	0.1439	0.0050				
L	0.0307	0.0935	0.2473	0.0722	0.9994	0.2858	0.0277	0.7006	0.0059				

Searching for Homologues

- Score a candidate match *x* by using log-odds:
 - $P(x, \pi^* \mid M)$ is probability that x came from model M via most likely path π^* \Rightarrow Find using Viterbi
 - − Pr(x | M) is probability that x came from model M summed over all possible paths
 ⇒ Find using forward algorithm
 - $score(x) = \log(P(x \mid M)/P(x \mid \phi))$
 - * ϕ is a "null model", which is often the distribution of amino acids in the training set or AA distribution over each individual column
 - * If x matches M much better than ϕ , then score is large and positive

Viterbi Equations

- $V_j^M(i) = \text{log-odds score of best path matching } x_{1...i}$ to the model, where x_i emitted by state M_j (similarly define $V_j^I(i)$ and $V_j^D(i)$)
- Rename \mathcal{B} as M_0 , $V_0^M(0) = 0$, rename \mathcal{E} as M_{L+1} ($V_{L+1}^M = \text{final}$)

$$V_{j}^{M}(i) = \log\left(\frac{e_{M_{j}}(x_{i})}{q_{x_{i}}}\right) + \max\begin{cases} V_{j-1}^{M}(i-1) + \log a_{M_{j-1}M_{j}}\\ V_{j-1}^{I}(i-1) + \log a_{I_{j-1}M_{j}}\\ V_{j-1}^{D}(i-1) + \log a_{D_{j-1}M_{j}} \end{cases}$$
$$V_{j}^{I}(i) = \log\left(\frac{e_{I_{j}}(x_{i})}{q_{x_{i}}}\right) + \max\begin{cases} V_{j}^{M}(i-1) + \log a_{M_{j}I_{j}}\\ V_{j}^{I}(i-1) + \log a_{I_{j}I_{j}}\\ V_{j}^{D}(i-1) + \log a_{D_{j}I_{j}} \end{cases}$$
$$V_{j}^{D}(i) = \max\begin{cases} V_{j-1}^{M}(i) + \log a_{M_{j-1}D_{j}}\\ V_{j-1}^{I}(i) + \log a_{D_{j-1}D_{j}}\\ V_{j-1}^{D}(i) + \log a_{D_{j-1}D_{j}} \end{cases}$$

Forward Equations

$$F_{j}^{M}(i) = \log\left(\frac{e_{M_{j}}(x_{i})}{q_{x_{i}}}\right) + \log\left[a_{M_{j-1}M_{j}}\exp\left(F_{j-1}^{M}(i-1)\right) + a_{I_{j-1}M_{j}}\exp\left(F_{j-1}^{I}(i-1)\right) + a_{D_{j-1}M_{j}}\exp\left(F_{j-1}^{D}(i-1)\right)\right]$$

$$F_j^I(i) = \log\left(\frac{e_{I_j}(x_i)}{q_{x_i}}\right) + \log\left[a_{M_jI_j}\exp\left(F_j^M(i-1)\right) + a_{I_jI_j}\exp\left(F_j^I(i-1)\right) + a_{D_jI_j}\exp\left(F_j^D(i-1)\right)\right]$$

$$F_j^D(i) = \log \left[a_{M_{j-1}D_j} \exp \left(F_{j-1}^M(i) \right) + a_{I_{j-1}D_j} \exp \left(F_{j-1}^I(i) \right) + a_{D_{j-1}D_j} \exp \left(F_{j-1}^D(i) \right) \right]$$

• $exp(\cdot)$ needed to use sums and logs

Aligning a Sequence with a Model (Multiple Alignment)

- Given a string x, use Viterbi to find most likely path π^* and use the state sequence as the alignment
- More detail in Durbin, Section 6.5
 - Also discusses building an initial multiple alignment and HMM simultaneously via Baum-Welch