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Introduction

• What if labels unavailable?

• E.g. feat. vectors are measurements of elec-

tromag. energy reflected from remote parts of

Earth, can’t afford to visit each area to deter-

mine labels

• Clustering (a.k.a. unsupervised PR) algs. group

similar f.v.’s together based on a similarity measure

• If clustering is good, then can find label for

one of each group & use it as label for entire

group
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Introduction (cont’d)

• Goal: Place patterns into “sensible” clusters

(groups) that reveal similarities and differences,

allowing for “useful” conclusions to be derived

• Definitions of “sensible” and “useful” depend

on application and the humans involved:

(a) How they bear young (b) Existence of lungs
(c) Environment (d) Both (a) & (b)
(e) [not shown] Vertebrates (all same cluster)
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Clustering

Steps

• Feature selection: Requirements and procedures

same as in Chapter 5

• Proximity measure: Measures of “similarity”

and “dissimilarity” between f.v.’s, between f.v.

& a set, or between two sets

– Preprocessing important to ensure all feats.

treated equally

• Clustering criterion: Depends on defn of “sensible”:

Compact Elongated Ellipsoidal
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Clustering

Steps (cont’d)

• Verify clustering tendency (Sec. 16.6)

• Clustering algorithm: Chapters 12–15

• Cluster validation: Verify that choices of alg.

params. & cluster shape match data’s cluster-

ing structure (Chapt. 16)

• Interpretation: The expert interprets results

with other information

• Warning: Each step is subjective and depends

on expert’s biases!
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Clustering

Applications

• Data reduction (compression): Represent each

cluster with single item

• Suggest hypotheses about nature of data

• Test hypotheses about data, e.g. that certain

feats. are correlated while others are indepen-

dent

• Prediction based on groups: e.g. Slide 7.2
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Clustering

Types of Features

• Nominal: Name only, no quantitative compar-

isons possible, e.g. {male, female}

• Ordinal: Can be meaningfully ordered, but no

quantitative meaning on the differences, e.g.

{4, 3, 2, 1} to represent {excellent, very good,

good, poor}

• Interval-scaled: Difference is meaningful, ratio

is not, e.g. temperature measures on Celsius

scale

• Ratio-scaled: Difference and ratio both mean-

ingful, e.g. weight

• Each type possesses the properties of the pre-

ceding types
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Clustering

Cluster Types

• Start with X = {x1, . . . ,xN} and place into m

clusters C1, . . . , Cm

• Type 1: Hard (crisp)

Ci 6= ∅, i = 1, . . . , m
m
⋃

i=1

Ci = X

Ci ∩ Cj = ∅, i 6= j, i, j ∈ {1, . . . , m}

– F.v.’s in Ci “more similar” to others in Ci

than those in Cj, j 6= i

• Type 2: Fuzzy: Cj has membership function

µj : X → [0,1] s.t.

m
∑

j=1

µj (xi) = 1, i ∈ {1, . . . , N}

0 <
N
∑

i=1

µj (xi) < N, j ∈ {1, . . . , m}
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Proximity Measures

Definitions

• Dissimilarity measure is func. d : X ×X → < s.t.

∃d0 ∈ < : −∞ < d0 ≤ d(x, y) < +∞, ∀x,y ∈ X

d(x, x) = d0 ∀x ∈ X

d(x, y) = d(y,x) ∀x,y ∈ X

• d is a metric DM if d(x, y) = d0 ⇔ x = y

and d(x, z) ≤ d(x, y) + d(y, z) ∀x,y, z ∈ X

– E.g. d2(·, ·) = Euclidean distance, d0 = 0

• Similarity measure is func. s : X ×X → < s.t.

∃s0 ∈ < : −∞ < s(x, y) ≤ s0 < +∞, ∀x,y ∈ X

s(x, x) = s0 ∀x ∈ X

s(x, y) = s(y,x) ∀x,y ∈ X

• s is a metric SM if s(x, y) = s0 ⇔ x = y

and s(x,y) s(y, z) ≤ [s(x, y) + s(y, z)] s(x, z)

∀x,y, z ∈ X
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Proximity Measures

Definitions (cont’d)

• Can also define proximity measures between

sets of f.v.’s

• Let U = {D1, . . . , Dk}, Di ⊂ X,

PM α : U × U → <

• E.g. X = {x1,x2,x3,x4, x5,x6}, U = {{x1,x2} ,

{x1,x4} , {x3,x4,x5} , {x1,x2,x3,x4,x5}},

dss
min

(

Di, Dj

)

= min
x∈Di,y∈Dj

d2(x,y)

• Min. value is dss
min,0 = 0, dss

min (Di, Di) = dss
min,0,

and dss
min

(

Di, Dj

)

= dss
min

(

Dj, Di

)

, so dss
min(·, ·)

is a DM

• However, dss
min ({x1,x2} , {x1,x4}) = dss

min,0 and

{x1,x2} 6= {x1,x4}, so not a metric DM
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Proximity Measures Between Points

Real-Valued Vectors

Example Dissimilarity Measures (pp. 361–362)

• Common, general-purpose metric DM is weighted

Lp norm:

dp(x,y) =





∑̀

i=1

wi |xi − yi|
p





1/p

• Special cases include weighted Euclidian dis-

tance (p = 2), weighted Manhattan distance

d1(x, y) =
∑̀

i=1

wi |xi − yi| ,

and weighted L∞ norm

d∞(x,y) = max
1≤i≤`

{wi |xi − yi|}

• Generalization of weighted L2 norm is

d(x, y) =

√

(x− y)TB (x− y) ,

e.g. Mahalanobis distance
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Proximity Measures Between Points

Real-Valued Vectors

Example Similarity Measures (pp. 362–363)

• Inner product:

sinner(x,y) = x
T
y =

∑̀

i=1

xi yi

• If ‖x‖2, ‖y‖2 ≤ a, then −a2 ≤ sinner(x,y) ≤ a2

• Tanimoto distance:

sT(x, y) =
x

T
y

‖x‖22 + ‖y‖22 − xT y
=

1

1 + (x−y)T (x−y)
xT y

,

which is inversely prop. to

(squared Euclid. dist.)/(correlation measure)
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Proximity Measures Between Points

Discrete-Valued Vectors

• If the coordinates of f.v.’s come from {0, . . . , k−

1}, can use SMs and DMs defined for real-

valued f.v.’s, (e.g. weighted Lp norm) plus:

– Hamming distance: DM measuring number

of places where x and y differ

– Tanimoto measure: SM measuring number

of places where x and y are same, divided

by total number of places

∗ Ignore places i where xi = yi = 0

· Useful for ordinal features where xi is

degree to which x possesses ith feature

13

Proximity Measures Between Points

Fuzzy Measures

• Let xi ∈ [0,1] be measure of how much x pos-

sesses ith feature

• If xi, yi ∈ {0,1}, then

(xi ≡ yi) = ((¬xi ∧ ¬yi) ∨ (xi ∧ yi))

• Generalize to fuzzy values:

s(xi, yi) = max {min {1− xi,1− yi} ,min {xi, yi}}

• To measure similarity between vectors:

s
p
F (x, y) =





∑̀

i=1

s(xi, yi)
p





1/p

(

`1/p
)

/2 ≤ s
q
F (·, ·) ≤ `1/p

• So s∞F = max1≤i≤` s(xi, yi) and

s1F =
∑`

i=1 s(xi, yi) = generalization of Ham-

ming distance
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Prox. Measures Between a Point and a Set

• Might want to measure proximity of point x to

existing cluster C

• Can measure proximity α by using all points of

C or by using a representative of C

• If all points of C used, common choices:

αps
max(x, C) = max

y∈C
{α(x,y)}

α
ps
min(x, C) = min

y∈C
{α(x,y)}

αps
avg(x, C) =

1

|C|

∑

y∈C

α(x,y) ,

where α(x, y) is any measure between x and y
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Prox. Measures Between a Point and a Set

Representatives

• Alternative: Measure distance between point

x and a representative of the set C

• Appropriate choice of representative depends

on type of cluster

Compact Elongated Hyperspherical

Point Hyperplane Hypersphere
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Prox. Measures Between a Point and a Set
Examples of Point Representatives

• Mean vector: mp =
1

|C|

∑

y∈C

y

• Works well in <`, but might not exist in dis-

crete space

• Mean center mc ∈ C:
∑

y∈C

d(mc,y) ≤
∑

y∈C

d(z, y) ∀z ∈ C ,

where d(·, ·) is DM (if SM used, reverse ineq.)

• Median center: For each point y ∈ C, find me-
dian dissimilarity from y to all other points of

C, then take min; so mmed ∈ C is defined as

medy∈C {d(mmed,y)} ≤ medy∈C {d(z, y)} ∀z ∈ C

• Examples p. 375

• Now can measure proximity between C’s rep
and x with standard measures
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Prox. Measures Between a Point and a Set

Hyperplane & Hyperspherical Representatives

• Definition of hyperplane H and dist. function:

a
T
x + a0 = 0 d(x, H) = min

z∈H
d(x, z)

• Definition of hypersphere Q and dist. function:

(x− c)T (x− c) = r2 d(x, Q) = min
z∈Q

d(x, z)

Hyperplane Hypersphere

• Given set of points, can find representative via

regression techniques, minimizing sum of dis-

tances between points and representative
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Prox. Measures Between Two Sets

• Given sets of f.v.’s Di and Dj and prox. meas.

α(·, ·)

• Max: αss
max(Di, Dj) = max

x∈Di,y∈Dj

{α(x,y)} is a

measure (but not necessarily a metric) iff α is

a SM

– E.g. α is Euclid. dist. (a DM), ` = 1, D1 =

{(1), (10)}, D2 = {(4), (7)}:

αss
max(D1, D1) = 9 6= 3 = αss

max(D2, D2)

– α is SM ⇒ α(x, y) ≤ s0 ∀x,y and

α(x,x) = s0 ∀x, so

αss
max(Di, Dj) ≤ s0 ∀Di, Dj, and ∀D

αss
max(D, D) = max

x∈D,y∈D
{α(x, y)} = max

x∈D
{α(x,x)} = s0

αss
max(Di, Dj) = αss

max(Dj, Di)
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Prox. Measures Between Two Sets

(cont’d)

• Min: αss
min(Di, Dj) = min

x∈Di,y∈Dj

{α(x, y)}

is a measure (but not a metric) iff α is a DM

• Average: αss
avg(Di, Dj) =

1

|Di| |Dj|

∑

x∈Di

∑

y∈Dj

α(x, y)

is not necessarily a measure even if α is

• Representative (mean):

αss
rep(Di, Dj) = α(mDi

,mDj
),

(mDi
is point rep. of Di) is a measure whenever

α is
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Overview of Clustering Algorithms

Exhaustive Search

• Want to find set of clusters that maximizes

SM or minimizes DM

• Option 1: Try all possible clusters of size m

for various values of m

• Number of ways to partition N items into m

nonempty subsets is exactly given by the Stirling

numbers of the second kind, which are:

�
(N

m

)

≥
(

N

m

)m

• Thus brute-force approach infeasible

21

Overview of Clustering Algorithms
Categories of Algorithms

• Sequential algorithms (Chapt. 12) produce a

single clustering, use straightforward greedy

approaches, and output depends on the order

the f.v.’s are presented to the algorithm

• Hierarchical algorithms (Chapt. 13) produce a

sequence (hierarchy) of clusterings, and are of

two types:

– Agglomerative: Repeatedly merge two clus-

ters into one

– Divisive: Repeatedly divide one cluster into two

• Algorithms based on cost function optimization

(Chapt. 14) evaluate the goodness of a clus-

tering with a cost function, typically m is fixed

– Crisp (hard): Each f.v. belongs to only one

cluster, e.g. Isodata algorithm

– Fuzzy: Each f.v. can belong to a cluster

up to a certain degree, as indicated by a

membership function

– Many more

• Other various methods (Chapt. 15)
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