CSCE 970 Lecture 6: System Evaluation and Combining Classifiers

Stephen D. Scott (Adapted partially from Tom Mitchell's slides)

March 2, 2001

1

Introduction

- Once features generated/selected and classifier built, need to assess its performance on new data
- \bullet Assume all data drawn according to some prob. distribution $\mathcal D$ and try to estimate classifier's prediction error on new data drawn according to $\mathcal D$
- If error estimate unacceptable, need to select/gen. new features and/or build new classifier
 - Change features used
 - Change size/structure of neural network
 - Change assumptions in Bayesian classifier
 - Choose new learning method, e.g. decision tree

2

Introduction

(cont'd)

- Can't use error on training set to estimate ability to generalize, because it's too optimistic
- So use sepearate <u>testing set</u> to estimate error
- Can use <u>statistical hypothesis testing</u> techniques to:
 - Give confidence intervals for error estimate
 - Contrast performance of two classifiers (see if the difference in their error estimates is statistically significant)
- Sometimes need to train and test with a <u>small</u> data set
- Will also look at improving a classifier's performance

Outline

- Sample error vs. true error
- Confidence intervals for observed hypothesis error
- Estimators
- Binomial distribution, Normal distribution, Central Limit Theorem
- Paired t tests
- Comparing learning methods
- Combining classifiers to improve performance:
 Weighted Majority, Bagging, Boosting

3

4

Two Definitions of Error

- Denote the learned classifier by the <u>hypothesis</u>
 h and the <u>target function</u> (that labels examples) by f
- The <u>true error</u> of hypothesis h with respect to target function f and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D} .

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)]$$

 The <u>sample error</u> of h with respect to target function f and data sample S is the proportion of examples h misclassifies

$$error_S(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))$$

Where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise.

• How well does $error_{\mathcal{D}}(h)$ estimate $error_{\mathcal{D}}(h)$?

5

Problems Estimating Error

Bias: If S is training set, error_S(h) is optimistically biased

$$bias \equiv E[error_S(h)] - error_D(h)$$

For unbiased estimate, \boldsymbol{h} and \boldsymbol{S} must be chosen independently

• <u>Variance</u>: Even with unbiased S, $error_S(h)$ may still vary from $error_D(h)$

6

Estimators

Experiment:

- 1. Choose sample S of size n according to distribution $\mathcal D$
- 2. Measure $error_S(h)$

 $error_S(h)$ is a random variable (i.e., result of an experiment)

 $error_S(h)$ is an <u>unbiased estimator</u> for $error_D(h)$

Given observed $error_S(h)$, what can we conclude about $error_D(h)$?

Confidence Intervals

If

- ullet S contains n examples, drawn independently of h and each other
- n ≥ 30

Then

• With approximately 95% probability, $error_{\mathcal{D}}(h)$ lies in interval

$$error_S(h) \pm 1.96 \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

E.g. hypothesis h misclassifies 12 of the 40 examples in test set S:

$$error_S(h) = \frac{12}{40} = 0.30$$

Then with approx. 95% confidence, $error_{\mathcal{D}}(h) \in [0.158, 0.442]$

Confidence Intervals

(cont'd)

If

- ullet S contains n examples, drawn independently of h and each other
- n ≥ 30

Then

ullet With approximately N% probability, $error_{\mathcal{D}}(h)$ lies in interval

$$error_S(h) \pm z_N \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

where

N%:	50%	68%	80%	90%	95%	98%	99%
z_N :	0.67	1.00	1.28	1.64	1.96	2.33	2.58

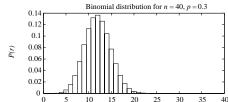
Why?

9

$error_S(h)$ is a Random Variable

Repeatedly run the experiment, each with different randomly drawn S (each of size n)

Probability of observing r misclassified examples:



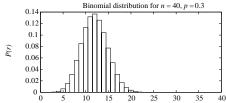
$$P(r) = \binom{n}{r} error_{\mathcal{D}}(h)^{r} (1 - error_{\mathcal{D}}(h))^{n-r}$$

I.e. let $error_{\mathcal{D}}(h)$ be probability of heads in biased coin, the P(r)= prob. of getting r heads out of n flips

What kind of distribution is this?

10

Binomial Probability Distribution



$$P(r) = \binom{n}{r} p^r (1-p)^{n-r} = \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r}$$

Probability P(r) of r heads in n coin flips, if $p = \Pr(heads)$

• Expected, or mean value of X, E[X], is

$$E[X] \equiv \sum_{i=0}^{n} iP(i) = np$$

 \bullet Variance of X is

$$Var(X) \equiv E[(X - E[X])^2] = np(1 - p)$$

• Standard deviation of X, σ_X , is

$$\sigma_X \equiv \sqrt{E[(X - E[X])^2]} = \sqrt{np(1-p)}$$

Approximate Binomial Dist. with Normal

 $error_S(h) = r/n$ is binomially distributed, with

- mean $\mu_{error_S(h)} = error_{\mathcal{D}}(h)$ (i.e. unbiased est.)
- ullet standard deviation $\sigma_{error_S(h)}$

$$\sigma_{error_{\mathcal{D}}(h)} = \sqrt{\frac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{n}}$$

(i.e. increasing n decreases variance)

Want to compute confidence interval = interval centered at $error_{\mathcal{D}}(h)$ containing N% of the weight under the distribution (difficult for binomial)

Approximate binomial by normal (Gaussian) dist:

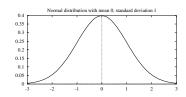
- mean $\mu_{error_{\mathcal{D}}(h)} = error_{\mathcal{D}}(h)$
- ullet standard deviation $\sigma_{error_S(h)}$

$$\sigma_{error_S(h)} pprox \sqrt{rac{error_S(h)(1 - error_S(h))}{n}}$$

11

12

Normal Probability Distribution



$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

- ullet Defined completely by μ and σ
- The probability that X will fall into the interval (a,b) is given by

$$\int_{a}^{b} p(x) dx$$

ullet Expected, or mean value of X, E[X], is

$$E[X] = \mu$$

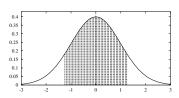
- Variance of X is $Var(X) = \sigma^2$
- ullet Standard deviation of X, σ_X , is

$$\sigma_X = \sigma$$

13

15

Normal Probability Distribution (cont'd)

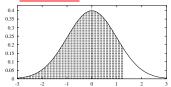


80% of area (probability) lies in $\mu \pm 1.28\sigma$

N% of area (probability) lies in $\mu \pm z_N \sigma$

N%:	50%	68%	80%	90%	95%	98%	99%
z_N :	0.67	1.00	1.28	1.64	1.96	2.33	2.58

Can also have one-sided bounds:



N% of area lies $<\mu+z_N'\,\sigma$ or $>\mu-z_N'\sigma$, where $z_N'=z_{100-(100-N)/2}$

N%:	50%	68%	80%	90%	95%	98%	99%
z'_N :	0.0	0.47	0.84	1.28	1.64	2.05	2.33

14

Confidence Intervals Revisited

If

- ullet S contains n examples, drawn independently of h and each other
- n ≥ 30

Then

ullet With approximately 95% probability, $error_S(h)$ lies in interval

$$error_{\mathcal{D}}(h) \pm 1.96 \sqrt{\frac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{n}}$$

Equivalently, $error_{\mathcal{D}}(h)$ lies in interval

$$error_S(h) \pm 1.96 \sqrt{\frac{error_D(h)(1 - error_D(h))}{n}}$$

which is approximately

$$error_S(h) \pm 1.96 \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

(One-sided bounds yield upper or lower error bounds)

Central Limit Theorem

How can we justify approximation?

Consider a set of independent, identically distributed random variables $Y_1 \dots Y_n$, all governed by an arbitrary probability distribution with mean μ and finite variance σ^2 . Define the sample mean,

$$\bar{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Note that \bar{Y} is itself a random variable, i.e. the result of an experiment (e.g. $error_S(h) = r/n$)

<u>Central Limit Theorem</u>: As $n\to\infty$, the distribution governing \bar{Y} approaches a Normal distribution, with mean μ and variance σ^2/n

Thus the distribution of $error_S(h)$ is approximately normal for large n, and its expected value is $error_D(h)$

(Rule of thumb: $n \geq 30$ when estimator's distribution is binomial, might need to be larger for other distributions)

Calculating Confidence Intervals

- 1. Pick parameter p to estimate
 - $error_{\mathcal{D}}(h)$
- 2. Choose an estimator
 - $error_S(h)$
- 3. Determine probability distribution that governs estimator
 - $error_S(h)$ governed by binomial distribution, approximated by normal when $n \ge 30$
- 4. Find interval (L,U) such that N% of probability mass falls in the interval
 - ullet Could have $L=-\infty$ or $U=\infty$
 - ullet Use table of z_N or z_N' values

17

Difference Between Hypotheses

Test h_1 on sample S_1 , test h_2 on S_2

1. Pick parameter to estimate

$$d \equiv error_{\mathcal{D}}(h_1) - error_{\mathcal{D}}(h_2)$$

2. Choose an estimator

$$\hat{d} \equiv error_{S_1}(h_1) - error_{S_2}(h_2) \label{eq:definition}$$
 (unbiased)

3. Determine probability distribution that governs estimator (difference between two normals is also normal, variances add)

$$\sigma_{\tilde{d}} \approx \sqrt{\frac{error_{S_1}(h_1)(1 - error_{S_1}(h_1))}{n_1} + \frac{error_{S_2}(h_2)(1 - error_{S_2}(h_2))}{n_2}}$$

4. Find interval (L,U) such that N% of prob. mass falls in the interval: $\hat{d}\pm Z_n\,\sigma_{\hat{d}}$

(Can also use $S = S_1 \cup S_2$ to test h_1 and h_2 , but not as accurate)

18

Paired t test to compare h_A , h_B

- 1. Partition data into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.
- 2. For i from 1 to k, do

$$\delta_i \leftarrow error_{T_i}(h_A) - error_{T_i}(h_B)$$

3. Return the value $\bar{\delta}$, where

$$\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

N% confidence interval estimate for d:

$$\bar{\delta} \pm t_{N,k-1} \ s_{\bar{\delta}}$$

$$s_{\overline{\delta}} \equiv \sqrt{rac{1}{k(k-1)}\sum\limits_{i=1}^{k}\left(\delta_i-\overline{\delta}
ight)^2}$$

t plays role of z, s plays role of σ

t test gives more accurate results since std. deviation approximated and test sets not independent

Comparing Learning Algorithms L_A and L_B

What we'd like to estimate:

$$E_{S \subset \mathcal{D}}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$$

where L(S) is the hypothesis output by learner L using training set S

I.e., the expected difference in true error between hypotheses output by learners L_A and L_B , when trained using randomly selected training sets S drawn according to distribution \mathcal{D}

But, given limited data D_0 , what is a good estimator?

• Could partition D_0 into training set S_0 and training set T_0 , and measure

$$error_{T_0}(L_A(S_0)) - error_{T_0}(L_B(S_0))$$

• Even better, repeat this many times and average the results (next slide)

Comparing learning algorithms L_A and L_B (cont'd)

- 1. Partition data D_0 into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.
- 2. For i from 1 to k, do

(use T_i for the test set, and the remaining data for training set S_i)

- $S_i \leftarrow \{D_0 T_i\}$
- $h_A \leftarrow L_A(S_i)$
- $h_B \leftarrow L_B(S_i)$
- $\delta_i \leftarrow error_{T_i}(h_A) error_{T_i}(h_B)$
- 3. Return the value $\bar{\delta}$, where

$$\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

21

Comparing learning algorithms L_A and L_B (cont'd)

- Notice we'd like to use the paired t test on $\overline{\delta}$ to obtain a confidence interval
- Not really correct, because the training sets in this algorithm are not independent (they overlap!)
- More correct to view algorithm as producing an estimate of

$$E_{S \subset D_0}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$$

instead of

$$E_{S \subset \mathcal{D}}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$$

But even this approximation is better than no comparison

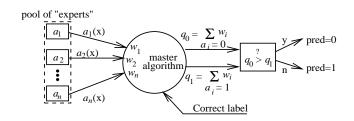
22

Combining Classifiers

- Sometimes a single classifier (e.g. neural network, decision tree) won't perform well, but a weighted combination of them will
- Each classifier (or <u>expert</u>) in the <u>pool</u> has its own weight
- When asked to predict the label for a new example, each expert makes its own prediction, and then the master algorithm combines them using the weights for its own prediction (i.e. the "official" one)
- If the classifiers themselves cannot learn (e.g. heuristics) then the best we can do is to learn a good set of weights
- If we are using a learning algorithm (e.g. NN, dec. tree), then we can rerun the algorithm on different subsamples of the training set and set the classifiers' weights during training

Weighted Majority Algorithm (WM)

[Mitchell, Sec. 7.5.4]



Weighted Majority Algorithm (WM) (cont'd)

 a_i is ith pred. algorithm in pool A of algs; each alg is arbitrary function from X to $\{0,1\}$ or $\{-1,1\}$

 w_i is weight the master alg associates with a_i

 $\beta \in [0,1)$ is parameter

- $\forall i \text{ set } w_i \leftarrow 1$
- For each training example (or trial) $\langle x, c(x) \rangle$
 - Set q_0 ← q_1 ← 0
 - For each algorithm a_i
 - * If $a_i(x) = 0$ then $q_0 \leftarrow q_0 + w_i$ else $q_1 \leftarrow q_1 + w_i$
 - * If $q_1>q_0$ then predict 1 for c(x), else predict 0 (case for $q_1=q_0$ is arbitrary)
 - * For each $a_i \in A$
 - · If $a_i(x) \neq c(x)$ then $w_i \leftarrow \beta w_i$

Setting $\beta = 0$ yields Halving algorithm over A

2

Weighted Majority

Mistake Bound (On-Line Model)

- Let $a_{opt} \in A$ be expert that makes fewest mistakes on arb. sequence S of exs; let k = its number of mistakes
- Let $\beta=1/2$ and $W_t=\sum_{i=1}^n w_{i,t}=$ sum of wts at trial t $(W_0=n)$
- On trial t such that WM makes a mistake, the total weight reduced is

$$W_t^{mis} = \sum_{a_i(x_t) \neq c(x_t)} w_i \ge W_t/2$$

SO

$$W_{t+1} = (W_t - W_t^{mis}) + W_t^{mis}/2 = W_t - W_t^{mis}/2 \le 3W_t/4$$

 \bullet After seeing all of S, $w_{opt,|S|}=(1/2)^k$ and $W_{|S|}\leq n(3/4)^M$ where M= total number of mistakes, yielding

$$\left(\frac{1}{2}\right)^k \le n \left(\frac{3}{4}\right)^M$$

so

$$M \le \frac{k + \log_2 n}{-\log_2(3/4)} \le 2.41 (k + \log_2 n)$$

26

Weighted Majority

Mistake Bound (cont'd)

- Thus for <u>any</u> arbitrary sequence of examples, WM guaranteed to not perform much worse than best expert in pool plus log of number of experts
 - Implicitly agnostic
- Other results:
 - Bounds hold for general values of $\beta \in [0,1)$
 - Better bounds hold for more sophisticated algorithms, but only better by a constant factor (worst-case lower bound: $\Omega(k + \log n)$)
 - Get bounds for real-valued labels and predictions
 - Can track <u>shifting concept</u>, i.e. where best expert can suddenly change in S; key: don't let any weight get too low relative to other weights, i.e. don't overcommit

Bagging Classifiers

[Breiman, ML Journal, '96]

Bagging = \underline{B} ootstrap \underline{agg} regating

Bootstrap sampling: given a set D containing m training examples:

- ullet Create D_i by drawing m examples at random with replacement from D
- Expect D_i to omit \approx 37% of examples from D

Bagging:

- Create k bootstrap samples D_1, \ldots, D_k
- Train a classifier on each D_i
- Classify new instance $x \in X$ by majority vote of learned classifiers (equal weights)

Bagging Experiment

[Breiman, ML Journal, '96]

Given sample S of labeled data, Breiman did the following 100 times and reported avg:

- 1. Divide S randomly into test set T (10%) and training set D (90%)
- 2. Learn decision tree from D and let e_S be its error rate on T
- 3. Do 50 times: Create bootstrap set D_i , learn decision tree and let e_B be the error of a majority vote of the trees on T

Results

Data Set	$ar{e}_S$	$ar{e}_B$	Decrease
waveform	29.0	19.4	33%
heart	10.0	5.3	47%
breast cancer	6.0	4.2	30%
ionosphere	11.2	8.6	23%
diabetes	23.4	18.8	20%
glass	32.0	24.9	27%
soybean	14.5	10.6	27%

29

Bagging Experiment

(cont'd)

Same experiment, but using a nearest neighbor classifier, where prediction of new feature vector \mathbf{x} 's label is that of \mathbf{x} 's nearest neighbor in training set, where distance is e.g. Euclidean distance

Results

Data Set	$ar{e}_S$	$ar{e}_B$	Decrease
waveform	26.1	26.1	0%
heart	6.3	6.3	0%
breast cancer	4.9	4.9	0%
ionosphere	35.7	35.7	0%
diabetes	16.4	16.4	0%
glass	16.4	16.4	0%

What happened?

30

When Does Bagging Help?

When learner is <u>unstable</u>, i.e. if small change in training set causes large change in hypothesis produced

- Decision trees, neural networks
- Not nearest neighbor

Experimentally, bagging can help substantially for unstable learners; can somewhat degrade results for stable learners

Boosting Classifiers

[Freund & Schapire, ICML '96; many more]

Similar to bagging, but don't always sample uniformly; instead adjust resampling distribution over ${\cal D}$ to focus attention on previously misclassified examples

Final classifier weights learned classifiers, but not uniform; instead weight of classifier h_t depends on its performance on data it was trained on

Repeat for $t = 1, \ldots, T$:

- 1. Run learning algorithm on examples randomly drawn from training set D according to distribution \mathcal{D}_t ($\mathcal{D}_1 = \text{uniform}$)
- 2. Output of learner is hypothesis $h_t: X \to \{-1, +1\}$
- 3. Compute expected error of h_t on examples drawn according to \mathcal{D}_t (can compute exactly)
- 4. Create \mathcal{D}_{t+1} from \mathcal{D}_t by increasing weight of examples that h_t mispredicts

Final classifier is weighted combination of h_1, \ldots, h_T , where h_t 's weight depends on its error w.r.t. \mathcal{D}_t

31

Boosting

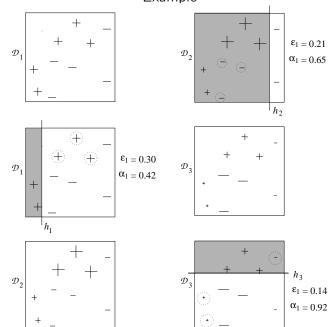
(cont'd)

- Preliminaries: $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}, y_i \in \{-1, +1\}, \mathcal{D}_t(i) = \text{weight of } (\mathbf{x}_i, y_i) \text{ under } \mathcal{D}_t$
- Initialization: $\mathcal{D}_1(i) = 1/m$
- Error Computation: $\epsilon_t = \Pr_{\mathcal{D}_t} [h_t(\mathbf{x}_i) \neq y_i]$ (easy to do since we know \mathcal{D}_t)
- If $\epsilon_t > 1/2$ then halt; else:
- Weighting Factor: $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$ (grows as ϵ_t decreases)
- Update: $\mathcal{D}_{t+1}(i) = \frac{\mathcal{D}_t(i) \exp\left(-\alpha_t \, y_i \, h_t(\mathbf{x}_i)\right)}{\mathcal{Z}_t}$ normalization factor (increase wt. of mispredicted exs, decr. wt of correctly pred.)
- Final Hypothesis: $H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$ (ϵ_t large \Rightarrow flip h_t 's prediction strongly)

33

Boosting

Example

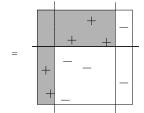


34

Boosting

Example (cont'd)

$$H_{\text{final}} = \text{sign} \left(0.42 \right) + 0.65 + 0.92$$



Boosting

Miscellany

- If each $\epsilon_t < 1/2 \gamma_t$, error of $H(\cdot)$ on D drops exponentially in $\sum_{t=1}^T \gamma_t$
- \bullet Can also bound generalization error of $H(\cdot)$ independent of T
- Also successful empirically on neural network and decision tree learners
 - Empirically, generalization sometimes improves if training continues after $H(\cdot)$'s error on D drops to 0
 - Contrary to intuition; would expect overfitting
 - Related to increasing the combined classifier's margin (confidence in prediction)
- Can apply to labels that are multi-valued using e.g. error-correcting output codes