CSCE 970 Lecture 7:
Clustering: Basic Concepts

Stephen D. Scott

March 23, 2001

e What if labels unavailable?

e E.g. feat. vectors are measurements of elec-

e Clustering (a.k.a. unsupervised PR) algs. group

e If clustering is good, then can find label for

Introduction

tromag. energy reflected from remote parts of
Earth, can’'t afford to visit each area to deter-
mine labels

similar f.v.'s together based on a similarity measure

one of each group & use it as label for entire
group
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Introduction (cont’d) Clustering
Steps

e Goal: Place patterns into ‘“sensible” clusters
(groups) that reveal similarities and differences,
allowing for “useful” conclusions to be derived

e Definitions of “sensible” and ‘“useful” depend
on application and the humans involved:
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lizard

(a) How they bear young (b) Existence of lungs
(c) Environment (d) Both (a) & (b)
(e) [not shown] Vertebrates (all same cluster)
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e Feature selection: Requirements and procedures
same as in Chapter 5

e Proximity measure: Measures of ‘similarity”
and “dissimilarity” between f.v.’s, between f.v.
& a set, or between two sets

— Preprocessing important to ensure all feats.
treated equally

e Clustering criterion: Depends on defn of ‘‘sensible” :
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Clustering
Steps (cont'd)

e Verify clustering tendency (Sec. 16.6)

e Clustering algorithm: Chapters 12—-15

e Cluster validation: Verify that choices of alg.
params. & cluster shape match data’s cluster-

ing structure (Chapt. 16)
The expert interprets results

Interpretation:

[ )
with other information

e Warning: Each step is subjective and depends

on expert’s biases!

Clustering
Applications

e Data reduction (compression): Represent each

cluster with single item

e Suggest hypotheses about nature of data

e Test hypotheses about data, e.g. that certain
feats. are correlated while others are indepen-

dent

e Prediction based on groups: e.g. Slide 7.2

Clustering

Clustering
Types of Features

e Nominal: Name only, no quantitative compar-
isons possible, e.g. {male, female}

e Ordinal: Can be meaningfully ordered, but no
quantitative meaning on the differences, e.g.
{4, 3, 2, 1} to represent {excellent, very good,

good, poor}

e Interval-scaled: Difference is meaningful, ratio
is not, e.g. temperature measures on Celsius

scale
e Ratio-scaled: Difference and ratio both mean-

ingful, e.g. weight

e Each type possesses the properties of the pre-

ceding types

Cluster Types

e Start with X = {x1,...,xy} and place into m

clusters Cq,...,Cn

e Type 1: Hard (crisp)
m
C;#0,i=1,...,m Uac=x
i=1

— F.v.'s in C; "more similar” to others in C;

than those in Cy, j # i

e Type 2: Fuzzy: Cj has membership function
pj X —[0,1] s.t.
m
Zluj(xi) =1,ie{1,...,N}
j=

N
0< Y pj(x) <N, je{1,...,m}

=1




Proximity Measures
Definitions

e Dissimilarity measureisfunc.d: X x X — R s.t.

Jdg € R : —oc0 < dg <d(x,y) < o0, Vx,y € X
d(x,x) =dg Vxe X
d(x,y) = d(y,x) vx,y € X

e d is a metric DM if d(x,y) =dg & x=Yy
and d(x,z) <d(x,y) +d(y,z) Vx,y,z€ X

— E.g. ds(+,-) = Euclidean distance, dg =0

Similarity measure is func. s : X x X — R s.t.

Jsg €N —co < 5(x,y) <59 < +oo, Vx,y € X
s(x,x) =80 Vx€ X
s(x,y) =s(y,x) Vx,y € X

e s is a metric SM if s(x,y) =sgox=Yy

and s(x,y) s(y,z) < [s(x,y) + s(y,2)] s(x,2)
Vx,y,z € X

Proximity Measures
Definitions (cont'd)

e Can also define proximity measures between
sets of f.v.’s

o Let U={D1,...,D;}, D; C X,
PMa:UxU—R

e E.g. X ={x1,x0,%x3,X4,X5,X6}, U ={{x1,%x0},
{X17X4} k) {X37X47 X5} k) {X]_: X27 X37 X47 X5}}'

5§ . A i
sain (Di, Dj) = e, da(x,y)
e Min. valueis d3%, o =0, ds% (D;, D;) = d3%, o,
and d3s;, (Di, D;) = ds5i, (Dj, D;), 50 dssi ()
isa DM

e However, d5s5. ({x1,x2},{x1,%x4}) =d5, o and

min main,

{x1,%2} # {x1,%X4}, SO not a metric DM
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Proximity Measures Between Points
Real-Valued Vectors
Example Dissimilarity Measures (pp. 361-362)

e Common, general-purpose metric DM is weighted

Lp norm:

¢ 1/p
dp(x,y) = (Z w; |x; — yi|p)

=1

e Special cases include weighted Euclidian dis-
tance (p = 2), weighted Manhattan distance

14
di(x,y) = Y wilz; —yil,
i=1
and weighted Lo, norm

doo(X,y) = max, {w; |z; — y;l}

e Generalization of weighted L, norm is

dx,y) = V(x—y)TB(x—y),

e.g. Mahalanobis distance
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Proximity Measures Between Points
Real-Valued Vectors
Example Similarity Measures (pp. 362—363)

e Inner product:

J4
sinner(xv y) = XTy = Z T Yq

i=1
o If [|x]|2, [[y]l2 < a, then —a? < sjpper(x,y) < @?

e Tanimoto distance:

x1 y 1
2 2 I )T (x— ’
x||3 + x =y (x=y)
[ ||2 ||y||2 y 14 Ty

sp(x,y) =

which is inversely prop. to
(squared Euclid. dist.)/(correlation measure)

12




Proximity Measures Between Points
Discrete-Valued Vectors

e If the coordinates of f.v.'s come from {0, ... ,k—
1}, can use SMs and DMs defined for real-
valued f.v.'s, (e.g. weighted Lp norm) plus:

— Hamming distance: DM measuring number
of places where x and y differ

— Tanimoto measure: SM measuring number
of places where x and y are same, divided
by total number of places

+ Ignore places ¢ where z; =y; =0

- Useful for ordinal features where z; is
degree to which x possesses ith feature
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Proximity Measures Between Points
Fuzzy Measures

e Let z; € [0,1] be measure of how much x pos-
sesses ith feature

o If z;,y; € {0,1}, then

(z; = yi) = ((0xi A —ys) V(2 Ay;))

e Generalize to fuzzy values:

s(xi,y) = max{min {1 —z;, 1 —y;}, min {z;,y;}}
e TO measure similarity between vectors:

) 1/p
S%(Xa Y) = (Z S(xhyi)p)

i=1
(619 /2 < s,y < A1

e SO s%o = MaXj<;<y S(xiayi) and
sk o= ¢ s(zi,y;) = generalization of Ham-
ming distance
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Prox. Measures Between a Point and a Set

e Might want to measure proximity of point x to
existing cluster C

e Can measure proximity o by using all points of
C or by using a representative of C

e If all points of C used, common choices:
bz (%, C) = max{a(x,y)}
yeC
ps — H
amin(x’ C) - }r;nglg' {a(x, Y)}

Ang(X, C) = a(x,y) ,

1
|C| yec

where a(x,y) is any measure between x and y
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Prox. Measures Between a Point and a Set
Representatives

e Alternative: Measure distance between point
x and a representative of the set C

e Appropriate choice of representative depends
on type of cluster
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Prox. Measures Between a Point and a Set
Examples of Point Representatives

e Mean vector: mp = |C| Sy
yeC

e Works well in ®¢, but might not exist in dis-
crete space

e Mean center m¢. € C:

Z d(mC7Y) S Z d(Z,y) VZ € 07
yel yeC

where d(-,-) is DM (if SM used, reverse ineq.)

e Median center: For each pointy € C, find me-
dian dissimilarity from y to all other points of
C, then take min; so m,,.4 € C is defined as

medyGC {d(mmedaY)} < medyEC {d(za}’)} vz eC
e Examples p. 375

e Now can measure proximity between C's rep
and x with standard measures
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Prox. Measures Between a Point and a Set
Hyperplane & Hyperspherical Representatives

e Definition of hyperplane H and dist. function:

alx+4ag=0 d(x, H) = mind(x,z)
zeH

e Definition of hypersphere @ and dist. function:

x-c)l(x—c)=1r? d(x,Q) = mind(x,z)
z€Q
Hyperplane Hypersphere
d(x,,Q)

{ 0

£y

d(xle)

oy

d(a,,H)

d(,,Q)
(@) (b)

e Given set of points, can find representative via
regression techniques, minimizing sum of dis-
tances between points and representative
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Prox. Measures Between Two Sets

e Given sets of f.v.'s D; and Dj and prox. meas.

Oz(-,-)

Max: D;,D;) = max , is a
° gz (D; )= xeDyyeD; {a(x,y)}

measure (but not necessarily a metric) iff « is
a SM

— E.g. ais Euclid. dist. (a DM), £ =1, D1 =
{(1), (10)}, D2 = {(4),(7)}:
ez (D1, D1) = 9 # 3 = &734.(D2, D2)

— ais SM = a(x,y) < sg Vx,y and
a(x,x) = sg Vx, SO

maz(DuD ) < S0 VD“D and VD
¥az (D, D) = XergayéD{a(x, Y)} = max{a(x,x)} = so

max(Dza D ) = amaa:(D Dy)
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Prox. Measures Between Two Sets

(cont'd)
e Min: api(Dy, Dj) = xeg:,me ]{oz(x Y}

is @ measure (but not a metric) iff « is a DM

o Average: ajs,(D;, Dj) = > Y alxy)
- Dl 1D;] ID | XD, yeD,
is not necessarily a measure even if « is

e Representative (mean):

arep(Di; Dj) = a(mp,,mp ),
(mp, is point rep. of D;) is a measure whenever

o is
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Overview of Clustering Algorithms
Exhaustive Search

Want to find set of clusters that maximizes
SM or minimizes DM

Option 1: Try all possible clusters of size m
for various values of m

Number of ways to partition N items into m

nonempty subsets is exactly given by the Stirling

numbers of the second kind, which are:

> (= ()

Thus brute-force approach infeasible
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Overview of Clustering Algorithms
Categories of Algorithms

e Sequential algorithms (Chapt. 12) produce a
single clustering, use straightforward greedy
approaches, and output depends on the order
the f.v.'s are presented to the algorithm

e Hierarchical algorithms (Chapt. 13) produce a
sequence (hierarchy) of clusterings, and are of
two types:

— Agglomerative: Repeatedly merge two clus-
ters into one

— Divisive: Repeatedly divide one cluster into two

e Algorithms based on cost function optimization

(Chapt. 14) evaluate the goodness of a clus-
tering with a cost function, typically m is fixed

— Crisp (hard): Each f.v. belongs to only one
cluster, e.g. Isodata algorithm

— Fuzzy: Each f.v. can belong to a cluster
up to a certain degree, as indicated by a
membership function

— Many more
e Other various methods (Chapt. 15)
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