csce 970 Lecture 2: Markov Chains and Hidden Markov Models Stephen D. Scott	<list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>
<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header>	A Example from Computational Biology Log Islands • Senomic sequences are one-dimensional series of letters from {A,C,G,T}, requently many thousands of letters (bases, nucleotides, residues) iong • Ans sequence "CG" (written "CpG") tends to appear more frequently nome places than in others • Such CpG islands are usually 10 ² -10 ³ letters long • Guestions • Guestions • Given a short segment, is it from a CpG islands • Given a long segment, where are its islands • Second Seco
<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header><section-header><image/><text></text></section-header></section-header></section-header></section-header></section-header></section-header>

The Markov Property

- A <u>first-order</u> Markov model (what we study) has the property that observing symbol x_i while in state π_i depends <u>only</u> on the previous state π_{i-1} (which generated x_{i-1})
- Standard model has 1-1 correspondence between symbols and states, thus

 $P(\mathbf{x}_i \mid \mathbf{x}_{i-1}, \dots, \mathbf{x}_1) = P(\mathbf{x}_i \mid \mathbf{x}_{i-1})$

and

$$P(\mathbf{x}_1,\ldots,\mathbf{x}_L) = P(\mathbf{x}_1) \prod_{i=2}^L P(\mathbf{x}_i \mid \mathbf{x}_{i-1})$$

Markov Chains for Discrimination

- . How do we use this to differentiate islands from non-islands?
- Define two Markov models: islands ("+") and non-islands ("-")
 - Each model gets 4 states (A, C, G, T)
 - Take training set of known islands and non-islands
 - Let c_{st}^+ = number of times symbol t followed symbol s in an island:

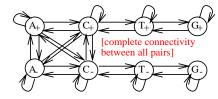
$$\hat{P}^+(t\mid s) = \frac{c_{st}^+}{\sum_{t'} c_{st'}^+}$$

- Example probabilities in [Durbin et al., p. 50]
- Now score a sequence $X = \langle x_1, \dots, x_L \rangle$ by summing the log-odds ratios:

$$\log\left(\frac{\hat{P}(X\mid +)}{\hat{P}(X\mid -)}\right) = \sum_{i=1}^{L+1} \log\left(\frac{\hat{P}^+(\mathbf{x}_i \mid \mathbf{x}_{i-1})}{\hat{P}^-(\mathbf{x}_i \mid \mathbf{x}_{i-1})}\right)$$

Hidden Markov Models

- Second CpG question: Given a long sequence, where are its islands?
 Could use tools just presented by passing a fixed-width window
 - over the sequence and computing scores - Trouble if islands' lengths vary
 - Prefer single, unified model for islands vs. non-islands



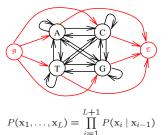
 Within the + group, transition probabilities similar to those for the separate + model, but there is a small chance of switching to a state in the - group

7

9

Begin and End States

- For convenience, can add special "begin" (B) and "end" (E) states to clarify equations and define a distribution over sequence lengths
- $\bullet\,$ Emit empty (null) symbols \mathbf{x}_0 and \mathbf{x}_{L+1} to mark ends of sequence



• Will represent both with single state named 0

Outline

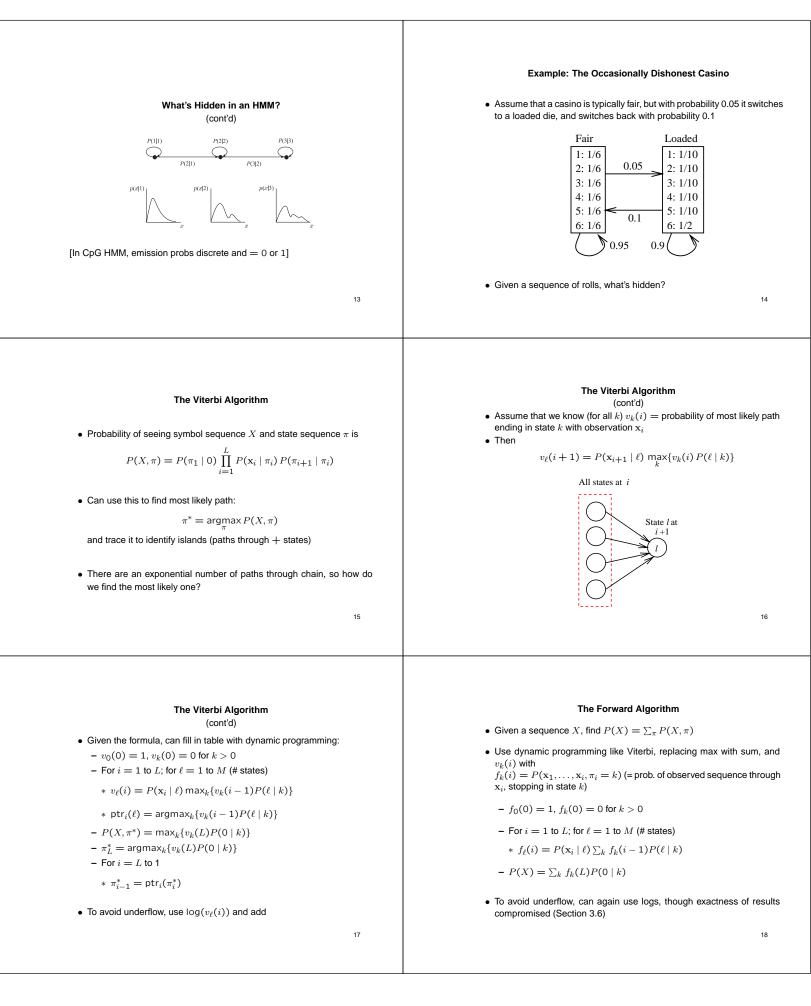
- · Markov chains
- Hidden Markov models (HMMs)
 - Formal definition
 - Finding most probable state path (Viterbi algorithm)
 - Forward and backward algorithms
- Specifying an HMM

10

What's Hidden in an HMM?

- No longer have one-to-one correspondence between states and emitted characters
 - E.g. was C emitted by C₊ or C₋?
- Must differentiate the symbol sequence X from the state sequence $\pi = \langle \pi_1, \dots, \pi_L \rangle$
 - State transition probabilities same as before: $P(\pi_i = \ell \mid \pi_{i-1} = j)$ (i.e. $P(\ell \mid j)$)
 - Now each state has a prob. of emitting any value: $P(\mathbf{x}_i = \mathbf{x} \mid \pi_i = j)$ (i.e. $P(\mathbf{x} \mid j)$)

12



The Backward Algorithm Example Use of Forward/Backward Algorithm • Given a sequence X, find the probability that \mathbf{x}_i was emitted by state k. i.e. • Define g(k) = 1 if $k \in \{A_+, C_+, G_+, T_+\}$ and 0 otherwise $P(\pi_{i} = k \mid X) = \frac{P(\pi_{i} = k, X)}{P(X)}$ $= \frac{\overline{P(x_{1}, \dots, x_{i}, \pi_{i} = k)} \frac{b_{k}(i)}{P(x_{1}, \dots, x_{i}, \pi_{i} = k)}}{\frac{P(X)}{\text{computed by forward alg}}}$ • Then $G(i \mid X) = \sum_k P(\pi_i = k \mid X) g(k)$ = probability that \mathbf{x}_i is in an island • For each state k, compute $P(\pi_i = k \mid X)$ with forward/backward algorithm • Algorithm: $-b_k(L) = P(0 \mid k)$ for all k • Technique applicable to any HMM where set of states is partitioned into classes - For i = L - 1 to 1; for k = 1 to M (# states) * $b_k(i) = \sum_{\ell} P(\ell \mid k) P(\mathbf{x}_{i+1} \mid \ell) b_{\ell}(i+1)$ - Use to label individual parts of a sequence 19 20 Specifying an HMM Outline • Two problems: defining structure (set of states) and parameters (tran-· Markov chains sition and emission probabilities) • Hidden Markov models (HMMs) • Start with latter problem, i.e. given a training set X_1, \ldots, X_N of inde-- Formal definition pendently generated sequences, learn a good set of parameters θ - Finding most probable state path (Viterbi algorithm) • Goal is to maximize the (log) likelihood of seeing the training set given - Forward and backward algorithms that θ is the set of parameters for the HMM generating them: $\sum_{i=1}^{N} \log(P(X_j; \theta))$ • Specifying an HMM 21 22 When State Sequence Known When State Sequence Known (cont'd) • Estimating parameters when e.g. islands already identified in training • Be careful if little training data available set - E.g. an unused state k will have undefined parameters • Let $A_{k\ell}$ = number of $k \rightarrow \ell$ transitions and $E_k(b)$ = number of emissions of b in state k- Workaround: Add pseudocounts $r_{k\ell}$ to $A_{k\ell}$ and $r_k(b)$ to $E_k(b)$ that $P(\ell \mid k) = A_{k\ell} / \left(\sum_{\ell'} A_{k\ell'} \right)$ reflect prior biases about parobabilities - Increased training data decreases prior's influence $P(b \mid k) = E_k(b) / \left(\sum_{k'} E_k(b') \right)$ - [Sjölander et al. 96]

24

The Baum-Welch Algorithm

- Used for estimating parameters when state sequence unknown
- Special case of the expectation maximization (EM) algorithm
- Start with arbitrary P(l | k) and P(b | k), and use to estimate A_{kl} and E_k(b) as expected number of occurrences given the training set*:

$$A_{k\ell} = \sum_{j=1}^{N} \frac{1}{P(X_j)} \sum_{i=1}^{L} f_k^j(i) P(\ell \mid k) P(\mathbf{x}_{i+1}^j \mid \ell) b_\ell^j(i+1)$$

$$E_k(b) = \sum_{j=1}^N \sum_{i:\mathbf{x}_i^j = b} P(\pi_i = k \mid X_j) = \sum_{j=1}^N \frac{1}{P(X_j)} \sum_{i:\mathbf{x}_i^j = b} f_k^j(i) b_k^j(i)$$

- Use these (& pseudocounts) to recompute $P(\ell \mid k)$ and $P(b \mid k)$
- After each iteration, compute log likelihood and halt if no improvement

*Superscript j corresponds to jth train example

25

HMM Structure

- How to specify HMM states and connections?
- States come from background knowledge on problem, e.g. size-4 alphabet, $+/-, \Rightarrow$ 8 states
- Connections:
 - Tempting to specify complete connectivity and let Baum-Welch sort it out
 - Problem: Huge number of parameters could lead to local max
 - Better to use background knowledge to invalidate some connections by initializing $P(\ell \mid k) = 0$
 - * Baum-Welch will respect this

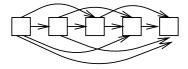
families (aka multiple alignments)

26

28

Silent States

- May want to allow model to generate sequences with certain parts deleted
 - E.g. when aligning DNA or protein sequences against a fixed model or matching a sequence of spoken words against a fixed model, some parts of the input might be omitted



• Problem: Huge number of connections, slow training, local maxima

27

can "bypass" a regular state

Silent States (cont'd)

• Silent states (like begin and end states) don't emit symbols, so they

- If there are no purely silent loops, can update Viterbi, forward, and backward algorithms to work with silent states [Durbin et al., p. 71]
- Used extensively in profile HMMs for modeling sequences of protein