

• In other words, we remapped all vectors \mathbf{x} to \mathbf{y} such that the classes are linearly separable in the new vector space

- This is a <u>two-layer perceptron</u> or <u>two-layer</u> <u>feedforward neural network</u>
- Each neuron outputs 1 if its weighted sum exceeds its threshold, 0 otherwise

5

7

- Define the <u>p-dimensional unit hypercube</u> as $H_p = \left\{ \begin{bmatrix} y_1, \dots, y_p \end{bmatrix}^T \in \Re^p, y_i \in [0, 1] \, \forall i \right\}$
- A hidden layer with p neurons maps an ℓ -dim vector \mathbf{x} to a p-dim vector \mathbf{y} whose elements are corners of H_p , i.e. $y_i \in \{0, 1\} \forall i$
- Each of the p neurons corresponds to an ℓ -dim hyperplane
- The intersection* of the (pos. or neg.) half-spaces from these p hyperplanes maps to a vertex of ${\cal H}_p$
- If the classes of H_p 's vertices are linearly separable, then a perfect two-layer network exists
- I.e. a 2-layer network can separate classes consisting of unions of <u>adjacent</u> polyhedra

*Also known as polyhedra.

What Else Can We Do with Two Layers?

Three-Layer Networks

- With two-layer networks, there exist unions of polyhedra not linearly separable on ${\cal H}_p$
- I.e. there exist assignments of classes to points on *H*_p that are not linearly separable
- Solution: Add a second hidden layer of q neurons to partition H_p into regions based on class
- Output layer combines appropriate regions
- E.g. including 110 from Slide 6 in ω_1 is possible using procedure similar to XOR solution
- In general, can always use simple procedure of isolating each ω_1 node in H_p with its own second-layer hyperplane and taking disjunction
- Thus, can use 3-layer network to perfectly classify any union polyhedral regions

The Backpropagation Algorithm

- A popular way to train a neural network
- Assume the architecture is <u>fixed</u> and complete
 - $\cdot \ k_r =$ number of nodes in layer r (could have $k_L > 1)$
 - $\cdot \ w_{ji}^r =$ weight from neuron i in layer r-1 to neuron j in layer r
 - $v_{j}^{r} = \sum_{k=1}^{k_{r-1}} w_{jk}^{r} y_{k}^{r-1} + w_{j0}^{r}$
 - $\cdot \ y_{j}^{r} = f\left(v_{j}^{r}\right) = \text{output of neuron } j \text{ in layer } r$
- During training we'll attempt to minimize a cost function, so use differentiable activation func. *f*, e.g.:

$$f(v) = \frac{1}{1 + e^{-av}} \in [0, 1]$$
$$\underbrace{OR}{f(v) = c \tanh(av)} \in [-c, c]$$

.

The Backpropagation Algorithm

The Backpropagation Algorithm Intuition

- Recall derivation of Perceptron update rule:
 - Cost function:

$$U(\mathbf{w}) = \sum_{i=1}^{\ell} (w_i(t+1) - w_i(t))^2 + \eta \left(y(t) - \sum_{i=1}^{\ell} w_i(t+1)x_i(t) \right)^2$$

- Take gradient w.r.t. w(t + 1), set to 0, approximate, and solve:

$$w_i(t+1) = w_i(t) +$$
$$\eta \left(y(t) - \sum_{i=1}^{\ell} w_i(t) x_i(t) \right) x_i(t)$$

11

9

The Backpropagation Algorithm Intuition: Output Layer

- Now use similar idea with *j*th node of output layer (layer *L*):
 - Cost function:

$$U\left(\mathbf{w}_{j}^{L}\right) = \sum_{k=1}^{k_{L-1}} \left(w_{jk}^{L}(t+1) - w_{jk}^{L}(t)\right)^{2} + \eta \left[\underbrace{v_{jk}^{correct}}_{y_{j}(t)} - f\left(\underbrace{\sum_{k=1}^{k_{L-1}} w_{jk}^{L}(t+1)y_{k}^{L-1}(t)}_{k=1}\right)^{2}\right]$$

- Take gradient w.r.t. $\mathbf{w}_j^L(t+1)$ and set to 0:

$$0 = 2 \left(w_{jk}^{L}(t+1) - w_{jk}^{L}(t) \right)$$
$$- 2\eta \left[y_{j}(t) - f \left(\sum_{k=1}^{k_{L-1}} w_{jk}^{L}(t+1) y_{k}^{L-1}(t) \right) \right]$$
$$\cdot f' \left(\sum_{k=1}^{k_{L-1}} w_{jk}^{L}(t+1) y_{k}^{L-1}(t) \right) y_{k}^{L-1}(t)$$

13

The Backpropagation Algorithm Intuition: The Other Layers

- How can we compute the "error term" for the hidden layers r < L when there is no "target vector" y for these layers?
- Instead, propagate back error values from output layer toward input layers, scaling with the weights
- Scaling with the weights characterizes how much of the error term each hidden unit is "responsible for":

$$w_{jk}^{r}(t+1) = w_{jk}^{r}(t) + \eta y_{k}^{r-1}(t) \,\delta_{j}^{r}(t)$$

where

$$\delta_j^r(t) = f'\left(v_j^r(t)\right) \sum_{k=1}^{k_{r+1}} \delta_k^{r+1}(t) \, w_{kj}^{r+1}(t)$$

• Derivation comes from computing gradient of cost function w.r.t. $\mathbf{w}_{i}^{r}(t+1)$ via chain rule

15

The Backpropagation Algorithm Intuition: Output Layer (cont'd)

• Again, approximate and solve for $w_{ik}^L(t+1)$:

$$w_{jk}^{L}(t+1) = w_{jk}^{L}(t) + \eta y_{k}^{L-1}(t) \cdot \left[y_{j}(t) - f\left(\sum_{k=1}^{k_{L-1}} w_{jk}^{L}(t)y_{k}^{L-1}(t)\right) \right] \cdot f'\left(\sum_{k=1}^{k_{L-1}} w_{jk}^{L}(t)y_{k}^{L-1}(t)\right)$$

• So:

$$w_{jk}^{L}(t+1) = w_{jk}^{L}(t) + \eta y_{k}^{L-1}(t) \underbrace{\left(y_{j}(t) - f\left(v_{j}^{L}(t)\right)\right) f'\left(v_{j}^{L}(t)\right)}_{\delta_{j}^{L}(t) = "\underline{\text{error term}}"}$$

• For
$$f(v) = 1/(1 + \exp(-av))$$
:
 $\delta_j^L(t) = a \cdot y_j^L(t) \cdot (y_j(t) - y_j^L(t)) (1 - y_j^L(t))$
where $y_j(t) = \text{target}$ and $y_j^L(t) = \text{output}$

14

The Backpropagation Algorithm Example

eta	0.3		
	trial 1	trial 2	
w ca	0.1	0.1008513	0.1008513
w_cb	0.1	0.1	0.0987985
w_c0	0.1	0.1008513	0.0996498
а	1	0	
b	0	1	
const	1	1	
sum_c	0.2	0.2008513	
y_c	0.5498340	0.5500447	
w_dc	0.1	0.1189104	0.0964548
w_d0	0.1	0.1343929	0.0935679
sum_d	0.1549834	0.1997990	
y_d	0.5386685	0.5497842	
target	1	0	
delta_d	0.1146431	-0.136083	
delta_c	0.0028376	-0.004005	
delta_d(t)	$= y_d(t) * (y(t) + y_d(t))$	- y_d(t)) * (1 -	y_d(t))
delta_c(t)	= y_c(t) * (1 - y_	_c(t)) * delta_	d(t) * w_dc(
w_dc(t+1)	$= w_dc(t) + eta$	* y_c(t) * del	ta_d(t)
w_ca(t+1)	= w ca(t) + eta	* a * delta_c	(t)

Variations

(cont'd)

- Can implement a "backprop" scheme with EG
- Other nonlinear optimization schemes:
 - Conjugate gradient
 - Newton's method
 - Genetic algorithms
 - Simulated annealing
- Other cost functions, e.g. cross-entropy:

$$-\sum_{k=1}^{k_L} \left(\underbrace{\frac{label}{y_k(t)} \ln \left(y_k^L(t) \right)}_{p_k(t)} + (1 - y_k(t)) \ln \left(1 - y_k^L(t) \right) \right)$$

"blows up" if $y_k(t) \approx 1$ and $y_k^L(t) \approx 0$ or vice-versa (Section 4.8)

21

Sizing the Network

Pruning Techniques [Also see Bishop, Sec. 9.5]

- <u>Approach 1</u>: Train with backprop, periodically computing effect of varying w_i on cost func:
 - From Taylor series expansion (p. 109),

$$\overbrace{\delta J}^{cost\ change} \approx \frac{1}{2} \sum_{i} h_{ii} \, \delta w_i^2 \quad \text{where} \quad h_{ii} = \frac{\partial^2 J}{\partial^2 w_i}$$

- If $h_{ii} w_i^2/2$ (saliency factor) small, then w_i doesn't have much impact and is removed
- Now continue training with backprop
- Example (Sec 4.10): 480 wts pruned to 25

Sizing the Network

- Before training, need to choose appropriate number of layers and size of each layer
 - Too small: Cannot learn what features make same classes similar and separate classes different
 - Too large: Adapts to details of the particular training set and cannot generalize well (called <u>overfitting</u>)
 - Also, increasing size increases complexity
- Approaches:
 - <u>Analytical methods</u>: Use knowledge of data to est. number of needed layers and neurons
 - Pruning techniques: Start with a large network and periodically remove weights and neurons that don't affect output much
 - <u>Constructive techniques</u>: Start with small netw. and periodically add neurons and wts

22

Sizing the Network Pruning Techniques (cont'd) [Also see Bishop, Sec. 9.5]

• <u>Approach 2</u>: Train with backprop, but add to the cost function *J* a term that penalizes large weights:

$$J' = J + penalty$$

- If w_i 's contribution to network output is small, then its share of J is small
- So penalty term dominates w_i 's share of J', driving it down
- Periodically prune weights that get too low

Sizing the Network Constructive Techniques

Cascade Correlation [Also Bishop, Sec. 9.5]

- Start with no hidden units and train
- After training, if residual error too high, then add a hidden unit:

- Then continue training; if residual error still to high, add another hidden unit:
 - Same as HU1, but connect input units and HU1's output to inputs of HU2
- Limit the number added to avoid overfitting

25

- For arbitrary set of N points, there are 2^N ways to classify them into ω_1 and ω_2 (i.e. 2^N dichotomies)
- If classification done by a single hyperplane, then the number of <u>linear dichotomies</u> is

$$O(N, \ell) = 2 \sum_{i=0}^{\ell} {N-1 \choose i}$$
$$= 2^{N} \text{ if } N \le \ell + 1, \text{ else } < 2^{N}$$

14 linear dichotomies

8 linear dichotomies

27

Generalized Linear Classifiers Section 4.12

- In XOR problem, used linear threshold funcs. in hidden layer to map non-lin. sep. classes to new space where they were lin. sep.
- Output layer gave sep. hyperplane in new space
- Replace hidden-layer lin. thresh. funcs. with family of <u>nonlinear</u> functions $f_i : \Re^{\ell} \to \Re$, i = 1, ..., k
- Hidden layer maps $\mathbf{x} \in \Re^{\ell}$ to $\mathbf{y} = [f_1(\mathbf{x}), \dots, f_k(\mathbf{x})]^T$ and output layer finds separating hyperplane:

• I.e. approximating separating surface as linear combination of interpolation functions:

$$g(\mathbf{x}) = w_0 + \sum_{i=1}^k w_i f_i(\mathbf{x})$$

26

Generalized Linear Classifiers Cover's Theorem (cont'd)

- Thus if dimensionality $\ell \ge N-1$ then a <u>perfect</u> separating hyperplane is <u>guaranteed</u> to exist
- Otherwise (N > ℓ+1) the fraction of dichotomies that are linear dichotomies is

 For fixed N, mapping to higher dimensional space increases likelihood of ∃ of sep. hyperplane!

Support Vector Machines [See refs. on slides page]

- Introduced in 1992
- State-of-the-art technique for classification and regression
- Techniques can also be applied to e.g. clustering and principal components analysis
- Similar to polynomial classifiers and RBF networks in that it remaps inputs and then finds a hyperplane
 - Main difference is how it works
- Features of SVMs:
 - Maximization of margin
 - Duality
 - Use of <u>kernels</u>
 - Use of problem convexity to find classifier

Generalized Linear Classifiers Radial Basis Function Networks Choosing the Centers

- Randomly select from the training set
 - Might work well if training set representative of probability distribution over data
- Learn the c_i 's and σ_i^2 's via gradient descent
 - Frequently computationally complex
- First <u>cluster</u> the data (Chapters 11–16) and use results to find centers
- Use methods similar to constructive and pruning techniques when sizing neural network
 - Add new center when perceived as needed, delete unnecessary centers
 - E.g. if new input vector ${\bf x}$ far from all current centers and error high, then new center necessary, so add ${\bf x}$ as new center

34

- A hyperplane's margin γ is the shortest distance from it to any training vector
- Intuition: larger margin ⇒ higher confidence in classifier's ability to generalize
 - Guaranteed generalization error bound in terms of $1/\gamma^2$
- Definition assumes linear separability (more general definitions exist that do not)

Support Vector Machines

Maximum-Margin Perceptron Algorithm

- $\mathbf{w}(0) \leftarrow 0, b(0) \leftarrow 0, k \leftarrow 0, R \leftarrow \max_{1 \le i \le N} \|\mathbf{x}_i\|_2$ (R = radius of ball centered at origin containing training vectors), $y_i \in \{-1, +1\} \forall i$
- Update <u>slope</u> same as before, update <u>offset</u> differently
- While mistakes are made on training set
 - For i = 1 to N (= # training vectors)
 - * If $y_i (\mathbf{w}_k \cdot \mathbf{x}_i + b_k) \leq 0$
 - $\cdot \mathbf{w}_{k+1} \leftarrow \mathbf{w}_k + \eta y_i \mathbf{x}_i$
 - $\cdot b_{k+1} \leftarrow b_k + \eta y_i R^2$
 - $\cdot k \leftarrow k + 1$
- Final predictor: $h(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}_k \cdot \mathbf{x} + b_k)$
- 37

Support Vector Machines Duality

• Another way of representing predictor:

$$h(\mathbf{x}) = \operatorname{sgn} (\mathbf{w} \cdot \mathbf{x} + b) = \operatorname{sgn} \left(\sum_{i=1}^{N} (\alpha_i y_i \mathbf{x}_i) \cdot \mathbf{x} + b \right)$$
$$= \operatorname{sgn} \left(\sum_{i=1}^{N} \alpha_i y_i (\mathbf{x}_i \cdot \mathbf{x}) + b \right)$$
$$(\alpha_i = \# \text{ mistakes on } \mathbf{x}_i, \ \eta > 0 \text{ ignored})$$

- So perceptron alg has equivalent dual form:
- $\alpha \leftarrow \mathbf{0}$, $b \leftarrow \mathbf{0}$, $R \leftarrow \max_{1 \le i \le N} \|\mathbf{x}_i\|_2$
- While mistakes are made in For loop

- For
$$i = 1$$
 to N (= # training vectors)
* If $y_i \left(\sum_{j=1}^N \alpha_j y_j \left(\mathbf{x}_j \cdot \mathbf{x}_i \right) + b \right) \le 0$
 $\cdot \alpha_i \leftarrow \alpha_i + 1$
 $\cdot b \leftarrow b + y_i R^2$

• Now data only in dot products

38

Kernels

- Duality lets us remap to many more features!
- Let $\phi: \Re^{\ell} \to F$ be nonlinear map of f.v.s, so

$$h(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^{N} \alpha_{i} y_{i} \left(\phi\left(\mathbf{x}_{i}\right) \cdot \phi\left(\mathbf{x}\right)\right) + b\right)$$

- Can we compute φ(x_i) · φ(x) without evaluating φ(x_i) and φ(x)? <u>YES!</u>
- $\mathbf{x} = [x_1, x_2], \ \mathbf{z} = [z_1, z_2]:$ $(\mathbf{x} \cdot \mathbf{z})^2 = (x_1 z_1 + x_2 z_2)^2$ $= x_1^2 z_1^2 + x_2^2 z_2^2 + 2 x_1 x_2 z_1 z_2$ $= \underbrace{[x_1^2, x_2^2, \sqrt{2} x_1 x_2]}_{\phi(\mathbf{x})} \cdot [z_1^2, z_2^2, \sqrt{2} z_1 z_2]$
- LHS requires 2 mults + 1 squaring to compute, RHS takes 3 mults
- In general, $(\mathbf{x} \cdot \mathbf{z})^d$ takes ℓ mults + 1 expon., vs. $\binom{\ell+d-1}{d} \ge \left(\frac{\ell+d-1}{d}\right)^d$ mults if compute ϕ first

39

Kernels (cont'd)

- In general, a <u>kernel</u> is a function K such that $\forall \mathbf{x}, \mathbf{z}, K(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x}) \cdot \phi(\mathbf{z})$
- Typically start with kernel and take the feature mapping that it yields
- E.g. Let $\ell = 1, x = x, z = z, K(x, z) = \sin(x-z)$
- By Fourier expansion,

$$\sin(x-z) = a_0 + \sum_{n=1}^{\infty} a_n \sin(nx) \sin(nz) + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nz)$$

for Fourier coefficients a_0, a_1, \ldots

 This is the dot product of two infinite sequences of nonlinear functions:

 $\{\phi_i(x)\}_{i=0}^{\infty} = [1, \sin(x), \cos(x), \sin(2x), \cos(2x), \ldots]$

• I.e. there are an infinite number of features in this remapped space!

Support Vector Machines Finding a Hyperplane

- Can show [Cristianini & Shawe-Taylor] that if data linearly separable in remapped space, then get maximum margin classifier by minimizing $\mathbf{w} \cdot \mathbf{w}$ subject to $y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$
- Can reformulate this into a <u>convex quadratic</u> <u>program</u>, which can be solved optimally, i.e. won't encounter local optima
- Can always find a kernel that will make training set linearly separable, but <u>beware of choosing a</u> <u>kernel that is too powerful</u> (overfitting)
- If kernel doesn't separate, can optimize subject to $y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \xi_i$, where ξ_i are <u>slack variables</u> that <u>soften</u> the margin (can still solve optimally)
- If number of training vectors is very large, may opt to <u>approximately</u> solve these problems to save time and space
- Use e.g. gradient ascent and sequential minimal optimization (SMO) [Cristianini & Shawe-Taylor]

41

Decision Trees [Also Mitchell, ch. 3]

- Start at root and work down tree until leaf reached; output that classification
- E.g. $\mathbf{x} = [1/2, 1/4]^T$ classified as ω_3

Decision Trees

Learning Good Trees [Also Mitchell, ch. 3]

• Feature at root is one that yields highest information gain, equivalent to max. reduction of <u>entropy</u> (class impurity) in training data:

S = set of N feature vectors $N_i = \text{number in } \omega_i$

$$p_i = N_i / N$$
 $Ent(S) = \sum_{i=1}^{M} -p_i \log_2(p_i)$

• First partition along dimensions into set *A* of features and places where classes change, e.g.

 $A = \{(x_1, 0), (x_1, 1/4), (x_1, 1/2), (x_1, 3/4), (x_2, 0), (x_2, 1/2), (x_2, 3/4)\}$

• For $a = (x_i, b) \in A$, define

 $S_a = \{\mathbf{x} \in S : x_i > b\} \qquad S'_a = \{\mathbf{x} \in S : x_i \le b\}$ $Gain(S, a) = Ent(S) - \left(\frac{|S_a|}{|S|}Ent(S_a) + \frac{|S'_a|}{|S|}Ent(S'_a)\right)$ $= 0 \text{ for } (x_1, 1/4)$

- Choose a from A that maximizes Gain, place it at root, then recursively call on S_a and S'_a
- Forms basis of algorithms ID3 and C4.5
- Can avoid overfitting by pruning