
CSCE 970 Lecture 2: Markov Chains and Hidden Markov
Models

Stephen D. Scott

1

Introduction

• When classifying sequence data, need to model the influence that one
part of the sequence has on other (“downstream”) parts

– E.g. natural language understanding, speech recognition, genomic
sequences

• For each class of sequences (e.g. set of related DNA sequences, set
of similar phoneme sequences), want to build a probabilistic model

• This Markov model is a sequence generator

– We classify a new sequence by measuring how likely it is generated
by the model

2

Outline

• Markov chains

• Hidden Markov models (HMMs)

– Formal definition

– Finding most probable state path (Viterbi algorithm)

– Forward and backward algorithms

• Specifying an HMM

3

An Example from Computational Biology
CpG Islands

• Genomic sequences are one-dimensional series of letters from {A,C,G,T},
frequently many thousands of letters (bases, nucleotides, residues)
long

• The sequence “CG” (written “CpG”) tends to appear more frequently
in some places than in others

• Such CpG islands are usually 102–103 letters long

• Questions:

1. Given a short segment, is it from a CpG island?

2. Given a long segment, where are its islands?

4

Modeling CpG Islands

• Model will be a CpG generator

• Want probability of next symbol to depend on current symbol

• Will use a standard (non-hidden) Markov model

– Probabilistic state machine

– Each state emits a symbol

5

Modeling CpG Islands
(cont’d)

A C

T G

P(A | T)

6

The Markov Property

• A first-order Markov model (what we study) has the property that ob-
serving symbol xi while in state πi depends only on the previous state
πi−1 (which generated xi−1)

• Standard model has 1-1 correspondence between symbols and states,
thus

P(xi | xi−1, . . . ,x1) = P(xi | xi−1)

and

P(x1, . . . ,xL) = P(x1)
L∏

i=2

P(xi | xi−1)

7

Begin and End States
• For convenience, can add special “begin” (B) and “end” (E) states to

clarify equations and define a distribution over sequence lengths
• Emit empty (null) symbols x0 and xL+1 to mark ends of sequence

A C

T G

B E

P(x1, . . . ,xL) =
L+1
∏

i=1

P(xi | xi−1)

• Will represent both with single state named 0

8

Markov Chains for Discrimination

• How do we use this to differentiate islands from non-islands?

• Define two Markov models: islands (“+”) and non-islands (“−”)

– Each model gets 4 states (A, C, G, T)

– Take training set of known islands and non-islands

– Let c+st = number of times symbol t followed symbol s in an island:

P̂+(t | s) =
c+st

∑

t′ c
+
st′

• Example probabilities in [Durbin et al., p. 50]

• Now score a sequence X = 〈x1, . . . ,xL〉 by summing the log-odds ratios:

log

(

P̂ (X | +)

P̂ (X | −)

)

=
L+1
∑

i=1

log

(

P̂+(xi | xi−1)

P̂−(xi | xi−1)

)

9

Outline

• Markov chains

• Hidden Markov models (HMMs)

– Formal definition

– Finding most probable state path (Viterbi algorithm)

– Forward and backward algorithms

• Specifying an HMM

10

Hidden Markov Models
• Second CpG question: Given a long sequence, where are its islands?

– Could use tools just presented by passing a fixed-width window
over the sequence and computing scores

– Trouble if islands’ lengths vary

– Prefer single, unified model for islands vs. non-islands

A+ C T G+ + +

A C T G- - - -

between all pairs]
[complete connectivity

– Within the + group, transition probabilities similar to those for the
separate + model, but there is a small chance of switching to a
state in the − group

11

What’s Hidden in an HMM?

• No longer have one-to-one correspondence between states and emit-
ted characters

– E.g. was C emitted by C+ or C−?

• Must differentiate the symbol sequence X from the state sequence
π = 〈π1, . . . , πL〉

– State transition probabilities same as before:
P(πi = ℓ | πi−1 = j) (i.e. P(ℓ | j))

– Now each state has a prob. of emitting any value:
P(xi = x | πi = j) (i.e. P(x | j))

12

What’s Hidden in an HMM?
(cont’d)

[In CpG HMM, emission probs discrete and = 0 or 1]

13

Example: The Occasionally Dishonest Casino

• Assume that a casino is typically fair, but with probability 0.05 it switches
to a loaded die, and switches back with probability 0.1

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
6: 1/6

LoadedFair

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6: 1/2

0.05

0.1

0.90.95

• Given a sequence of rolls, what’s hidden?

14

The Viterbi Algorithm

• Probability of seeing symbol sequence X and state sequence π is

P(X, π) = P(π1 | 0)
L∏

i=1

P(xi | πi)P(πi+1 | πi)

• Can use this to find most likely path:

π∗ = argmax
π

P(X, π)

and trace it to identify islands (paths through + states)

• There are an exponential number of paths through chain, so how do
we find the most likely one?

15

The Viterbi Algorithm
(cont’d)

• Assume that we know (for all k) vk(i) = probability of most likely path
ending in state k with observation xi

• Then

vℓ(i + 1) = P(xi+1 | ℓ) max
k

{vk(i)P(ℓ | k)}

l

All states at

State at

i

l
 +1i

16

The Viterbi Algorithm
(cont’d)

• Given the formula, can fill in table with dynamic programming:

– v0(0) = 1, vk(0) = 0 for k > 0

– For i = 1 to L; for ℓ = 1 to M (# states)

∗ vℓ(i) = P(xi | ℓ)maxk{vk(i − 1)P(ℓ | k)}

∗ ptri(ℓ) = argmaxk{vk(i − 1)P(ℓ | k)}

– P(X, π∗) = maxk{vk(L)P(0 | k)}

– π∗
L = argmaxk{vk(L)P(0 | k)}

– For i = L to 1

∗ π∗
i−1 = ptri(π

∗
i)

• To avoid underflow, use log(vℓ(i)) and add

17

The Forward Algorithm

• Given a sequence X, find P(X) =
∑

π P(X, π)

• Use dynamic programming like Viterbi, replacing max with sum, and
vk(i) with
fk(i) = P(x1, . . . ,xi, πi = k) (= prob. of observed sequence through
xi, stopping in state k)

– f0(0) = 1, fk(0) = 0 for k > 0

– For i = 1 to L; for ℓ = 1 to M (# states)

∗ fℓ(i) = P(xi | ℓ)
∑

k fk(i − 1)P(ℓ | k)

– P(X) =
∑

k fk(L)P(0 | k)

• To avoid underflow, can again use logs, though exactness of results
compromised (Section 3.6)

18

The Backward Algorithm

• Given a sequence X, find the probability that xi was emitted by state
k, i.e.

P(πi = k | X) =
P(πi = k, X)

P(X)

=

fk(i)
︷ ︸︸ ︷

P(x1, . . . ,xi, πi = k)

bk(i)
︷ ︸︸ ︷

P(xi+1, . . . , xL | πi = k)

P(X)
︸ ︷︷ ︸

computed by forward alg

• Algorithm:

– bk(L) = P(0 | k) for all k

– For i = L − 1 to 1; for k = 1 to M (# states)

∗ bk(i) =
∑

ℓ P(ℓ | k)P(xi+1 | ℓ) bℓ(i + 1)

19

Example Use of Forward/Backward Algorithm

• Define g(k) = 1 if k ∈ {A+, C+, G+, T+} and 0 otherwise

• Then G(i | X) =
∑

k P(πi = k | X) g(k) = probability that xi is in
an island

• For each state k, compute P(πi = k | X) with forward/backward
algorithm

• Technique applicable to any HMM where set of states is partitioned
into classes

– Use to label individual parts of a sequence

20

Outline

• Markov chains

• Hidden Markov models (HMMs)

– Formal definition

– Finding most probable state path (Viterbi algorithm)

– Forward and backward algorithms

• Specifying an HMM

21

Specifying an HMM

• Two problems: defining structure (set of states) and parameters (tran-
sition and emission probabilities)

• Start with latter problem, i.e. given a training set X1, . . . , XN of inde-
pendently generated sequences, learn a good set of parameters θ

• Goal is to maximize the (log) likelihood of seeing the training set given
that θ is the set of parameters for the HMM generating them:

N∑

j=1

log(P(Xj; θ))

22

When State Sequence Known

• Estimating parameters when e.g. islands already identified in training
set

• Let Akℓ = number of k → ℓ transitions and Ek(b) = number of
emissions of b in state k

P(ℓ | k) = Akℓ/




∑

ℓ′
Akℓ′





P(b | k) = Ek(b)/




∑

b′
Ek(b

′)





23

When State Sequence Known
(cont’d)

• Be careful if little training data available

– E.g. an unused state k will have undefined parameters

– Workaround: Add pseudocounts rkℓ to Akℓ and rk(b) to Ek(b) that
reflect prior biases about parobabilities

– Increased training data decreases prior’s influence

– [Sjölander et al. 96]

24

The Baum-Welch Algorithm

• Used for estimating parameters when state sequence unknown

• Special case of the expectation maximization (EM) algorithm

• Start with arbitrary P(ℓ | k) and P(b | k), and use to estimate Akℓ

and Ek(b) as expected number of occurrences given the training set∗:

Akℓ =
N∑

j=1

1

P(Xj)

L∑

i=1

f
j
k(i)P(ℓ | k)P(x

j
i+1 | ℓ)b

j
ℓ(i + 1)

Ek(b) =
N∑

j=1

∑

i:x
j
i=b

P(πi = k | Xj) =
N∑

j=1

1

P(Xj)

∑

i:x
j
i=b

f
j
k(i)b

j
k(i)

• Use these (& pseudocounts) to recompute P(ℓ | k) and P(b | k)

• After each iteration, compute log likelihood and halt if no improvement

∗Superscript j corresponds to jth train example

25

HMM Structure

• How to specify HMM states and connections?

• States come from background knowledge on problem, e.g. size-4 al-
phabet, +/−, ⇒ 8 states

• Connections:

– Tempting to specify complete connectivity and let Baum-Welch sort
it out

– Problem: Huge number of parameters could lead to local max

– Better to use background knowledge to invalidate some connec-
tions by initializing P(ℓ | k) = 0

∗ Baum-Welch will respect this

26

Silent States

• May want to allow model to generate sequences with certain parts
deleted

– E.g. when aligning DNA or protein sequences against a fixed model
or matching a sequence of spoken words against a fixed model,
some parts of the input might be omitted

• Problem: Huge number of connections, slow training, local maxima

27

Silent States
(cont’d)

• Silent states (like begin and end states) don’t emit symbols, so they
can “bypass” a regular state

• If there are no purely silent loops, can update Viterbi, forward, and
backward algorithms to work with silent states [Durbin et al., p. 71]

• Used extensively in profile HMMs for modeling sequences of protein
families (aka multiple alignments)

28

