CSCE 970 Lecture 3: HMM Application: Biological Sequence
Analysis

Stephen D. Scott



Introduction

e |dea: Given a collection S of related biological sequences, build a (pro-
file) hidden Markov model M to generate the sequences

e Then test new sequence X against M using (which algorithm?) to pre-
dict X’s membership in S

e Can also align X against M using (which algorithm?) to see how X
matches up position by position against sequences in S




Introduction (cont'd)

e Will build M based on a multiple alignment of sequences in S

VGA- - HAGEY ...
V--- - NVDEV.
VEA- - DVAGH.
VKG- - - - - -D.
VYS- - TYETS.
FNA- - NI PKH.
| AGADNGAGYV.

e In alignments, will differentiate matches, insertions, and deletions
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Organization of a Profile HMM

e Start with a trivial HMM M (not really hidden at this point)

3 it Ml1> 000 L1 ={Ml1>000 1=z

e Each maitch state has its own set of emission probs, so we can com-
pute prob of a new sequence x being part of this family:

L
P(x | M) = ]] ei(=)
i=1



Organization of a Profile HMM
(cont'd)

e But this assumes ungapped alignments!

e To handle gaps, consider insertions and deletions

— Insertion: part of x that doesn’t match anything in multiple align-
ment (use insert states)

o000 — Ml —= | — o000




Organization of a Profile HMM
(cont'd)

- Deletion: parts of multiple alignment not matched by any residue (sym-
bol) in x (use silent delete states)

0o00 — = ——IMlI—>= |— oe0e@
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Handling non-Global Alignments
e Original profile HMMs model entire sequence

e Add flanking model states (or free insertion modules) to generate non-
local residues




Building a Model

e Given a multiple alignment, how to build an HMM?

— General structure defined, but how many match states?

VGA- - HAGEY ...
V--- - NVDEV.
VEA- - DVAGH.
VKG- - - - - -D.
VYS- - TYETS.
FNA- - NI PKH.
| AGADNGAGYV.



Building a Model
(cont'd)
e Given a multiple alignment, how to build an HMM?
— General structure defined, but how many match states?

— Heuristic: if more than half of characters in a column are non-gaps,
Include a match state for that column

VGAI--HAGEY.
V--|--NVDEV.
VEAI--DVAGH.
vVKGI--|] ---D.
VYSI|- -ITYETS.
FNA|- -INI PKH.
| AGIADINGAGYV.
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Building a Model
(cont'd)

e Now, find parameters

e Multiple alignment + HMM structure — state sequence

M1 D3 Non-gap in match column ->
match state

VIGA -|- HAGE Y. Gap in match column ->

V-LI-}\- NVDEWV. del ete state

VEA-|- DVAGH.

VKG-|- - - - - D.

VYS-|- TYETS. .

ENA-I- NIl PKH. Ga|iom|nsertcolumn->
gnore

| AGADNGAGYV.

Durbin Fig 5.4, p. 109
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Building a Model
(cont'd)

e Count number of transitions and emissions and compute:

0 — K
kl Zl/ Akl/
er(b) = £, (D)
" >y Er(b)

e Still need to beware of some counts = 0

13



Weighted Pseudocounts

e Let c;, = observed count of residue a In position 5 of multiple align-
ment
Cjaq + Aqa
Za/ Cja’ + A

ey;(a) =

e g, = background probability of a, A = weight placed on pseudo-
counts (sometimes use A =~ 20)

e Also called a prior distribution
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Dirichlet Mixtures

e Can be thought of a mixture of pseudocounts

e The mixture has different components, each representing a different
context of a protein sequence

— E.g. in parts of a sequence folded near protein’s surface, more
weight (higher q,) can be given to hydrophilic residues (ones that
readily bind with water)

e Will find a different mixture for each position of the alignment based on
the distribution of residues in that column
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Dirichlet Mixtures
(cont'd)

e Each component k consists of a vector of pseudocounts &* (so o/;
corresponds to Aq,) and a mixture coefficient (my., for now) that is the
probability that component & is selected

e Pseudocount model k is the “correct” one with probability m;

e We'll set the mixture coefficients for each column based on which vec-
tors best fit the residues in that column

— E.g. first column of our example alignment is dominated by V, so
any vector &* that favors V will get a higher my,
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Dirichlet Mixtures
(cont'd)
e Let ¢; be vector of counts in column j
eMj(a,) =) P (k | E})
k

Cja + O‘]cgb
S (Cjar + )

o P (k | E'j) are the posterior mixture coefficients, which are easily com-
puted [Sjolander et al. 1996], yielding:

en;(a) = ng(a/ :
where
Xa= Y myo exp (In B (a +3) — n B (ak)) et %
2 Sar (cjar + o)

INB(Z) =) InT(z;) —InT (Z mz)
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e [ is gamma function, and In " is computed via | ganma and related

functions in C

Dirichlet Mixtures
(cont'd)

e myq IS prior probability of component k£ (= ¢ in Sjolander Table 1):

Parameters of Dimichlet mxtare pricr BlocksS

Comp. 1 | Comp. 2 | Comp 3 | Comp. 4 | Comp. 3 | Clomp 6 | Comp. 7 | Compe & | Comp. @

g M122% 00576 (LDAGE 00792 MaDa31 L0911 01159 (GG 02340
A 1.1206 1.3554 (643 20814 20310 25641 1. TGG 49376 0095
A 27006 00214 014 0.07071 11 L1150 0.3 1521 00051
(: L0345 0.0 03 a0 5 0.0111 0147 0373 0007 L1146 0.0
1) 01T 0.y 4383 0.0 %4 005G 0024 03872 0524 0006
B 010G 0.0 03 07641 009406 0102 AL 0.3 TR L A 00061
E 014z 0. 3550 M0ATS 0.0131 1530 0317 0.0 (0 2342 0. (03|
{x 1314 0.0 Gk (.25 0.0 20 00Ty 0172 0.7 05 14402 LINLIRES:
1l 0123 00761 m214% 0.0 00 00049 0D 01003 00036
T 0225 00353 14455 003249 129G (0 7hGA 0049 053502 00021
38 0203 0.0 3% MTG22 057646 0103 L0170 0.2 1139 00050
. (L0307 0.3 2475 00722 (e (12354 00277 URRLLE 0. (3

u

:
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Searching for Homologues

e Score a candidate match = by using log-odds:

— P(x,n* | M) is probability that x came from model M via most
likely path =*
= Find using Viterbi

— Pr(x | M) is probability that x came from model M summed over
all possible paths
= Find using forward algorithm

— score(x) = log(P(x | M)/P(x | ¢))

x ¢ IS a “null model”, which is often the distribution of amino acids
In the training set or AA distribution over each individual column

x If £ matches M much better than ¢, then score is large and
positive
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Viterbi Equations

o VjM(i) = log-odds score of best path matching z; ; to the model,
where z; emitted by state M (similarly define ij(i) and VjD(i))

e Rename B as My, V3" (0) = 0, rename € as My (V4 | = final)

( M .
" ens. (z;) ij—lQ 1) + log aM;_1 M,
‘/j (1) = log ( é ) + max ‘/j—l(z —1) + log ar; 1M,
i \ ‘/JIZ]_(Z — 1) + log CLDj_le
( My¢e:
I, er;(z;) Vj] Q L) +loganyr,
Vi(i) = log + max{ V(@ —1)+logay
1 \ VjD (¢ —1) +logap, g,

( ‘/J]%]_(Z) + log a’Mj_le
VP (i) = max{ VI (i) +logar,_,p,
| V21 +1ogap, p,
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Forward Equations

e (z;)
FJM(i) = log ( éwi ) + log [an_le exp (Ff‘fl(z’ — 1)) 4

ar;_,M; €XP (Fj[_l(i — 1)) +ap;_,n;exp (Fle(i — 1))}

Fl(i) = log (612(%)

a[j]j exp (FJI(’L — 1)) -+ aDj[j exp (FJD(’L — 1))]

) + 109 |an, 1, exp (FM (i — 1)) +

FJ-D(i) = log [a,Mj_le exp (Ff‘fﬂi)) + ar;,_,D; €XP (ij_l(i)>
+ap, p;exp (F1()]

e exp(-) needed to use sums and logs
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Aligning a Sequence with a Model (Multiple Alignment)

e Given a string x, use Viterbi to find most likely path =* and use the
state sequence as the alignment

e More detalil in Durbin, Section 6.5

— Also discusses building an initial multiple alignment and HMM si-
multaneously via Baum-Welch
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