CSCE 970 Lecture 5: Hidden Markov Models

Stephen D. Scott

February 14, 2001 ♡

1

Introduction

- When classifying <u>sequence</u> data, cannot assume that the label of one part is independent of the other parts
 - E.g. natural language understanding, speech recognition, genomic sequences
- So we'll model a <u>sequence</u> of classes, conditioned on sequence of observed feature vectors
- For other applications, we may want to assign a single label to an entire (arbitrary length) sequence of feature vectors
 - Build multiple models, one per type
- In both cases, the Markov model is a sequence generator
 - We classify a new feature vector by measuring how likely it is generated by the model

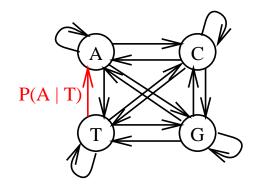
2

An Example from Computational Biology CpG Islands

- Genomic sequences are one-dimensional series
 of letters from {A,C,G,T}, frequently many
 thousands of letters (bases, nucleotides, residues)
 long
- The sequence "CG" (written "CpG") tends to appear more frequently in some places than in others
- Such CpG islands are usually 10^2-10^3 bases long
- Questions:
 - 1. Given a short segment, is it from a CpG island?
 - 2. Given a long segment, where are its islands?

Modeling CpG Islands

- Model will be a CpG generator
- Since focusing on sequence data, want probability of next symbol to depend on current symbol
- Will use a standard (non-hidden) Markov model
 - Probabilistic state machine
 - Each state emits a symbol



3

The Markov Property

- A <u>first-order</u> Markov model (what we study) has the property that observing feature vector (symbol) \mathbf{x}_i while in state π_i depends <u>only</u> on the previous state π_{i-1} (which generated \mathbf{x}_{i-1})
- Standard model has 1-1 correspondence between symbols and states, thus

$$P(\mathbf{x}_i \mid \mathbf{x}_{i-1}, \dots, \mathbf{x}_1) = P(\mathbf{x}_i \mid \mathbf{x}_{i-1})$$

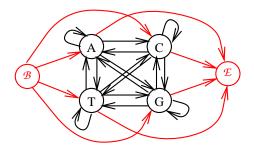
and

$$P(\mathbf{x}_1, \dots, \mathbf{x}_L) = P(\mathbf{x}_1) \prod_{i=2}^{L} P(\mathbf{x}_i \mid \mathbf{x}_{i-1})$$

5

Begin and End States

- For convenience, can add special "begin" (\mathcal{B}) and "end" (\mathcal{E}) states to clarify equations and define a distribution over sequence lengths
- ullet These states emit empty (null) symbols ${\bf x}_0$ and ${\bf x}_{L+1}$ to mark ends of sequence



$$P(\mathbf{x}_1,\ldots,\mathbf{x}_L) = \prod_{i=1}^{L+1} P(\mathbf{x}_i \mid \mathbf{x}_{i-1})$$

• Will represent both with single state named 0

6

Markov Chains for Discrimination

- How do we use this to differentiate islands from non-islands?
- Define two Markov models: one for islands ("+" or ω_1), one for non-islands ("-", ω_2)
 - Each model gets 4 states (A, C, G, T)
 - Take training set of known islands and nonislands
 - Let c_{st}^+ = number of times symbol t followed symbol s in an island, then set:

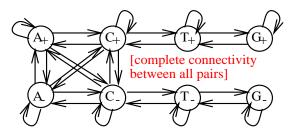
$$P^{+}(t \mid s) = \frac{c_{st}^{+}}{\sum_{t'} c_{st'}^{+}}$$

- Example probabilities in [Durbin et al., p. 50]
- Now <u>score</u> a sequence $X = \langle \mathbf{x}_1, \dots, \mathbf{x}_L \rangle$ by summing the <u>log-odds ratios</u>:

$$\log \left(\frac{P(X \mid +)}{P(X \mid -)} \right) = \sum_{i=1}^{L+1} \log \left(\frac{P^{+}(\mathbf{x}_i \mid \mathbf{x}_{i-1})}{P^{-}(\mathbf{x}_i \mid \mathbf{x}_{i-1})} \right)$$

Hidden Markov Models

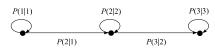
- Recall the second CpG question: Given a long sequence, where are its islands?
 - Could use tools just presented by passing a fixed-width window over the sequence and computing scores
 - Trouble if islands' lengths vary
 - Prefer single, unified model for islands vs. non-islands



 Within the + group, transition probabilities similar to those for the separate + model, but there is a small chance of switching to a state in the - group

What's Hidden in an HMM?

- No longer have one-to-one correspondence between states and emitted characters
 - E.g. was C emitted by C_+ or C_- ?
- Must differentiate the <u>symbol</u> sequence X from the <u>state</u> sequence $\pi = \langle \pi_1, \dots, \pi_L \rangle$
 - State transition probabilities same as before: $P(\pi_i = \ell \mid \pi_{i-1} = j)$ (i.e. $P(\ell \mid j)$)
 - Now each state has a prob. of emitting any value: $p(\mathbf{x}_i = \mathbf{x} \mid \pi_i = j)$ (i.e. $p(\mathbf{x} \mid j)$)

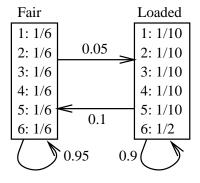


[In CpG HMM, emission probs discrete and = 0 or 1]

9

Example: The Occasionally Dishonest Casino

 Assume that a casino is typically fair, but with probability 0.05 it switches to a loaded die, and switches back with probability 0.1



• Given a sequence of rolls, what's hidden?

10

The Viterbi Algorithm

 \bullet Probability of seeing symbol sequence X and state sequence π is

$$P(X,\pi) = P(\pi_1 \mid 0) \prod_{i=1}^{L} p(\mathbf{x}_i \mid \pi_i) P(\pi_{i+1} \mid \pi_i)$$

• Can use this to mind most likely path:

$$\pi^* = \operatorname*{argmax}_{\pi} P(X, \pi)$$

and trace it to identify islands (paths through
+ states)

• There are an exponential number of paths through chain, so how do we find the most likely one?

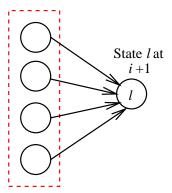
The Viterbi Algorithm (cont'd)

• Assume that we know (for all k) $v_k(i) = \text{probability of most likely path ending in state } k$ with observation \mathbf{x}_i

Then

$$v_{\ell}(i+1) = p(\mathbf{x}_{i+1} \mid \ell) \max_{k} \{v_{k}(i) P(\ell \mid k)\}$$

All states at i



The Viterbi Algorithm

(cont'd)

 Given the formula, can fill in table with dynamic programming:

$$-v_0(0) = 1$$
, $v_k(0) = 0$ for $k > 0$

- For
$$i = 1$$
 to L

*
$$v_{\ell}(i) = p(\mathbf{x}_i \mid \ell) \max_k \{v_k(i-1)P(\ell \mid k)\}$$

*
$$\operatorname{ptr}_i(\ell) = \operatorname{argmax}_k \{ v_k(i-1) P(\ell \mid k) \}$$

$$- P(X, \pi^*) = \max_k \{v_k(L)P(0 \mid k)\}$$

$$-\pi_L^* = \operatorname{argmax}_k \{v_k(L)P(0 \mid k)\}$$

- For
$$i = L$$
 to 1

*
$$\pi_{i-1}^* = \mathsf{ptr}_i(\pi_i^*)$$

 \bullet To avoid underflow, use $\log(v_\ell(i))$ and add

The Forward Algorithm

- Given a sequence X, find $P(X) = \sum_{\pi} P(X, \pi)$
- Use dynamic programming like Viterbi, replacing max with sum, and $v_k(i)$ with $f_k(i) = P(\mathbf{x}_1, \dots, \mathbf{x}_i, \pi_i = k)$ (= prob. of observed sequence through \mathbf{x}_i , stopping in state k)

$$-f_0(0) = 1$$
, $f_k(0) = 0$ for $k > 0$

- For
$$i = 1$$
 to L

*
$$f_{\ell}(i) = p(\mathbf{x}_i \mid \ell) \sum_k f_k(i-1) P(\ell \mid k)$$

$$-P(X) = \sum_{k} f_k(L)P(0 \mid k)$$

 To avoid underflow, can again use logs, though exactness of results compromised

14

The Backward Algorithm

• Given a sequence X, find the probability that \mathbf{x}_i was emitted by state k, i.e.

$$P(\pi_{i} = k \mid X) = \frac{P(\pi_{i} = k, X)}{P(X)}$$

$$= \frac{f_{k}(i)}{P(\mathbf{x}_{1}, \dots, \mathbf{x}_{i}, \pi_{i} = k)} \underbrace{P(\mathbf{x}_{i+1}, \dots, \mathbf{x}_{L} \mid \pi_{i} = k)}_{P(X)}$$
somewhat by forward also

computed by forward alg

• Algorithm:

$$-b_k(L) = P(0 \mid k)$$
 for all k

- For
$$i = L - 1$$
 to 1

*
$$b_k(i) = \sum_{\ell} P(\ell \mid k) p(\mathbf{x}_{i+1} \mid \ell) b_{\ell}(i+1)$$

Example Use of Forward/Backward Algorithm

- Define g(k) = 1 if $k \in \{A_+, C_+, G_+, T_+\}$ and 0 otherwise
- Then $G(i \mid X) = \sum_k P(\pi_i = k \mid X) g(k) = \text{probability that } \mathbf{x}_i \text{ is in an island}$
- For each state k, compute $P(\pi_i = k \mid X)$ with forward/backward algorithm
- Technique applicable to any HMM where set of states is partitioned into classes
 - Use to label individual parts of a sequence

Specifying an HMM

- Two problems: defining <u>structure</u> (set of states) and <u>parameters</u> (transition and emission probabilities)
- Start with latter problem, i.e. given a training set X_1,\ldots,X_N of independently generated sequences, learn a good set of parameters θ
- Goal is to maximize the (log) likelihood of seeing the training set given that θ is the set of parameters for the HMM generating them:

$$\sum_{j=1}^{N} \log(P(X_j; \theta))$$

17

When State Sequence Known

- Estimating parameters when e.g. islands already identified in training set
- \bullet Let $A_{k\ell}=$ number of $k\to \ell$ transitions and $E_k(b)=$ number of emissions of b (assume scalar) in state k

$$P(\ell \mid k) = A_{k\ell} / \left(\sum_{\ell'} A_{k\ell'} \right)$$

$$P(b \mid k) = E_k(b) / \left(\sum_{b'} E_k(b') \right)$$

- Be careful if little training data available
 - E.g. an unused state k will have undefined parameters
 - Workaround: Add <u>pseudocounts</u> $r_{k\ell}$ to $A_{k\ell}$ and $r_k(b)$ to $E_k(b)$ that reflect prior biases about parobabilities
 - Increased train data decr. prior's influence
 - More general priors [Sjölander et al. 96]

18

The Baum-Welch Algorithm

- Used for estimating parameters when state sequence unknown in training set
- Special case of the expectation maximization (EM) algorithm [Theod, pp. 36–39, 443–445]
- Start with arbitrary $P(\ell \mid k)$ and $P(b \mid k)$, and use them to estimate $A_{k\ell}$ and $E_k(b)$ as the <u>expected</u> number of occurrences given the training set*:

$$A_{k\ell} = \sum_{j=1}^{N} \frac{1}{P(X_j)} \sum_{i=1}^{L} f_k^j(i) P(\ell \mid k) P(\mathbf{x}_{i+1}^j \mid \ell) b_\ell^j(i+1)$$

$$E_k(b) = \sum_{j=1}^{N} \sum_{i:\mathbf{x}_i^j = b} P(\pi_i = k \mid X_j) = \sum_{j=1}^{N} \frac{1}{P(X_j)} \sum_{i:\mathbf{x}_i^j = b} f_k^j(i) b_k^j(i)$$

- Then use these numbers (& pseudocounts) to recompute $P(\ell \mid k)$ and $P(b \mid k)$
- After each iteration, compute log likelihood and halt if little improvement

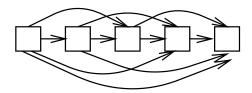
*Superscript j corresponds to jth train example

HMM Structure

- How to specify HMM states and connections?
- States come from background knowledge on problem, e.g. size-4 alphabet, +/-, ⇒ 8 states
- Connections:
 - Tempting to specify complete connectivity and let Baum-Welch sort it out
 - Problem: Huge number of parameters could lead to local max
 - Better to use background knowledge to invalidate some connections by initializing $P(\ell\mid k)=0$
 - * Baum-Welch will respect this

Silent States

- May want to allow model to generate sequences with certain parts <u>deleted</u>
 - E.g. when aligning DNA or protein sequences against a fixed model or matching a sequence of spoken words against a fixed model, some parts of the input might be omitted



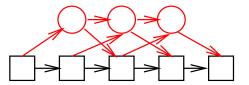
 Problem: Huge number of connections, slow training, local maxima

21

Silent States

(cont'd)

• <u>Silent states</u> (like begin and end states) don't emit symbols, so they can "bypass" a regular state



- If there are no purely silent loops, can update Viterbi, forward, and backward algorithms to work with silent states [Durbin et al., p. 71]
- Used extensively in <u>profile HMMs</u> for modeling sequences of protein families (aka <u>multiple</u> <u>alignments</u>)