Preliminary Report for Homework 2

Andrew Charles Breiner

March 25, 2003

For this assignment I had to implement a neural network. For the assignment I had to update the weights using gradient descent. All confidence intervals are a 95% confidence intervals.

Here are the results I got. For the first expirement I used a simple 2 layer network with only 1 neuron in each layer. As you can see this is just simple the perceptron network.

I varied the learning rate and here are the results:

For data set 1 I got the following values

	.1	.3	.7
class1	.08%	.02%	0%
class2	14.7%	17.2%	13.5%
total	4.48%	5.18%	4.06%
interval	[.039, .0505]	[.0456, .0579]	[.0351, .046]

For data set 1 I got the following times:

For data set 2 I got the following values

```
.1
                        .3
                                      .7
class1
          0\%
                        0\%
                                      0\%
          38.2\%
                        42.1\%
class2
                                      45.1\%
          7.64\%
                        8.42\%
                                      9.02\%
total
          [.069, .083]
                       [.077, .091] [.082, .098]
interval
```

For data set 2 I got the following times:

.1 .3 .7 total .03 sec .03 sec .03 sec

For data set 3 I got the following values

For data set 3 I got the following times:

.1 .3 .7 total .03 sec .11 sec .06 sec

For data set 4 I got the following values

	.1	.3	.7
class1	39.7%	24.8%	23.3%
class2	7.55%	11.9%	.75%
total	26.86%	19.6%	14.3%
interval	[.256, .281]	[.185, .207]	[.133, .152]

For data set 4 I got the following times:

.1 .3 .7 total .04 sec .04 sec .03 sec

For data set 5 I got the following values

	.1	.3	.7
class1	34.1%	51.8%	50%
class2	42.9%	58.7%	37.9%
total	37.6%	54.6%	45.2%
interval	[.362, .389]	[.532, .560]	[.437, .465]

For data set 5 I got the following times:

$$\begin{array}{cccc} & .1 & .3 & .7 \\ \text{total} & .06 \; \text{sec} & .16 \; \text{sec} & 4.87 \; \text{sec} \end{array}$$

For data set 6, I constructed two classifiers and used each of those two classifiers to predict my final output.

For data set 6 I got the following values

	.1	.3	.7
class1	0%	0%	0%
class2	100%	100%	100%
class3	100%	100%	100%
class4	100%	100%	100%
total	58%	58%	58%
interval	[.566, .593]	[.566, .593]	[.566, .593]

For data set 6 I got the following times:

$$\begin{array}{cccc} & .1 & .3 & .7 \\ total & .07 \ sec & .07 \ sec & .08 \ sec \end{array}$$

Now I constructed a network with 3 layers, one of them being a hidden layer. The hidden layer has two neurons.

I varied the learning rate and here are the results:

For data set 1 I got the following values

For data set 1 I got the following times:

For data set 2 I got the following values

	.1	.3	.7
class1	0%	0%	0%
class2	35%	35.1%	35.1%
total	7%	7.02%	7.02%
interval	[.0629, .077]	[.063, .077]	[.063, .077]

For data set 2 I got the following times:

$$\begin{array}{ccc} & .1 & .3 & .7 \\ total & .05 \ sec & .04 \ sec & .04 \ sec \end{array}$$

For data set 3 I got the following values

For data set 3 I got the following times:

For data set 4 I got the following values

	.1	.3	.7
class1	48.7%	.167%	46.8%
class2	.55%	.6%	.55%
total	29.4%	.34%	30.04%
interval	[.281, .307]	[.002, .005]	[.288, .313]

For data set 4 I got the following times:

For data set 5 I got the following values

	.1	.3	.7
class1	21.8%	50.7%	49.9%
class2	44.8%	58.2%	58%
total	30.98%	53.72%	53.14%
interval	[.297, .322]	[.523, .551]	[.517, .545]

For data set 5 I got the following times:

$$\begin{array}{cccc} & .1 & .3 & .7 \\ total & .17 \ sec & .31 \ sec & .16 \ sec \end{array}$$

For data set 6, I constructed two classifiers and used each of those two classifiers to predict my final output.

For data set 6 I got the following values

	.1	.3	.7
class1	0%	0%	0%
class2	100%	100%	100%
class3	100%	100%	100%
class4	100%	100%	100%
total	58%	58%	58%
interval	[.566, .593]	[.566, .593]	[.566, .593]

For data set 6 I got the following times:

$$\begin{array}{ccc} & .1 & .3 & .7 \\ \text{total} & .08 \text{ sec} & .08 \text{ sec} & .08 \text{ sec} \end{array}$$