
Christopher Hammack
CSCE970
Homework 2 Preliminary Results
March 25, 2003

1 Decision Tree Implementation

During this process of creating a decision tree implementation, three different learning tree algorithms were
created. Each of the decision tree algorithms uses the concept of information gain (Equation 1 & 2) to
choose the most appropriate choice for the next node in the decision tree. The first algorithm, referred to
as thenaiveversion, simply partitions each dimension in halves, and chooses the dimension with maximum
information gain. The second algorithmiterativesearches for the best point to draw the decision line using
specific increments. For the purpose of this preliminary paper, to simplify the results, only one parameter
is given, with 100 equal possible partitions comprising the search space. Finally, the algorithmboundary
projects the points in a particular dimension on a line, and scans along the line looking for changes in
classifications. Each change of classification is in the search space for the maximum information gain.

ent(S) = −
∑

i

Ni

N
log2

Ni

N
(1)

informationGain(S, a) = ent(S)− (
Sa

S
Ent(Sa) +

S′
a

S
Ent(S′

a)) (2)

In general, the naive version performs surprisingly well. This is mostly just luck however that the datasets
have classes which are mostly separated with a considerable distance between them, The iterative version
generally performs extremely well, aside from dataset 2, where it classified everything as class 1. However,
this version is generally very slow because of the amount of time it takes to check each of 100 possible
decision line locations inn dimensions. The boundary version generally provides approximately the same
performance as the iterative version, with a smaller run time in many cases. However, the boundary version
could be quite slow as well when there were a lot of class changes in any particular dimension. This could
be seen in dataset 6.

Figure 1: Dataset 1
Run time Correct Rate Error Rate

Algorithm (sec) Class 1 Class 2 Total (95% Confidence)

Naive 0.74 0.9994 0.9827 0.9944 0.0066± 0.0021
Iterative 1.75 0.9989 0.9847 0.9946 0.0064± 0.0020

Boundary 1.23 0.9994 0.9707 0.9908 0.0092± 0.0026

1



Figure 2: Dataset 2
Run time Correct Rate Error Rate

Algorithm (sec) Class 1 Class 2 Total (95% Confidence)

Naive 0.9 0.9830 0.6660 0.919 0.081± 0.0075
Iterative 4 1 0 0.8 0.2± 0.0111

Boundary 4.2 0.9328 0.6510 0.8764 0.1246± 0.0091

Figure 3: Dataset 3
Run time Correct Rate Error Rate

Algorithm (sec) Class 1 Class 2 Total (95% Confidence)

Naive 0.8 0.9928 0.9872 0.99 0.01± 0.0028
Iterative 3.10 0.9936 0.9872 0.9904 0.0096± 0.0027

Boundary 1.4 0.9904 0.9852 0.9878 0.0122± 0.0030

Figure 4: Dataset 4
Run time Correct Rate Error Rate

Algorithm (sec) Class 1 Class 2 Total (95% Confidence)

Naive 0.8 0.9993 1 0.9996 0.0004± 0.0006
Iterative 1.7 0.9993 0.999 0.999 0.001± 0.0009

Boundary 1.1 1 1 1 0.0± 0.0

Figure 5: Dataset 5
Run time Correct Rate Error Rate

Algorithm (sec) Class 1 Class 2 Total (95% Confidence)

Naive 1 0.9976 1 0.9986 0.0014± 0.0010
Iterative 1.9 0.995 1 0.997 0.003± 0.0015

Boundary 1.7 0.9993 1 0.9996 0.0004± 0.0006

Figure 6: Dataset 6
Run time Correct Rate Error Rate

Algorithm (sec) Class 1 Class 2 Class 3 Class 4 Total (95% Confidence)

Naive 1 0.9157 0.9086 0.859 0.994 0.9268 0.0732± 0.0072
Iterative 5.3 0.9476 0.9743 0.9143 0.99 0.9552 0.0448± 0.0057

Boundary 8.2 0.94095 0.8428 0.88 0.99 0.936 0.064± 0.0068

2


