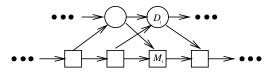
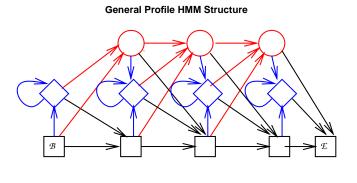
csce 970 Lecture 3: HMM Application: Biological Sequence Analysis Stephen D. Scott	<section-header><text><list-item><list-item><list-item></list-item></list-item></list-item></text></section-header>
Introduction (contribution)• We have on a multiple alignment of sequences in State• · · · · · · · · · · · · · · · · · · ·	<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header>
<section-header><section-header><section-header><text><equation-block><equation-block><equation-block><equation-block><text><text><text></text></text></text></equation-block></equation-block></equation-block></equation-block></text></section-header></section-header></section-header>	 Organization of a Profile HMM (cont'd) But this assumes ungapped alignments! To handle gaps, consider insertions and deletions Insertion: part of x that doesn't match anything in multiple alignment (use insert states)

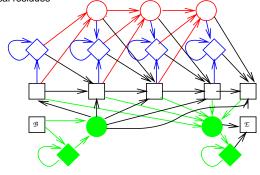
Organization of a Profile HMM (cont'd)





Handling non-Global Alignments

- Original profile HMMs model entire sequence
- Add flanking model states (or free insertion modules) to generate nonlocal residues



Building a Model

- Given a multiple alignment, how to build an HMM?
 - General structure defined, but how many match states?

	V	G	А	-	-	Η	А	G	Е	Y	
	V	-	-	-	-	Ν	V	D	Е	V	
	V	Е	А	-	-	D	V	А	G	Н	
	V	Κ	G	-	-	-	-	-	-	D	
	V	Y	S	-	-	Т	Y	Е	Т	S	
	F	Ν	А	-	-	Ν	Ι	Ρ	Κ	Н	
• • •	Ι	А	G	А	D	Ν	G	А	G	V	

10

8

Building a Model (cont'd)

• Given a multiple alignment, how to build an HMM?

- General structure defined, but how many match states?
- <u>Heuristic</u>: if more than half of characters in a column are non-gaps, include a match state for that column

•	•	•	V	G	А	-	-	н	А	G	Ε	Y	
•	•	•	V	-	-	-	-	Ν	V	D	Е	V	
•	•	•	V	Κ	G	-	-	-	-	-	-	D	
•	•	•	V	Y	S	-	-	Т	Y	Е	Т	S	
•	•	•	F	Ν	А	-	-	Ν	Ι	Ρ	Κ	Η	
•	•	•	Ι	А	G	А	D	Ν	G	А	G	V	

11

7

9

Building a Model (cont'd)

• Now, find parameters

• Multiple alignment + HMM structure \rightarrow state sequence

M1 D3 I3	Non-gap in match column -> match state
V G А НАСЕУ	Gap in match column ->
V - <mark>-</mark> - N V D E V	delete state
V E A D V A G H	Non-gap in insert column ->
V K G D	insert state
V Y S T Y E T S	Gap in insert column ->
F N А N I P К Н	ignore
I A G <mark>A</mark> D N G A G V	Durbin Fig 5.4, p. 109
	12

(cont'd) ment • Count number of transitions and emissions and compute: $e_{M_j}(a) = \frac{c_{ja} + Aq_a}{\sum_{a'} c_{ja'} + A}$ $a_{kl} = \frac{A_{kl}}{\sum_{l'} A_{kl'}}$ $e_k(b) = \frac{E_k(b)}{\sum_{b'} E_k(b')}$ • q_a = background probability of a, A = weight placed on pseudocounts (sometimes use $A \approx 20$) • Still need to beware of some counts = 0 Also called a prior distribution 13 **Dirichlet Mixtures Dirichlet Mixtures** (cont'd) • Can be thought of a mixture of pseudocounts - Each component k consists of a vector of pseudocounts $\vec{\alpha}^k$ (so α_a^k

• The mixture has different components, each representing a different context of a protein sequence

Building a Model

- E.g. in parts of a sequence folded near protein's surface, more weight (higher q_a) can be given to hydrophilic residues (ones that readily bind with water)
- Will find a different mixture for each position of the alignment based on the distribution of residues in that column

15

Dirichlet Mixtures

(cont'd) • Let \vec{c}_i be vector of counts in column j

$$e_{M_j}(a) = \sum_k P\left(k \mid \vec{c_j}\right) \frac{c_{ja} + \alpha_a^k}{\sum_{a'} \left(c_{ja'} + \alpha_{a'}^k\right)}$$

P (k | c_j) are the posterior mixture coefficients, which are easily computed [Sjölander et al. 1996], yielding:

$$e_{M_j}(a) = \frac{X_a}{\sum_{a'} X_{a'}} \; ,$$

where

$$X_{a} = \sum_{k} m_{k0} \exp\left(\ln B\left(\vec{\alpha}_{a}^{k} + \vec{c}_{j}\right) - \ln B\left(\vec{\alpha}_{a}^{k}\right)\right) \frac{c_{ja} + \vec{\alpha}_{a}^{k}}{\sum_{a'} \left(c_{ja'} + \alpha_{a'}^{k}\right)}$$
$$\ln B(\vec{x}) = \sum_{i} \ln \Gamma(x_{i}) - \ln \Gamma\left(\sum_{i} x_{i}\right)$$

Weighted Pseudocounts

- Let c_{ja} = observed count of residue a in position j of multiple align-

- corresponds to Aq_a) and a mixture coefficient (m_k , for now) that is the probability that component k is selected
- Pseudocount model k is the "correct" one with probability mk
- · We'll set the mixture coefficients for each column based on which vectors best fit the residues in that column
 - E.g. first column of our example alignment is dominated by V, so any vector $\vec{\alpha}^k$ that favors V will get a higher m_k

16

14

Dirichlet Mixtures (cont'd)

- Γ is gamma function, and In Γ is computed via lgamma and related functions in C
- m_{k0} is prior probability of component k (= q in Sjölander Table 1):

	Parameters of Dirichlet mixture prior Blocks9										
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	Comp. 6	Comp. 7	Comp. 8	Comp. 9		
9	0.1829	0.0576	0.0898	0.0792	0.0831	0.0911	0.1159	0,0660	0.2340		
ñ	1.1806	1.3558	6.6643	2.0814	2.0810	2.5681	1.7660	4.9876	0.0995		
$-\Delta$	0.2706	0.0214	0.5614	0.0701	0.0411	0.1156	0.0934	0.4521	0.0051		
C	0.0398	0.0103	0.0454	0.0111	0.0147	0.0373	0.0047	0.1146	0.0040		
D	0.0175	0.0117	0,4383	0.0194	0,0056	0.0124	0.3872	0.0624	0.0067		
E	0.0164	0.0108	0.7641	0.0946	0.0102	0.0181	0.3478	0.1157	0.0061		
F	0.0142	0.3856	0.0873	0.0131	0.1536	0.0517	0.0108	0.2842	0.003/1		
G	0.1319	0.0164	0.2591	0.0480	0.0077	0.0172	0.1058	0.1402	0.0169		
H	0.0123	0.0761	0.2149	0.0770	0.0071	0.0049	0.0497	0.1003	0.0036		
T	0.0225	0.0353	0.1459	0.0329	0.2996	0.7968	0.0149	0.5502	0.0021		
K	0.0203	0.0139	0.7622	0.5766	0.0108	0.0170	0.0942	0.1439	0.0050		
L	0.0307	0.0935	0.2473	0.0722	0.9994	0.2858	0.0277	0.7006	0.0059		

ŝ

18

Searching for Homologues

- Score a candidate match x by using log-odds:
 - $P(x,\pi^*\mid M)$ is probability that x came from model M via most likely path π^*
 - \Rightarrow Find using Viterbi
 - $Pr(x \mid M)$ is probability that x came from model M summed over all possible paths \Rightarrow Find using forward algorithm
 - $score(x) = \log(P(x \mid M)/P(x \mid \phi))$
 - * ϕ is a "null model", which is often the distribution of amino acids in the training set or AA distribution over each individual column
 - $\ast\,$ If x matches M much better than $\phi,$ then score is large and positive

19

Forward Equations

$$\begin{split} F_{j}^{M}(i) &= \log\left(\frac{e_{M_{j}}(x_{i})}{q_{x_{i}}}\right) + \log\left[a_{M_{j-1}M_{j}}\exp\left(F_{j-1}^{M}(i-1)\right) + \\ a_{I_{j-1}M_{j}}\exp\left(F_{j-1}^{I}(i-1)\right) + a_{D_{j-1}M_{j}}\exp\left(F_{j-1}^{D}(i-1)\right)\right] \\ F_{j}^{I}(i) &= \log\left(\frac{e_{I_{j}}(x_{i})}{q_{x_{i}}}\right) + \log\left[a_{M_{j}I_{j}}\exp\left(F_{j}^{M}(i-1)\right) + \\ a_{I_{j}I_{j}}\exp\left(F_{j}^{I}(i-1)\right) + a_{D_{j}I_{j}}\exp\left(F_{j}^{D}(i-1)\right)\right] \\ F_{j}^{D}(i) &= \log\left[a_{M_{j-1}D_{j}}\exp\left(F_{j-1}^{M}(i)\right) + a_{I_{j-1}D_{j}}\exp\left(F_{j-1}^{I}(i)\right) \\ &+ a_{D_{j-1}D_{i}}\exp\left(F_{j-1}^{D}(i)\right)\right] \end{split}$$

• $\exp(\cdot)$ needed to use sums and logs

21

Viterbi Equations

- $V_j^M(i) = \text{log-odds score of best path matching } x_{1...i}$ to the model, where x_i emitted by state M_j (similarly define $V_j^I(i)$ and $V_j^D(i)$)
- Rename \mathcal{B} as $M_0, V_0^M(0) = 0$, rename \mathcal{E} as $M_{L+1} (V_{L+1}^M = \text{final})$

$$\begin{split} V_{j}^{M}(i) &= \log\left(\frac{e_{M_{j}}(x_{i})}{q_{x_{i}}}\right) + \max\begin{cases} V_{j-1}^{M}(i-1) + \log a_{M_{j-1}M_{j}}\\ V_{j-1}^{I}(i-1) + \log a_{I_{j-1}M_{j}}\\ V_{j-1}^{D}(i-1) + \log a_{D_{j-1}M_{j}} \end{cases}\\ V_{j}^{M}(i) &= \log\left(\frac{e_{I_{j}}(x_{i})}{q_{x_{i}}}\right) + \max\begin{cases} V_{j}^{M}(i-1) + \log a_{M_{j}I_{j}}\\ V_{j}^{I}(i-1) + \log a_{I_{j}I_{j}}\\ V_{j}^{D}(i-1) + \log a_{D_{j}I_{j}} \end{cases}\\ V_{j}^{D}(i) &= \max\begin{cases} V_{j-1}^{M}(i) + \log a_{M_{j-1}D_{j}}\\ V_{j-1}^{I}(i) + \log a_{J_{j-1}D_{j}}\\ V_{j-1}^{D}(i) + \log a_{D_{j-1}D_{j}} \end{cases} \end{split}$$

Aligning a Sequence with a Model (Multiple Alignment)

- Given a string x, use Viterbi to find most likely path π* and use the state sequence as the alignment
- More detail in Durbin, Section 6.5
 - Also discusses building an initial multiple alignment and HMM simultaneously via Baum-Welch

20