CSCE 970 Lecture 3: HMM Application: Biological Sequence
Analysis

Stephen D. Scott

Introduction

e |dea: Given a collection S of related biological sequences, build a (pro-
file) hidden Markov model M to generate the sequences

Then test new sequence X against M using (which algorithm?) to pre-
dict X’s membership in S

Can also align X against M using (which algorithm?) to see how X
matches up position by position against sequences in S

Introduction (cont’d)

e Will build M based on a multiple alignment of sequences in S:

VGA - -HAGEY
V- ---NVDEYV
VEA--DVAGH
VKG------D
vys--TYETS
FNA--NTIPKH
IAGADNGAGYV

e In alignments, will differentiate matches, insertions, and deletions

Outline

Ungapped regions

Insert and delete states

Deriving profile HMMs from multiple alignments

Searching with profile HMMs

Variants for non-global alignments

Estimating probabilities

Organization of a Profile HMM

e Start with a trivial HMM M (not really hidden at this point)

e Each maich state has its own set of emission probs, so we can com-
pute prob of a new sequence z being part of this family:
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Organization of a Profile HMM
(cont'd)

e But this assumes ungapped alignments!

e To handle gaps, consider insertions and deletions

— Insertion: part of = that doesn’t match anything in multiple align-
ment (use insert states)
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Organization of a Profile HMM

(cont'd)

- Deletion: parts of multiple alignment not matched by any residue (sym-

bol) in z (use silent delete states)
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General Profile HMM Structure

Handling non-Global Alignments

e Original profile HMMs model entire sequence

e Add flanking model states (or free insertion modules) to generate non-

local residues

Building a Model

e Given a multiple alignment, how to build an HMM?

— General structure defined, but how many match states?

VGA - HAGEY
v - - - NVDEYV
V EA - DVAGH
VKG - - - - -D
VYS - TYETS
FNA - N TIPIKH
IAGADNGAGV
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Building a Model Building a Model
(cont'd) (cont'd)
e Given a multiple alignment, how to build an HMM?
— General structure defined, but how many match states? o Now, find parameters

— Heuristic: if more than half of characters in a column are non-gaps,
include a match state for that column
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e Multiple alignment + HMM structure — state sequence
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Non-gap in match column ->
match state

Gap in match column ->
delete state

Non-gap in insert column ->
Insert state

Gap ininsert column ->
ignore

Durbin Fig 5.4, p. 109
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Building a Model

Weighted Pseudocounts

(cont'd)
e Let cj, = observed count of residue a in position j of multiple align-
ment
e Count number of transitions and emissions and compute: A
_ %a + Aqa
A eny(a) =
ay = kl Za’ Cja’ —+
Zl/ Akl/
er(b) = By, (b) e gu = background probability of a, A = weight placed on pseudo-
Yy Er(t) counts (sometimes use A ~ 20)
o Still need to beware of some counts = 0 o Also called a prior distribution
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o . Dirichlet Mixtures
Dirichlet Mixtures i
(cont'd)
Can be thought of a mixture of pseudocounts . -
* 9 P e Each component k consists of a vector of pseudocounts @ (so o
corresponds to Aq,) and a mixture coefficient (my, for now) that is the
e The mixture has different components, each representing a different probability that component % is selected
context of a protein sequence
— E.g. in parts of a sequence folded near protein's surface, more e Pseudocount model & is the “correct” one with probability my,
weight (higher g4) can be given to hydrophilic residues (ones that
readily bind with water) o We'll set the mixture coefficients for each column based on which vec-
tors best fit the residues in that column
Will find a different mixture for each position of the alignment based on ) . . .
° N ; . P 9 — E.g. first column of our example alignment is dominated by V, so
the distribution of residues in that column ke ) )
any vector @" that favors V will get a higher my,
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Dirichlet Mixtures Dirichlet Mixtures
(cont'd) (cont'd)
e Let ¢; be vector of counts in column j .
en.(a) = ZP (k | 5]) Cja + g e [ is gamma function, and In " is computed via 1gamma and related
! % S (cjar + k) functions in C
. . ) o . . e myq is prior probability of component k (= ¢ in Sjolander Table 1):
o P (k | cj) are the posterior mixture coefficients, which are easily com- —
puted [Sjolander et al. 1996], yielding: Farameiers of [NACaket MiaTe prst Tikockss
X, Comipe 1 | Lompe 2 | Comp, ¥ | Tmp. £ | Comp. 5 | Coamp, & | Comp, T | Comp, = | omp, &
eMv(a) =_2¢ A [0 DORGE (X X [N 01179 [T 0. 70
J Z 1 X ’ il 1. 12006 1.335% A 3 PRI ZAELD WL 1. 7MY AT 1K
a a M D270 XA 014 L0707 [LXITRN) 115 [IXCER] AN [IXCT)
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Searching for Homologues

e Score a candidate match x by using log-odds:

— P(x,n* | M) is probability that z came from model M via most
likely path 7*
= Find using Viterbi

— Pr(z | M) is probability that z came from model A/ summed over
all possible paths
= Find using forward algorithm

— score(x) = log(P(z | M)/P(z | ¢))

* ¢ is a “null model”, which is often the distribution of amino acids
in the training set or AA distribution over each individual column

* If z matches M much better than ¢, then score is large and
positive
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Viterbi Equations

. VjM(i) = log-odds score of best path matching z;_; to the model,
where z; emitted by state M; (similarly define ij (4) and ij(i))
e Rename B as My, Vg/(0) = 0, rename &£ as My 4 (VLI‘Z{_1 = final)
VM (= 1) +logans, yu,
) + max{ VI (i —1) +logay,_,
VPG —-1) +logap,
VM(i—1) +logan,1,
) + max V]-I(i —1)+logay;
VP(@i— 1) +logap,r,
VM, (i) +logans, b,
VP(@i) = max< VI (i) +logay,_,p,
VPG +logap, ;p;

40 = g (202

I‘I.

ij(i) = log (M

T
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Forward Equations

FM (i) = log ( ) +10g [ans,_;ar,exp (MG - 1)) +

ar; M, exp (Fj[_l(i — 1)) + ap; ,M; €xp (Fﬁl(i — 1))]

en; (i)
z;

er;(x;)

FjI(i) = log ( ) + log [anIj exp (F]M(i - 1)) +
L
ar;r; €xp (F]-I(i — 1)) +ap,r;exp (F]-D(i — 1))}
FJ-D(i) = log [QMJAD]’ exp (Fﬁjl(i)) + ar; yD; exXp (F]-I,l(i))
+aD].71Dj exp (F]ql(l))]
e exp(-) needed to use sums and logs
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Aligning a Sequence with a Model (Multiple Alignment)

e Given a string z, use Viterbi to find most likely path 7* and use the
state sequence as the alignment

e More detail in Durbin, Section 6.5

— Also discusses building an initial multiple alignment and HMM si-
multaneously via Baum-Welch
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