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Introduction

• Once features generated/selected and classi-

fier built, need to assess its performance on

new data

• Assume all data drawn i.i.d. according to some

prob. distribution D and try to estimate clas-

sifier’s prediction error on new data drawn ac-

cording to D

• If error estimate unacceptable, need to select/gen.

new features and/or build new classifier

– Change features used

– Change size/structure of neural network

– Change assumptions in Bayesian classifier

– Choose new learning method, e.g. decision

tree
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Introduction

(cont’d)

• Can’t use error on training set to estimate abil-

ity to generalize, because it’s too optimistic

• So use independent testing set to estimate er-

ror

• Can use statistical hypothesis testing techniques

to:

– Give confidence intervals for error estimate

– Contrast performance of two classifiers (see

if the difference in their error estimates is

statistically significant)

• Sometimes need to train and test with a small

data set

• Will also look at improving a classifier’s per-

formance
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Outline

• Sample error vs. true error

• Confidence intervals for observed hypothesis

error

• Estimators

• Binomial distribution, Normal distribution, Cen-

tral Limit Theorem

• Paired t tests

• Comparing learning methods

• Combining classifiers to improve performance:

Weighted Majority, Bagging, Boosting
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Two Definitions of Error

• Denote the learned classifier by the hypothesis

h and the target function (that labels exam-

ples) by f

• The true error of hypothesis h with respect

to target function f and distribution D is the

probability that h will misclassify an instance

drawn at random according to D.

errorD(h) ≡ Pr
x∈D

[f(x) 6= h(x)]

• The sample error of h with respect to target

function f and data sample S is the proportion

of examples h misclassifies

errorS(h) ≡ 1

|S|
∑

x∈S

δ(f(x) 6= h(x))

Where δ(f(x) 6= h(x)) is 1 if f(x) 6= h(x), and

0 otherwise.

• How well does errorS(h) estimate errorD(h)?
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Problems Estimating Error

• Bias: If S is training set, errorS(h) is optimisti-

cally biased

bias ≡ E[errorS(h)]− errorD(h)

For unbiased estimate, h and S must be chosen

independently

• Variance: Even with unbiased S, errorS(h) may

still vary from errorD(h)
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Estimators

Experiment:

1. Choose sample S of size n according to distri-

bution D

2. Measure errorS(h)

errorS(h) is a random variable (i.e., result of an

experiment)

errorS(h) is an unbiased estimator for errorD(h)

Given observed errorS(h), what can we conclude

about errorD(h)?
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Confidence Intervals

If

• S contains n examples (feature vectors), drawn

independently of h and each other

• n ≥ 30

Then

• With approximately 95% probability, errorD(h)

lies in interval

errorS(h)± 1.96

√

errorS(h)(1− errorS(h))

n

E.g. hypothesis h misclassifies 12 of the 40 exam-

ples in test set S:

errorS(h) =
12

40
= 0.30

Then with approx. 95% confidence, errorD(h) ∈
[0.158,0.442]
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Confidence Intervals

(cont’d)

If

• S contains n examples, drawn independently

of h and each other

• n ≥ 30

Then

• With approximately N% probability, errorD(h)

lies in interval

errorS(h)± zN

√

errorS(h)(1− errorS(h))

n

where

N%: 50% 68% 80% 90% 95% 98% 99%
zN : 0.67 1.00 1.28 1.64 1.96 2.33 2.58

Why?
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errorS(h) is a Random Variable

Repeatedly run the experiment, each with different

randomly drawn S (each of size n)

Probability of observing r misclassified examples:
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Binomial distribution for n = 40, p = 0.3

P(r) =
(n

r

)

errorD(h)r(1− errorD(h))n−r

I.e. let errorD(h) be probability of heads in biased

coin, the P(r) = prob. of getting r heads out of n

flips

What kind of distribution is this?
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Binomial Probability Distribution
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Binomial distribution for n = 40, p = 0.3

P(r) =
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)

pr(1− p)n−r =
n!

r!(n− r)!
pr(1− p)n−r

Probability P(r) of r heads in n coin flips, if p =

Pr(heads)

• Expected, or mean value of X, E[X], is

E[X] ≡
n∑

i=0

iP(i) = np

• Variance of X is

V ar(X) ≡ E[(X −E[X])2] = np(1− p)

• Standard deviation of X, σX, is

σX ≡
√

E[(X − E[X])2] =
√

np(1− p)
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Approximate Binomial Dist. with Normal

errorS(h) = r/n is binomially distributed, with

• mean µerrorS(h) = errorD(h) (i.e. unbiased est.)

• standard deviation σerrorS(h)

σerrorS(h) =

√

errorD(h)(1− errorD(h))

n

(i.e. increasing n decreases variance)

Want to compute confidence interval = interval

centered at errorD(h) containing N% of the weight

under the distribution (difficult for binomial)

Approximate binomial by normal (Gaussian) dist:

• mean µerrorS(h) = errorD(h)

• standard deviation σerrorS(h)

σerrorS(h) ≈
√

errorS(h)(1− errorS(h))

n
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Normal Probability Distribution
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p(x) =
1√

2πσ2
exp

(
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2

(
x− µ

σ

)2
)

• Defined completely by µ and σ

• The probability that X will fall into the interval

(a, b) is given by
∫ b

a
p(x)dx

• Expected, or mean value of X, E[X], is

E[X] = µ

• Variance of X is V ar(X) = σ2

• Standard deviation of X, σX, is

σX = σ
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Normal Probability Distribution
(cont’d)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-3 -2 -1 0 1 2 3

80% of area (probability) lies in µ± 1.28σ

N% of area (probability) lies in µ± zN σ

N%: 50% 68% 80% 90% 95% 98% 99%
zN : 0.67 1.00 1.28 1.64 1.96 2.33 2.58

Can also have one-sided bounds:
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N% of area lies < µ + z′N σ or > µ − z′Nσ, where

z′N = z100−2(100−N)

N%: 50% 68% 80% 90% 95% 98% 99%
z′N : 0.0 0.47 0.84 1.28 1.64 2.05 2.33
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Confidence Intervals Revisited

If

• S contains n examples, drawn independently

of h and each other

• n ≥ 30

Then

• With approximately 95% probability, errorS(h)

lies in interval

errorD(h)± 1.96

√

errorD(h)(1− errorD(h))

n

Equivalently, errorD(h) lies in interval

errorS(h)± 1.96

√

errorD(h)(1− errorD(h))

n

which is approximately

errorS(h)± 1.96

√

errorS(h)(1− errorS(h))

n

(One-sided bounds yield upper or lower error bounds)
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Central Limit Theorem

How can we justify approximation?

Consider a set of independent, identically distributed

random variables Y1 . . . Yn, all governed by an ar-

bitrary probability distribution with mean µ and

finite variance σ2. Define the sample mean,

Ȳ ≡ 1

n

n∑

i=1

Yi

Note that Ȳ is itself a random variable, i.e. the

result of an experiment (e.g. errorS(h) = r/n)

Central Limit Theorem: As n → ∞, the distribu-

tion governing Ȳ approaches a Normal distribu-

tion, with mean µ and variance σ2/n

Thus the distribution of errorS(h) is approximately

normal for large n, and its expected value is errorD(h)

(Rule of thumb: n ≥ 30 when estimator’s distribu-

tion is binomial, might need to be larger for other

distributions)
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Calculating Confidence Intervals

1. Pick parameter p to estimate

• errorD(h)

2. Choose an estimator

• errorS(h)

3. Determine probability distribution that governs

estimator

• errorS(h) governed by binomial distribution,

approximated by normal when n ≥ 30

4. Find interval (L, U) such that N% of probabil-

ity mass falls in the interval

• Could have L = −∞ or U =∞

• Use table of zN or z′N values
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Difference Between Hypotheses

Test h1 on sample S1, test h2 on S2

1. Pick parameter to estimate

d ≡ errorD(h1)− errorD(h2)

2. Choose an estimator

d̂ ≡ errorS1
(h1)− errorS2

(h2)

(unbiased)

3. Determine probability distribution that governs
estimator (difference between two normals is
also normal, variances add)

σ
d̂
≈

√

errorS1
(h1)(1− errorS1

(h1))

n1

+
errorS2

(h2)(1− errorS2
(h2))

n2

4. Find interval (L, U) such that N% of prob.

mass falls in the interval: d̂± Zn σd̂
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Paired t test to compare hA,hB

1. Partition data into k disjoint test sets T1, T2, . . . , Tk
of equal size, where this size is at least 30.

2. For i from 1 to k, do

δi← errorTi
(hA)− errorTi

(hB)

3. Return the value δ̄, where

δ̄ ≡ 1

k

k∑

i=1

δi

N% confidence interval estimate for d:

δ̄ ± tN,k−1 sδ̄

sδ̄ ≡

√
√
√
√
√

1

k(k − 1)

k∑

i=1

(

δi − δ̄
)2

t (student’s t dist. with k− 1 degrees of freedom)

plays role of z, s plays role of σ

t test gives more accurate results since std. devi-

ation approximated and test sets not independent
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Comparing Learning Algorithms LA and LB

What we’d like to estimate:

ES⊂D[errorD(LA(S))− errorD(LB(S))]

where L(S) is the hypothesis output by learner L

using training set S

I.e., the expected difference in true error between

hypotheses output by learners LA and LB, when

trained using randomly selected training sets S

drawn according to distribution D

But, given limited data D0, what is a good esti-

mator?

• Could partition D0 into training set S0 and

testing set T0, and measure

errorT0
(LA(S0))− errorT0

(LB(S0))

• Even better, repeat this many times and aver-

age the results (next slide)
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Comparing learning algorithms LA and LB

(cont’d)

1. Partition data D0 into k disjoint test sets T1, T2,

. . . , Tk of equal size, where this size is at least

30.

2. For i from 1 to k, do

(use Ti for the test set, and the remaining

data for training set Si)

• Si← {D0 − Ti}

• hA← LA(Si)

• hB ← LB(Si)

• δi← errorTi
(hA)− errorTi

(hB)

3. Return the value δ̄, where

δ̄ ≡ 1

k

k∑

i=1

δi
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Comparing learning algorithms LA and LB

(cont’d)

• Notice we’d like to use the paired t test on δ̄

to obtain a confidence interval

• Not really correct, because the training sets in

this algorithm are not independent (they over-

lap!)

• More correct to view algorithm as producing

an estimate of

ES⊂D0
[errorD(LA(S))− errorD(LB(S))]

instead of

ES⊂D[errorD(LA(S))− errorD(LB(S))]

• But even this approximation is better than no

comparison
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Combining Classifiers

• Sometimes a single classifier (e.g. neural net-

work, decision tree) won’t perform well, but a

weighted combination of them will

• Each classifier (or expert) in the pool has its

own weight

• When asked to predict the label for a new ex-

ample, each expert makes its own prediction,

and then the master algorithm combines them

using the weights for its own prediction (i.e.

the “official” one)

• If the classifiers themselves cannot learn (e.g.

heuristics) then the best we can do is to learn

a good set of weights

• If we are using a learning algorithm (e.g. NN,

dec. tree), then we can rerun the algorithm on

different subsamples of the training set and set

the classifiers’ weights during training
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Weighted Majority Algorithm (WM)

[Mitchell, Sec. 7.5.4]

0q  > q1

?
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q0 =

q
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pool of "experts"
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i
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a

a
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Weighted Majority Algorithm (WM)
(cont’d)

ai is ith pred. algorithm in pool A of algs; each alg
is arbitrary function from X to {0,1} or {−1,1}

wi is weight the master alg associates with ai

β ∈ [0,1) is parameter

• ∀ i set wi← 1

• For each training example (or trial) 〈x, c(x)〉

– Set q0 ← q1 ← 0

– For each algorithm ai

∗ If ai(x) = 0 then q0 ← q0 + wi
else q1 ← q1 + wi

∗ If q1 > q0 then predict 1 for c(x), else
predict 0 (case for q1 = q0 is arbitrary)

∗ For each ai ∈ A

· If ai(x) 6= c(x) then wi ← β wi

Setting β = 0 yields Halving algorithm over A
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Weighted Majority
Mistake Bound (On-Line Model)

• Let aopt ∈ A be expert that makes fewest mis-

takes on arbitrary sequence S of exs; let k =
its number of mistakes

• Let β = 1/2 and Wt =
∑n

i=1 wi,t = sum of wts

at trial t (W0 = n)

• On trial t such that WM makes a mistake, the
total weight reduced is

Wmis
t =

∑

ai(xt)6=c(xt)

wi ≥Wt/2

so

Wt+1 =
(

Wt −Wmis
t

)

+ Wmis
t /2 = Wt −Wmis

t /2 ≤ 3Wt/4

• After seeing all of S, wopt,|S| = (1/2)k and

W|S| ≤ n(3/4)M where M = total number of
mistakes, yielding

(
1

2

)k
≤ n

(
3

4

)M
,

so

M ≤ k + log2 n

− log2(3/4)
≤ 2.41 (k + log2 n)
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Weighted Majority

Mistake Bound (cont’d)

• Thus for any arbitrary sequence of examples,

WM guaranteed to not perform much worse

than best expert in pool plus log of number of

experts

– Implicitly agnostic

• Other results:

– Bounds hold for general values of β ∈ [0,1)

– Better bounds hold for more sophisticated

algorithms, but only better by a constant

factor (worst-case lower bound: Ω (k + logn))

– Get bounds for real-valued labels and pre-

dictions

– Can track shifting concept, i.e. where best

expert can suddenly change in S; key: don’t

let any weight get too low relative to other

weights, i.e. don’t overcommit
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Bagging Classifiers

[Breiman, ML Journal, ’96]

Bagging = Bootstrap aggregating

Bootstrap sampling: given a set D containing m

training examples:

• Create Di by drawing m examples uniformly at

random with replacement from D

• Expect Di to omit ≈ 37% of examples from D

Bagging:

• Create k bootstrap samples D1, . . . , Dk

• Train a classifier on each Di

• Classify new instance x ∈ X by majority vote

of learned classifiers (equal weights)
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Bagging Experiment

[Breiman, ML Journal, ’96]

Given sample S of labeled data, Breiman did the

following 100 times and reported avg:

1. Divide S randomly into test set T (10%) and

training set D (90%)

2. Learn decision tree from D and let eS be its

error rate on T

3. Do 50 times: Create bootstrap set Di, learn

decision tree and let eB be the error of a ma-

jority vote of the trees on T

Results

Data Set ēS ēB Decrease
waveform 29.0 19.4 33%
heart 10.0 5.3 47%
breast cancer 6.0 4.2 30%
ionosphere 11.2 8.6 23%
diabetes 23.4 18.8 20%
glass 32.0 24.9 27%
soybean 14.5 10.6 27%
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Bagging Experiment

(cont’d)

Same experiment, but using a nearest neighbor

classifier, where prediction of new feature vector

x’s label is that of x’s nearest neighbor in training

set, where distance is e.g. Euclidean distance

Results

Data Set ēS ēB Decrease
waveform 26.1 26.1 0%
heart 6.3 6.3 0%
breast cancer 4.9 4.9 0%
ionosphere 35.7 35.7 0%
diabetes 16.4 16.4 0%
glass 16.4 16.4 0%

What happened?
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When Does Bagging Help?

When learner is unstable, i.e. if small change in

training set causes large change in hypothesis pro-

duced

• Decision trees, neural networks

• Not nearest neighbor

Experimentally, bagging can help substantially for

unstable learners; can somewhat degrade results

for stable learners
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Boosting Classifiers

[Freund & Schapire, ICML ’96; many more]

Similar to bagging, but don’t always sample uni-

formly; instead adjust resampling distribution over

D to focus attention on previously misclassified

examples

Final classifier weights learned classifiers, but not

uniform; instead weight of classifier ht depends on

its performance on data it was trained on

Repeat for t = 1, . . . , T :

1. Run learning algorithm on examples randomly

drawn from training set D according to distri-

bution Dt (D1 = uniform)

2. Output of learner is hypothesis ht : X → {−1,+1}

3. Compute expected error of ht on examples drawn

according to Dt (can compute exactly)

4. Create Dt+1 from Dt by increasing weight of

examples that ht mispredicts

Final classifier is weighted combination of h1, . . . , hT ,

where ht’s weight depends on its error w.r.t. Dt

32



Boosting

(cont’d)

• Preliminaries: D = {(x1, y1), . . . , (xm, ym)}, yi ∈
{−1,+1}, Dt(i) = weight of (xi, yi) under Dt

• Initialization: D1(i) = 1/m

• Error Computation: εt = Pr
Dt

[ht(xi) 6= yi]

(easy to do since we know Dt)

• If εt > 1/2 then halt; else:

• Weighting Factor: αt =
1

2
ln

(

1− εt

εt

)

(grows as εt decreases)

• Update: Dt+1(i) =
Dt(i) exp (−αt yi ht(xi))

Zt︸︷︷︸

normalization factor

(increase wt. of mispredicted exs, decr. wt of

correctly pred.)

• Final Hypothesis: H(x) = sign





T∑

t=1

αt ht(x)





(εt large ⇒ flip ht’s prediction strongly)
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Boosting

Example

D 1

D 1

D 2

2D

h2

1

α1

= 0.30

= 0.42

ε

h1

D 3
h3

D 3

ε

α
= 0.14

= 0.92

ε

α
= 0.21

= 0.65

2

2

3

3
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Boosting

Example (cont’d)

+ 0.65 + 0.920.42= signfinalH

=
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Boosting

Miscellany

• If each εt < 1/2− γt, error of H(·) on D drops

exponentially in
∑T

t=1 γt (what does γ corre-

spond to?)

• Can also bound generalization error of H(·)
independent of T

• Also successful empirically on neural network

and decision tree learners

– Empirically, generalization sometimes im-

proves if training continues after H(·)’s er-

ror on D drops to 0

– Contrary to intuition; expect overfitting

– Related to increasing the combined classi-

fier’s margin (confidence in prediction)

Topic summary due in 1 week!
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