
CSCE 970 Lecture 4:

Nonlinear Classifiers

Stephen D. Scott

January 29, 2001

1

Introduction

• For non-linearly separable classes, performance

of even the best linear classifier might not be

good

• Thus we will remap feature vectors to new

space where they are (almost) linearly sepa-

rable

• Outline:

– Multiple layers of neurons

∗ Backpropagation

∗ Sizing the network

– Polynomial remapping

– Gaussian remapping (radial basis functions)

– Efficiency issues (support vector machines)

– Other nonlinear classifiers (decision trees)

2

Getting Started: The XOR Problem

x

x

1

2

g (x)1

g (x)2
> 0

< 0

> 0
< 0

ω

ω1

2

ω2

A: (0,0)

D: (1,1)

B: (0,1)

C: (1,0)

• Can’t represent with a single linear separator,

but can with intersection of two:

g1(x) = 1 · x1 + 1 · x2 − 1/2

g2(x) = 1 · x1 + 1 · x2 − 3/2

• ω1 =
{

x ∈ <` : g1(x) > 0 AND g2(x) < 0
}

• ω2 =
{

x ∈ <` : g1(x), g2(x) < 0 OR g1(x), g2(x) > 0
}

3

Getting Started: The XOR Problem

(cont’d)

• Let yi =







0 if gi(x) < 0

1 otherwise

Class (x1, x2) g1(x) y1 g2(x) y2

ω1 B: (0,1) 1/2 1 −1/2 0
ω1 C: (1,0) 1/2 1 −1/2 0

ω2 A: (0,0) −1/2 0 −3/2 0
ω2 D: (1,1) 3/2 1 1/2 1

• Now feed y1, y2 into:

g(y) = 1 · y1 − 2 · y2 − 1/2

2 ω1
ω

1

2

A: (0,0)

D: (1,1)

y

y

B, C: (1,0)

g(y)

> 0
< 0

4

Getting Started: The XOR Problem

(cont’d)

• In other words, we remapped all vectors x to y

such that the classes are linearly separable in

the new vector space

Σ
i

Σ
i ix

Σ
i

w = 1

w = 1

w = 1

w = 1

12

01w = -1/2

w = -3/2

22

11

02

21

w

w

i1

i2 xi

iyw
i3

w = 1

23

13

w = -2

w = -1/203

y1

y2

x1

2x

Hidden Layer

Input Layer

Output
Layer

• This is a two-layer perceptron or two-layer

feedforward neural network

• Each neuron outputs 1 if its weighted sum ex-

ceeds its threshold, 0 otherwise

5

What Else Can We Do with Two Layers?

1 2 3110 = y y y

g

g

2

3

100

111

010

000
001

011
2

2

2

2

1

1
1ω

ω

ω

ω

ω

ω

ω

g1

> 0
< 0

> 0
< 0

< 0
> 0

unused

ω

1ω

1ω
2ω

1 ω2

ω2
2

000

001

100

010

011

110

111

101

ω

6

What Else Can We Do with Two Layers?

(cont’d)

• Define the p-dimensional unit hypercube as

Hp =
{

[y1, . . . , yp]
T ∈ <p, yi ∈ [0,1] ∀i

}

• A hidden layer with p neurons maps an `-dim

vector x to a p-dim vector y whose elements

are corners of Hp, i.e. yi ∈ {0,1} ∀i

• Each of the p neurons corresponds to an `-dim

hyperplane

• The intersection∗ of the (pos. or neg.) half-

spaces from these p hyperplanes maps to a

vertex of Hp

• If the classes of Hp’s vertices are linearly sep-

arable, then a perfect two-layer network exists

• I.e. a 2-layer network can separate classes con-

sisting of unions of adjacent polyhedra

∗Also known as polyhedra.

7

Three-Layer Networks

• With two-layer networks, there exist unions of

polyhedra not linearly separable on Hp

• I.e. there exist assignments of classes to points

on Hp that are not linearly separable

• Solution: Add a second hidden layer of q neu-

rons to partition Hp into regions based on class

• Output layer combines appropriate regions

• E.g. including 110 from Slide 6 in ω1 is possible

using procedure similar to XOR solution

• In general, can always use simple procedure

of isolating each ω1 node in Hp with its own

second-layer hyperplane and taking disjunction

• Thus, can use 3-layer network to perfectly clas-

sify any union polyhedral regions

8

The Backpropagation Algorithm

• A popular way to train a neural network

• Assume the architecture is fixed and complete

· kr = number of nodes in layer r (could have

kL > 1)

· wr
ji = weight from neuron i in layer r−1 to

neuron j in layer r

· vr
j =

∑kr−1

k=1 wr
jk yr−1

k + wr
j0

· yr
j = f

(

vr
j

)

= output of neuron j in layer r

• During training we’ll attempt to minimize a

cost function, so use differentiable activation func.

f , e.g.:

f(v) =
1

1 + e−av
∈ [0,1]

OR

f(v) = c tanh (av) ∈ [−c, c]

9

The Backpropagation Algorithm

k 0

k

ff f

k r
 -

 1
N

od
esff

ff

rL
ay

er
 r

f

N
od

e
i

N
od

e
j

N
od

es

0

N
od

es

1

L
ay

er
 r

 -
 1

y
f

y

0
1

L
ay

er
 1

y

k 1

y

N
od

es

Σ

w

Σ
Σ

Σ

1

k
 k

w

x
w

1j

i1

ij

L
ay

er
 0

 (
In

pu
t)w

1
kx

1 1 11 i
j

k

Σ
r ji

w
r

-
1

i

1

Σ Σ
Σ

1

Σ

w
1x

1 11

10

The Backpropagation Algorithm

Another Picture

11

The Backpropagation Algorithm

Intuition

• Recall derivation of Perceptron update rule:

– Cost function:

U(w) =
∑̀

i=1

(wi(t + 1)− wi(t))
2 +

η



y(t)−
∑̀

i=1

wi(t + 1)xi(t)





2

– Take gradient w.r.t. w(t + 1), set to 0,

approximate, and solve:

wi(t + 1) = wi(t) +

η



y(t)−
∑̀

i=1

wi(t)xi(t)



xi(t)

12

The Backpropagation Algorithm

Intuition: Output Layer

• Now use similar idea with jth node of output

layer (layer L):

– Cost function:

U
(

wL
j

)

=

kL−1∑

k=1

(

wL
jk(t + 1)− wL

jk(t)
)2

+

η













correct
︷ ︸︸ ︷

yj(t) −

pred=yL
j (t) with w(t+1)

︷ ︸︸ ︷

f






kL−1∑

k=1

wL
jk(t + 1)yL−1

k (t)


















2

– Take gradient w.r.t. wL
j (t+1) and set to 0:

0 = 2
(

wL
jk(t + 1)− wL

jk(t)
)

− 2η




yj(t)− f






kL−1∑

k=1

wL
jk(t + 1)yL−1

k (t)











· f ′





kL−1∑

k=1

wL
jk(t + 1)yL−1

k (t)




 yL−1

k (t)

13

The Backpropagation Algorithm

Intuition: Output Layer

(cont’d)

• Again, approximate and solve for wL
jk(t + 1):

wL
jk(t + 1) = wL

jk(t) + η yL−1
k (t) ·




yj(t)− f






kL−1∑

k=1

wL
jk(t)y

L−1
k (t)









 · f ′






kL−1∑

k=1

wL
jk(t)y

L−1
k (t)






• So:

wL
jk(t + 1) = wL

jk(t) + η yL−1
k (t)

(

yj(t)− f
(

vL
j (t)

))

f ′
(

vL
j (t)

)

︸ ︷︷ ︸

δL
j (t)=“error term”

• For f(v) = 1/(1 + exp(−av)):

δL
j (t) = a · yL

j (t) ·
(

yj(t)− yL
j (t)

) (

1− yL
j (t)

)

where yj(t) = target and yL
j (t) = output

14

The Backpropagation Algorithm

Intuition: The Other Layers

• How can we compute the “error term” for the

hidden layers r < L when there is no “target

vector” y for these layers?

• Instead, propagate back error values from out-

put layer toward input layers, scaling with the

weights

• Scaling with the weights characterizes how much

of the error term each hidden unit is “respon-

sible for”:

wr
jk(t + 1) = wr

jk(t) + η yr−1
k (t) δr

j(t)

where

δr
j(t) = f ′

(

vr
j(t)

)
kr+1∑

k=1

δr+1
k (t)wr+1

kj (t)

• Derivation comes from computing gradient of

cost function w.r.t. wr
j(t + 1) via chain rule

15

The Backpropagation Algorithm

Example

c f
sumc

wdc

yc
d

sumd f
y

d

wca

w
cb

= 1 / (1 + exp(- x))f(x)
ytarget =

wc0
wd0

b

a

trial 2: a = 0, b = 1, y = 0
trial 1: a = 1, b = 0, y = 1

1 1

eta 0.3

trial 1 trial 2
w_ca 0.1 0.1008513 0.1008513
w_cb 0.1 0.1 0.0987985
w_c0 0.1 0.1008513 0.0996498
a 1 0
b 0 1
const 1 1
sum_c 0.2 0.2008513
y_c 0.5498340 0.5500447

w_dc 0.1 0.1189104 0.0964548
w_d0 0.1 0.1343929 0.0935679
sum_d 0.1549834 0.1997990
y_d 0.5386685 0.5497842

target 1 0
delta_d 0.1146431 -0.136083
delta_c 0.0028376 -0.004005

delta_d(t) = y_d(t) * (y(t) - y_d(t)) * (1 - y_d(t))
delta_c(t) = y_c(t) * (1 - y_c(t)) * delta_d(t) * w_dc(t)
w_dc(t+1) = w_dc(t) + eta * y_c(t) * delta_d(t)
w_ca(t+1) = w_ca(t) + eta * a * delta_c(t) 16

The Backpropagation Algorithm

Issues

• When to stop iterating through training set?

– When weights don’t change much

– When value of cost function is small enough

– Must also avoid overtraining

17

The Backpropagation Algorithm

Issues

(cont’d)

• How to set learning rate η (µ in text)?

– Small values slow convergence

– Large values might overshoot minimum

– Can adapt it over time

• Might hit local minima that aren’t very good;

try re-running with new random weights

18

Variations

• Can smooth oscillations of weight vector with

momentum term α < 1 that tends to keep it

moving in the same direction as previous trials:

∆wr
j(t + 1) = α∆wr

j(t) + η yr−1
k (t) δr

j(t)

wr
j(t + 1) = wr

j(t) + ∆wr
j(t + 1)

• Different training modes:

– On-line (what we presented) has more ran-

domness during training (might avoid local

minima)

– Batch mode (in text) averages gradients,

giving better estimates and smoother con-

vergence:

∗ Before updating, first compute δr
j(t) for

each vector xt, t = 1, . . . , N

wr
j(new) = wr

j(old) + η
N∑

t=1

δr
j(t) yr−1(t)

19

Variations

(cont’d)

• A Recurrent network feeds output of e.g. layer

r to the input of some earlier layer r′ < r

– Allows predictions to be influenced by past

predictions (for e.g. sequence data)

20

Variations

(cont’d)

• Can implement a “backprop” scheme with EG

• Other nonlinear optimization schemes:

– Conjugate gradient

– Newton’s method

– Genetic algorithms

– Simulated annealing

• Other cost functions, e.g. cross-entropy:

−
kL∑

k=1







label
︷ ︸︸ ︷

yk(t) ln

pred
︷ ︸︸ ︷(

yL
k (t)

)

+(1− yk(t)) ln
(

1− yL
k (t)

)







“blows up” if yk(t) ≈ 1 and yL
k (t) ≈ 0 or vice-

versa (Section 4.8)

21

Sizing the Network

• Before training, need to choose appropriate

number of layers and size of each layer

– Too small: Cannot learn what features make

same classes similar and separate classes

different

– Too large: Adapts to details of the partic-

ular training set and cannot generalize well

(called overfitting)

– Also, increasing size increases complexity

• Approaches:

– Analytical methods: Use knowledge of data

to est. number of needed layers and neurons

– Pruning techniques: Start with a large net-

work and periodically remove weights and

neurons that don’t affect output much

– Constructive techniques: Start with small

netw. and periodically add neurons and wts

22

Sizing the Network

Pruning Techniques [Also see Bishop, Sec. 9.5]

• Approach 1: Train with backprop, periodically

computing effect of varying wi on cost func:

– From Taylor series expansion (p. 109),

cost change
︷︸︸︷

δJ ≈ 1

2

∑

i

hii δw2
i where hii =

∂2J

∂2wi

– If hii w2
i /2 (saliency factor) small, then wi

doesn’t have much impact and is removed

– Now continue training with backprop

• Example (Sec 4.10): 480 wts pruned to 25

23

Sizing the Network

Pruning Techniques

(cont’d)

[Also see Bishop, Sec. 9.5]

• Approach 2: Train with backprop, but add to

the cost function J a term that penalizes large

weights:

J ′ = J + penalty

– If wi’s contribution to network output is

small, then its share of J is small

– So penalty term dominates wi’s share of J ′,
driving it down

– Periodically prune weights that get too low

24

Sizing the Network

Constructive Techniques

Cascade Correlation [Also Bishop, Sec. 9.5]

• Start with no hidden units and train

• After training, if residual error too high, then

add a hidden unit:

Input units Output units

Hidden unit 1

1

2

k

Set wts to
HU

Wts are
trained like
otherscorrelate

output to resid
error , then hold

z
ε
∑

k

∣
∣
∣
∣
∣

N∑

n=1

(zn − z̄)
(
εn,k − ε̄k

)

∣
∣
∣
∣
∣

• Then continue training; if residual error still to

high, add another hidden unit:

– Same as HU1, but connect input units and

HU1’s output to inputs of HU2

• Limit the number added to avoid overfitting

25

Generalized Linear Classifiers

Section 4.12

• In XOR problem, used linear threshold funcs.

in hidden layer to map non-lin. sep. classes to

new space where they were lin. sep.

• Output layer gave sep. hyperplane in new space

• Replace hidden-layer lin. thresh. funcs. with family

of nonlinear functions fi : <` → <, i = 1, . . . , k

• Hidden layer maps x ∈ <` to y = [f1(x), . . . , fk(x)]
T

and output layer finds separating hyperplane:

• I.e. approximating separating surface as linear

combination of interpolation functions:

g(x) = w0 +
k∑

i=1

wi fi(x)

26

Generalized Linear Classifiers

Cover’s Theorem

• For arbitrary set of N points, there are 2N

ways to classify them into ω1 and ω2 (i.e. 2N

dichotomies)

• If classification done by a single hyperplane,

then the number of linear dichotomies is

O(N, `) = 2
∑̀

i=0

(N − 1

i

)

= 2N if N ≤ ` + 1, else < 2N

14 linear dichotomies 8 linear dichotomies

27

Generalized Linear Classifiers

Cover’s Theorem

(cont’d)

• Thus if dimensionality ` ≥ N−1 then a perfect

separating hyperplane is guaranteed to exist

• Otherwise (N > `+1) the fraction of dichotomies

that are linear dichotomies is

P =
1

2N−1

∑̀

i=0

(N − 1

i

)

Let N = r(` + 1)

• For fixed N , mapping to higher dimensional

space increases likelihood of ∃ of sep. hyperplane!

28

Generalized Linear Classifiers

Polynomial Classifiers

• Approximate g(x) by linear combination of up

to order r polynomials over components of x

• E.g. for r = 2

g(x) = w0 +

w1f1+···+w`f`
︷ ︸︸ ︷

∑̀

i=1

wixi +

w`+1f`+1+···+wk−`fk−`
︷ ︸︸ ︷

`−1∑

i=1

∑̀

m=i+1

wimxixm

+
∑̀

i=1

wiix
2
i

︸ ︷︷ ︸

wk−`+1fk−`+1+···wkfk

, k = `(` + 3)/2

• For ` = 2, x = [x1, x2]
T and

y =
[

x1, x2, x1x2, x2
1, x2

2

]T

g(x) = wTy + w0

wT = [w1, w2, w12, w11, w22]

29

Generalized Linear Classifiers

Polynomial Classifiers

(cont’d)

• In general, will use all terms of form x
p1
1 x

p2
2 · · ·x

p`
`

for all p1 + · · ·+ p` ≤ r

• This gives size of y to be

k =
(` + r)!

r! `!
,

so time to classify and update exponential in

(` + r)

• Fortunately, EG’s loss bound logarithmic in k,

though run time still (in general) linear in k

– Special cases can be made efficient with ex-

act or approximate output computation

30

Generalized Linear Classifiers

Polynomial Classifiers

Example: XOR

• Use y = [x1, x2, x1x2]
T

Class [x1, x2]
T [y1, y2, y3]

T

ω1 [0,1]T [0,1,0]T

ω1 [1,0]T [1,0,0]T

ω2 [0,0]T [0,0,0]T

ω2 [1,1]T [1,1,1]T

g(y) = y1 + y2 − 2y3 −
1

4
g(x) = −1

4
+ x1 + x2 − 2x1x2

> 0⇒ x ∈ ω1

< 0⇒ x ∈ ω2

31

Generalized Linear Classifiers

Radial Basis Function Networks

• Argument of func. fi is x’s Euclidian distance

from designated center ci, e.g.

fi(x) = exp

(

−‖x− ci‖22
2σ2

i

)

• So

g(x) = w0 +
k∑

i=1

wi exp

(

−(x− ci)
T (x− ci)

2σ2
i

)

• Exponential decrease in increased distance gives

a very localized activation response

• Related to nearest neighbor approaches since

only fi’s with centers near x will have signifi-

cant output

32

Generalized Linear Classifiers

Radial Basis Function Networks

Example: XOR

• c1 = [1,1]T , c2 = [0,0]T , fi(x) = exp
(

−‖x− ci‖22
)

Class [x1, x2]
T [y1, y2]

T

ω1 (A) [0,1]T [0.368,0.368]T

ω1 (A) [1,0]T [0.368,0.368]T

ω2 (B) [0,0]T [0.135,1]T

ω2 (B) [1,1]T [1,0.135]T

g(y) = y1 + y2 − 1 g(x) = −1 + e−‖x−c1‖22 + e−‖x−c2‖22

< 0⇒ x ∈ ω1

> 0⇒ x ∈ ω2

33

Generalized Linear Classifiers

Radial Basis Function Networks

Choosing the Centers

• Randomly select from the training set

– Might work well if training set representa-

tive of probability distribution over data

• Learn the ci’s and σ2
i ’s via gradient descent

– Frequently computationally complex

• First cluster the data (Chapters 11–16) and

use results to find centers

• Use methods similar to constructive and

pruning techniques when sizing neural network

– Add new center when perceived as needed,

delete unnecessary centers

– E.g. if new input vector x far from all cur-

rent centers and error high, then new center

necessary, so add x as new center

34

Support Vector Machines

[See refs. on slides page]

• Introduced in 1992

• State-of-the-art technique for classification and

regression

• Techniques can also be applied to e.g. cluster-

ing and principal components analysis

• Similar to polynomial classifiers and RBF net-

works in that it remaps inputs and then finds

a hyperplane

– Main difference is how it works

• Features of SVMs:

– Maximization of margin

– Duality

– Use of kernels

– Use of problem convexity to find classifier

35

Support Vector Machines

Margins

0

γ

w =b

• A hyperplane’s margin γ is the shortest dis-
tance from it to any training vector

• Intuition: larger margin ⇒ higher confidence
in classifier’s ability to generalize

– Guaranteed generalization error bound in
terms of 1/γ2

• Definition assumes linear separability (more gen-
eral definitions exist that do not)

36

Support Vector Machines

Maximum-Margin Perceptron Algorithm

• w(0)← 0, b(0)← 0, k← 0, R← max1≤i≤N ‖xi‖2
(R = radius of ball centered at origin contain-

ing training vectors), yi ∈ {−1,+1} ∀i

• Update slope same as before, update offset

differently

• While mistakes are made on training set

– For i = 1 to N (= # training vectors)

∗ If yi (wk · xi + bk) ≤ 0

· wk+1 ← wk + η yi xi

· bk+1 ← bk + η yi R2

· k ← k + 1

• Final predictor: h(x) = sgn (wk · x + bk)

37

Support Vector Machines

Duality

• Another way of representing predictor:

h(x) = sgn (w · x + b) = sgn





N∑

i=1

(αi yi xi) · x + b





= sgn





N∑

i=1

αi yi (xi · x) + b





(αi = # mistakes on xi, η > 0 ignored)

• So perceptron alg has equivalent dual form:

• α← 0, b← 0, R← max1≤i≤N ‖xi‖2

• While mistakes are made in For loop

– For i = 1 to N (= # training vectors)

∗ If yi

(
∑N

j=1 αj yj

(

xj · xi

)

+ b
)

≤ 0

· αi ← αi + 1

· b← b + yi R2

• Now data only in dot products

38

Kernels

• Duality lets us remap to many more features!

• Let φ : <` → F be nonlinear map of f.v.s, so

h(x) = sgn





N∑

i=1

αi yi (φ (xi) · φ (x)) + b





• Can we compute φ (xi) · φ (x) without evaluat-

ing φ (xi) and φ (x)? YES!

• x = [x1, x2], z = [z1, z2]:

(x · z)2 = (x1 z1 + x2 z2)
2

= x2
1 z2

1 + x2
2 z2

2 + 2x1 x2 z1 z2

=
[

x2
1, x2

2,
√

2 x1 x2

]

︸ ︷︷ ︸

φ(x)

·
[

z2
1, z2

2,
√

2 z1 z2
]

• LHS requires 2 mults + 1 squaring to compute,

RHS takes 3 mults

• In general, (x · z)d takes ` mults + 1 expon.,

vs.
(
`+d−1

d

)

≥
(

`+d−1
d

)d
mults if compute φ first

39

Kernels

(cont’d)

• In general, a kernel is a function K such that

∀x, z, K(x, z) = φ(x) · φ(z)

• Typically start with kernel and take the feature

mapping that it yields

• E.g. Let ` = 1,x = x, z = z, K(x, z) = sin(x−z)

• By Fourier expansion,

sin(x− z) = a0 +
∞∑

n=1

an sin(n x) sin(n z)

+
∞∑

n=1

an cos(n x) cos(n z)

for Fourier coeficients a0, a1, . . .

• This is the dot product of two infinite sequences

of nonlinear functions:

{φi(x)}∞i=0 = [1, sin(x), cos(x), sin(2x), cos(2x), . . .]

• I.e. there are an infinite number of features in

this remapped space!

40

Support Vector Machines

Finding a Hyperplane

• Can show [Cristianini & Shawe-Taylor] that if

data linearly separable in remapped space, then

get maximum margin classifier by minimizing

w ·w subject to yi (w · xi + b) ≥ 1

• Can reformulate this into a convex quadratic

program, which can be solved optimally, i.e.

won’t encounter local optima

• Can always find a kernel that will make training

set linearly separable, but beware of choosing a

kernel that is too powerful (overfitting)

• If kernel doesn’t separate, can optimize sub-

ject to yi (w · xi + b) ≥ 1 − ξi, where ξi are

slack variables that soften the margin (can still

solve optimally)

• If number of training vectors is very large, may

opt to approximately solve these problems to

save time and space

• Use e.g. gradient ascent and sequential mini-

mal optimization (SMO) [Cristianini & Shawe-

Taylor]

41

Decision Trees [Also Mitchell, ch. 3]

• Start at root and work down tree until leaf

reached; output that classification

• E.g. x = [1/2,1/4]T classified as ω3

42

Decision Trees

Learning Good Trees [Also Mitchell, ch. 3]

• Feature at root is one that yields highest

information gain, equivalent to max. reduction

of entropy (class impurity) in training data:

S = set of N feature vectors Ni = number in ωi

pi = Ni/N Ent(S) =
M∑

i=1

−pi log2 (pi)

• First partition along dimensions into set A of
features and places where classes change, e.g.

A = {(x1,0), (x1,1/4), (x1,1/2), (x1,3/4), (x2,0), (x2,1/2), (x2,3/4)}

• For a = (xi, b) ∈ A, define

Sa = {x ∈ S : xi > b} S′a = {x ∈ S : xi ≤ b}

Gain(S, a) = Ent(S)−
(

|Sa|
|S|

Ent(Sa) +
|S′a|
|S|

Ent(S′a)
)

︸ ︷︷ ︸

=0 for (x1,1/4)

• Choose a from A that maximizes Gain, place

it at root, then recursively call on Sa and S′a

• Forms basis of algorithms ID3 and C4.5

• Can avoid overfitting by pruning

43

