CSCE 970 Lecture 4:
Nonlinear Classifiers

Stephen D. Scott

January 29, 2001

Introduction

e For non-linearly separable classes, performance
of even the best linear classifier might not be
good

e Thus we will remap feature vectors to new
space where they are (almost) linearly sepa-
rable

e Outline:

— Multiple layers of neurons

x Backpropagation
x* Sizing the network

— Polynomial remapping

— Gaussian remapping (radial basis functions)

Efficiency issues (support vector machines)

— Other nonlinear classifiers (decision trees)

2

Getting Started: The XOR Problem

a2
N
g s\
p N D: (1,1)
\ N
BJ(01) . “2
N N
\\ .
* . Wy \\) 9,(X)
>
w | N $,J
\‘ \‘

A%(/)O)ﬁ)\w c|(10) g

gl(X) <0 “

e Can't represent with a single linear separator,
but can with intersection of two:

g1(x)=1-z;+1-25-1/2
gg(X)=l-x1—+—l~CL’Q—3/2

® w1 ={X€§R£Ig1(x) >0 AND go(x) <O}

o wy = {x € R’ g1(x),92(x) < 0 OR g1(x), g2(x) > 0}

3

Getting Started: The XOR Problem
(cont'd)

o Let o O if gi(X) < O
Yi 1 otherwise

Class (z1,22) | 91(x) w1 | 92(x)
w1 B:(0,1)| 1/2 1| -1/2
wi C:(1,0)| 1/2 1 |-1/2

w» A (0,0) | —1/2 0 | —3/2

D: (1,1) | 3/2 1| 1/2

= olo oS

w2

e Now feed yq, yp into:
g(y)=1-y1-2-y2—1/2

Y2 oY)

<O/

D:(1) .7,

A:(00),” %

B, C: (1,0)

Getting Started: The XOR Problem
(cont'd)

e In other words, we remapped all vectors x to y
such that the classes are linearly separable in
the new vector space

Input Layer

Wo5 -3/2

e This is a two-layer perceptron or two-layer
feedforward neural network

e Each neuron outputs 1 if its weighted sum ex-
ceeds its threshold, 0 otherwise

What Else Can We Do with Two Layers?

(V] >0
111 S0 %
w
oy 110 = Y¥Ya
011 S
010
>0
0
001 2 100
0y o
000 %
o, 011 111
(V)]
%}20 110
W
Wy
001
Wy
000 100 @

What Else Can We Do with Two Layers?
(cont'd)

Define the p-dimensional unit hypercube as

Hy = {ly1,... ,yp)" € R, y; € [0, 1] Vi}

A hidden layer with p neurons maps an ¢-dim
vector x to a p-dim vector y whose elements
are corners of Hy, i.e. y; € {0,1}Vi

e Each of the p neurons corresponds to an ¢-dim
hyperplane

e The intersection® of the (pos. or neg.) half-
spaces from these p hyperplanes maps to a
vertex of Hp

o If the classes of Hp's vertices are linearly sep-
arable, then a perfect two-layer network exists

I.e. a 2-layer network can separate classes con-
sisting of unions of adjacent polyhedra

*Also known as polyhedra.

Three-Layer Networks

e With two-layer networks, there exist unions of
polyhedra not linearly separable on Hp

e I.e. there exist assignments of classes to points
on Hp that are not linearly separable

e Solution: Add a second hidden layer of g neu-
rons to partition Hp into regions based on class

e Output layer combines appropriate regions

e E.g. including 110 from Slide 6 in w1 is possible
using procedure similar to XOR solution

e In general, can always use simple procedure
of isolating each wj; node in Hp with its own
second-layer hyperplane and taking disjunction

e Thus, can use 3-layer network to perfectly clas-
sify any union polyhedral regions

The Backpropagation Algorithm
e A popular way to train a neural network

e Assume the architecture is fixed and complete

- kr = number of nodes in layer r (could have
kr,>1)

. wgz = weight from neuron i in layer »r — 1 to

neuron j in layer r
R — Zkr71 w” r—1 + "
5 = k=1 Yk Yk 50

cyp=1f (v;) = output of neuron j in layer r

e During training we'll attempt to minimize a

cost function, so use differentiable activation func.

f, e.q.:

1
f(@—m €[0,1]

OR
f(w) = ctanh (av) € [—c,]

The Backpropagation Algorithm

Layerr

k, Nodes

k-1 Nodes

Layerr-1

Layer 1
kl Nodes

ko Nodes

Layer O (Input)

10

The Backpropagation Algorithm
Another Picture

r-1 r

11

The Backpropagation Algorithm
Intuition

e Recall derivation of Perceptron update rule:

— Cost function:

l
Uw) =Y (wit+ 1) —wi()? +
=1

Y, 2
n (y(t) - > wi(t+ 1)3%’(75))

=1

— Take gradient w.r.t. w(t+ 1), set to 0,
approximate, and solve:

wi(t+ 1) = w;(t) +
V4
n (y(t) - wi(t)wi(t)> z;(t)

i=1

12

The Backpropagation Algorithm
Intuition: Output Layer

e Now use similar idea with jth node of output
layer (layer L):

— Cost function:
kr_
2
U(wi)= 3 (wii(t+1) —wi()) +

pred:yf(t) with w(t+1) 2
correct kr_1
’ \ L-1
n|y® - > whE+ 1y
k=1

— Take gradient w.r.t. wf(t+ 1) and set to 0:

0=2 (wh(t+1) —wh(®)

kr—1
—2n |y;(®) — | Y wh+ Dyl
k=1
kr—1
Y wh G+ Dyl O | v
k=1

13

The Backpropagation Algorithm
Intuition: Output Layer
(cont'd)

e Again, approximate and solve for ijk(t-l— 1):

wh(t+1) = wh) + 0y, @) -
kp 1 kp 1

yi() = F | 2 wh@Ouy O ||| X wh®yl @)

e So:

wh(t+1) = wh®) + 0yl 1@ (v - £ (o ®)) £ (vF®)

”

6jL(t)= “error term

e For f(v) =1/(1+ exp(—av)):
sF® =a-yf@®) - (v;() —yF®) (1 - yf @)
where y;(t) = target and ij(t) = output

The Backpropagation Algorithm
Intuition: The Other Layers

e How can we compute the “error term” for the
hidden layers r < L when there is no *'target
vector” y for these layers?

e Instead, propagate back error values from out-
put layer toward input layers, scaling with the
weights

e Scaling with the weights characterizes how much
of the error term each hidden unit is “respon-
sible for":

whip(t 4 1) = wl () +ny), (1) 55(t)
where
kry1

Sy =f (vj®) 3 T @ wpf)

k=1

e Derivation comes from computing gradient of
cost function w.r.t. w§(t+ 1) via chain rule

15

The Backpropagation Algorithm

Example
target = y trill 1:a=1,b=0,y=1
f(xX) =1/ (1 + exp(- X)) triad 22.a=0,b=1,y=0
aVa
O N e O K
"\
b~ W dc
cb /P WCO q\ Wy
1 1
eta 0.3
trial 1 trial 2
w_ca 0.1:.0.1008513 : 0.1008513
w_ch 0.1 0.1..0.0987985
w_cO 0.1:.0.1008513 : 0.0996498
a 1 0
b 0 1
const 1 1
sum_c 0.2..0.2008513
y_C 0.5498340 : 0.5500447
w_dc 0.1:.0.1189104 : 0.0964548
w_d0 0.1: 0.1343929 : 0.0935679
sum_d 0.1549834 . 0.1997990
y_d 0.5386685 . 0.5497842
target 1 0
delta_d 0.1146431: -0.136083
delta_c 0.0028376 .. .-0.004005
delta_d(t) =y _d(t) * (y(t).-y_d(t) * (1-y_d(®)
delta_c(t) =y c(t) * (1 -y c(t)) * delta_d(t) * w_dc(t)
w_dc(t+1) = w _dc(t) + eta *y_c(t) * delta_d(t)
w_ca(t+1) = w_ca(t) + eta * a * delta_c(t) 16

The Backpropagation Algorithm
Issues

e When to stop iterating through training set?
— When weights don’'t change much
— When value of cost function is small enough

— Must also avoid overtraining

error

Test set

Training set

The Backpropagation Algorithm
Issues
(cont’d)
e How to set learning rate n (u in text)?
— Small values slow convergence
— Large values might overshoot minimum
— Can adapt it over time

e Might hit local minima that aren’t very good;
try re-running with new random weights

18

Variations

e Can smooth oscillations of weight vector with
momentum term o < 1 that tends to keep it
moving in the same direction as previous trials:

AWS(t+1) = aAw(0) + 0y (0) 55(0)
wi(t+1) = wi(t) + Awj(t + 1)

e Different training modes:

— On-line (what we presented) has more ran-
domness during training (might avoid local
minima)

— Batch mode (in text) averages gradients,
giving better estimates and smoother con-
vergence:

+ Before updating, first compute 6;7(16) for
each vector x¢, t=1,... ,N

N
wi(new) = wilold) +1 3. 550y O
t=

19

Variations
(cont'd)

e A Recurrent network feeds output of e.g. layer
r to the input of some earlier layer ' < r

— Allows predictions to be influenced by past
predictions (for e.g. sequence data)

*y(r+1)

x(f) x(£) c(t)

(¢) Feedforward network (b) Recurrent network

20

Variations
(cont'd)

e Can implement a “backprop’” scheme with EG

e Other nonlinear optimization schemes:

— Conjugate gradient
— Newton’'s method
— Genetic algorithms

— Simulated annealing

e Other cost functions, e.g. cross-entropy:

ky [label pred

3 O (GE®) + @ —y@)In (1 - yf @)
k=1

“blows up” if y.(t) ~ 1 and y£(t) ~ 0 or vice-
versa (Section 4.8)

21

Sizing the Network

e Before training, need to choose appropriate
number of layers and size of each layer

— Too small: Cannot learn what features make
same classes similar and separate classes
different

— Too large: Adapts to details of the partic-
ular training set and cannot generalize well
(called overfitting)

— Also, increasing size increases complexity

e Approaches:

— Analytical methods: Use knowledge of data
to est. number of needed layers and neurons

— Pruning techniques: Start with a large net-
work and periodically remove weights and
neurons that don't affect output much

— Constructive techniques: Start with small
netw. and periodically add neurons and wts

22

Sizing the Network
Pruning Techniques [Also see Bishop, Sec. 9.5]

e Approach 1: Train with backprop, periodically
computing effect of varying w; on cost func:

— From Taylor series expansion (p. 109),

cost change

1 0%J
oJ =~ EZh” 6wz2 where h;; =
2

02w;
— If hiiwz?/2 (saliency factor) small, then w;

doesn’t have much impact and is removed
— Now continue training with backprop

e Example (Sec 4.10): 480 wts pruned to 25

X, Zy
1.5 1.5

0 0.5 1 L5 0 0.5 1 1.5

23

Sizing the Network
Pruning Techniques
(cont'd)

[Also see Bishop, Sec. 9.5]

e Approach 2: Train with backprop, but add to
the cost function J a term that penalizes large
weights:

J' = J + penalty

— If w;'s contribution to network output is
small, then its share of J is small

— So penalty term dominates w;'s share of J,
driving it down

— Periodically prune weights that get too low

24

Sizing the Network
Constructive Techniques
Cascade Correlation [Also Bishop, Sec. 9.5]

e Start with no hidden units and train

e After training, if residual error too high, then
add a hidden unit:

Input units Output units

e \r\\;x\\ \\\ N 7"?{(a
f BN - Wts are
Setwtsto @ S trained like

correlate HU Hidden unit 1 others
output zto resid

error g, then hold

Z Z (zn—2) (Eu,k - gk)

k In=1

e Then continue training; if residual error still to
high, add another hidden unit:

— Same as HU1, but connect input units and
HU1's output to inputs of HU2

e Limit the number added to avoid overfitting

25

Generalized Linear Classifiers
Section 4.12

e In XOR problem, used linear threshold funcs.
in hidden layer to map non-lin. sep. classes to
new space where they were lin. sep.

Output layer gave sep. hyperplane in new space

Replace hidden-layer lin. thresh. funcs. with family
of nonlinear functions f; : R =R, i=1,... ,k

e Hidden layer mapsx € R toy = [f1(x),. .. ,fk(x)]T
and output layer finds separating hyperplane:

e I.e. approximating separating surface as linear
combination of interpolation functions:

k
g(x) = wo + Y w; f;(x)
i=1

26

Generalized Linear Classifiers
Cover's Theorem

e For arbitrary set of N points, there are oN
ways to classify them into w; and ws (i.e. 2N
dichotomies)

e If classification done by a single hyperplane,
then the number of linear dichotomies is

¢ N_
own=2% ("1
i=0

=2Nif N<t+1, else < 2N

14 linear dichotomies 8 linear dichotomies
~L s
Ae D Ao

(2) (®)

27

Generalized Linear Classifiers
Cover’'s Theorem
(cont'd)
e Thus if dimensionality £ > N —1 then a perfect
separating hyperplane is guaranteed to exist

e Otherwise (N > ¢+1) the fraction of dichotomies
that are linear dichotomies is

1 &L N-1
Peovr2 ()

Let N=r(£+1)

0 1 2 r

e For fixed N, mapping to higher dimensional
space increases likelihood of 3 of sep. hyperplane!

28

Generalized Linear Classifiers
Polynomial Classifiers

e Approximate g(x) by linear combination of up
to order r» polynomials over components of x
e E.g. forr=2

wy fi-Fwefe WerrfeprtFwp_efi—e
——

] —1 ¢
gX)=wo+ D wii 4+ Y. Y wimTiem
i=1 i=1m=it+1

l
+ YNwga? k=04 3)/2
i=1

N——
Wi+ 1 fh— o1+ wifi
e For =2, x = [x1,z0]T and
2 2T
y = [mlv T2, T1X2,T7, mQ}
T
g(x) =w'y 4+ wg
T

wo = [wy, w2, w12, w11, w22]

29

Generalized Linear Classifiers
Polynomial Classifiers
(cont’d)

e In general, will use all terms of form {1252 . .. mf‘

forallpy+---+py <r

e This gives size of y to be
b= e+ 1")!’
rl gl
so time to classify and update exponential in
L+r)

e Fortunately, EG's loss bound logarithmic in k,
though run time still (in general) linear in k

— Special cases can be made efficient with ex-
act or approximate output computation

30

Generalized Linear Classifiers
Polynomial Classifiers
Example: XOR

o Use y = [z1,20,z122]"

Class | [z1,22]" | [y1,y2,3]"
w1 | 10,117 | [0,1,07
w1 11,07 | [1,007
wp | [0,0]7 | [0,0,0/"
wo 1,17 [1,1,1)7

1 1
9(y) =vy1+y2—2y3— 2 g(x) = —; to1t oo - 2mw

011 111 Ty
o1 o(1,1)
010 -~ -]
001 101 (0,0) (1,0) =
Y Y3
000 100

(a) (b)

>0=>Xx€w
<0=x€wy

31

Generalized Linear Classifiers
Radial Basis Function Networks

e Argument of func. f; is x’'s Euclidian distance
from designated center c;, e.g.

fi(x) = exp (—”X - CiH%)

2
QUZ-

e SO

k
9(x) =wo+ Y w;exp

i=1

(}x—qﬂkx—q»
QO'Z-Z

e Exponential decrease in increased distance gives
a very localized activation response

e Related to nearest neighbor approaches since
only f;'s with centers near x will have signifi-
cant output

32

gy)=y1+y2—1

Y

B ©.1)

Generalized Linear Classifiers
Radial Basis Function Networks
Example: XOR

o c1=1[1,1]7, 2 = [0,0]7, fi(x) = exp (—[|x — c;[3)

ly1,y2]”
[0.368,0.368]7
[0.368,0.368]T
[0.135,1]7
[1,0.135]7

Class \ [xl,:cg]T \
wi (A) | [0,1]7
wi (A) | [1,017
wy (B) | [0,0]7
wy (B) | [1,1]7

g(x) = -1+ o—lIx—c1l3 4 o—lx—c2l3

R53
XOR

1]

(2) (b)
<0=x€w;

>0=>Xx€wp

33

Generalized Linear Classifiers
Radial Basis Function Networks
Choosing the Centers

e Randomly select from the training set

— Might work well if training set representa-
tive of probability distribution over data

e Learn the ¢;'s and a?'s via gradient descent

— Frequently computationally complex

e First cluster the data (Chapters 11-16) and
use results to find centers

e Use methods similar to constructive and
pruning techniques when sizing neural network

— Add new center when perceived as needed,
delete unnecessary centers

— E.g. if new input vector x far from all cur-
rent centers and error high, then new center
necessary, so add x as new center

34

Support Vector Machines
[See refs. on slides page]

e Introduced in 1992

e State-of-the-art technique for classification and

regression

e Techniques can also be applied to e.g. cluster-

ing and principal components analysis

e Similar to polynomial classifiers and RBF net-

works in that it remaps inputs and then finds
a hyperplane

— Main difference is how it works

e Features of SVMs:

— Maximization of margin

— Duality

— Use of kernels

— Use of problem convexity to find classifier

35

Support Vector Machines
Margins

e A hyperplane’'s margin ~ is the shortest dis-
tance from it to any training vector

e Intuition: larger margin = higher confidence
in classifier's ability to generalize

— Guaranteed generalization error bound in
terms of 1/~2

e Definition assumes linear separability (more gen-
eral definitions exist that do not)

36

Support Vector Machines
Maximum-Margin Perceptron Algorithm

° W(O) — 0, b(O) —0,k<—0, R+ maxlgiSN ||X,L||2
(R = radius of ball centered at origin contain-
ing training vectors), y; € {—1,+1} Vi

e Update slope same as before, update offset
differently
e While mistakes are made on training set
— Fori=1 to N (= # training vectors)
If y; (W - x; + ;) <0
S W1 < WYX
© bgy1 — b +ny; R?

-k—k+1

e Final predictor: h(x) = sgn (wy, - x + by,)

37

Support Vector Machines
Duality

e Another way of representing predictor:

N
h(x) = sgn (w-x 4+ b) = sgn (Z (ayi X)) - x+b

i=1
N
= sgn Z a;y; (x;-x)+0b
i=1
(a; = # mistakes on x;, n > 0 ignored)
e SO perceptron alg has equivalent dual form:

e a0, b+ 0, R+ Maxj<<n [1%;12

e While mistakes are made in For loop
— For i =1 to N (= # training vectors)
w1 g (S0 gy (x5%;) +b) <0
oy —ao;+1
- b b+y; R2
e Now data only in dot products

38

|

Kernels

e Duality lets us remap to many more features!

o Let ¢: R¢ — F be nonlinear map of f.v.s, so

N
h(x) = sgn (Z a;yi (¢ (%) - ¢ (%)) +b)

=1

e Can we compute ¢ (x;) - ¢ (x) without evaluat-
ing ¢ (x;) and ¢ (x)? YES!

o X = [z1,20], 2= [21, 22]:

2 2
(x-2)° = (z121 + 2222)
=x%z%+x%z§+2w1x2zlzg
= {x%,m%, V2 mg} . [z%,z%, V221 22]

B(x)

e LHS requires 2 mults 4+ 1 squaring to compute,
RHS takes 3 mults

e In general, (x-z)d takes ¢ mults 4+ 1 expon.,
d
VS. (H'fl_l) > (%) mults if compute ¢ first

39

Kernels
(cont'd)

e In general, a kernel is a function K such that
Vx,z, K(x,2) = ¢(x) - $(2)

Typically start with kernel and take the feature
mapping that it yields

Eg.Letl=1,x=uz,z2=2, K(z,2) =sin(z—=z)

By Fourier expansion,

sin(zx — 2) = ag + io: an sin(nx)sin(n z)
n=1

o0
+ Y ancos(nz) cos(n z)
n=1
for Fourier coeficients ag,aq, ...

This is the dot product of two infinite sequences

of nonlinear functions:

{¢i(x)};2o = [1,sin(z), cos(x),sin(2z), cos(2z), ..

e I.e. there are an infinite number of features in
this remapped space!

40

]

Support Vector Machines
Finding a Hyperplane

Can show [Cristianini & Shawe-Taylor] that if
data linearly separable in remapped space, then
get maximum margin classifier by minimizing
w - w subject to y; (w-x; +b) > 1

Can reformulate this into a convex quadratic
program, which can be solved optimally, i.e.
won't encounter local optima

Can always find a kernel that will make training
set linearly separable, but beware of choosing a
kernel that is too powerful (overfitting)

If kernel doesn't separate, can optimize sub-
ject to y;(w-x;+b) > 1 —¢&;, where ¢ are
slack variables that soften the margin (can still
solve optimally)

e If number of training vectors is very large, may
opt to approximately solve these problems to
save time and space

e Use e.g. gradient ascent and sequential mini-
mal optimization (SMQO) [Cristianini & Shawe-
Taylor]

41

Decision Trees [Also Mitchell, ch. 3]

e Start at root and work down tree until leaf
reached; output that classification

e E.g. x=[1/2,1/4]7 classified as w3

2

ST

N =

Bl

X

B
N~ F
N[

42

Decision Trees
Learning Good Trees [Also Mitchell, ch. 3]

e Feature at root is one that yields highest
information gain, equivalent to max. reduction
of entropy (class impurity) in training data:

S = set of N feature vectors N, = number in w;
M

Ent(S) = Y —p;1092 (p;)
i=1

p; = N;/N

e First partition along dimensions into set A of
features and places where classes change, e.g.

A= {(3317 0)7 (xlz 1/4)7 (3317 1/2)7 (‘Tlv 3/4)7 (.’132, 0)7 (127 1/2)7 (127 3/4)}
e For a = (z;,b) € A, define
Sa={X€SZIZ‘>b} Sél:{XES:fEiSb}

|Sal |Sal /
Ent(Sy) + —XEnt(S,)
5] S| ¢

N —
=0 for (z1,1/4)

Gain(S,a) = Ent(S) — <

e Choose a from A that maximizes Gain, place
it at root, then recursively call on S, and S,

e Forms basis of algorithms ID3 and C4.5
e Can avoid overfitting by pruning

43

