
CSCE 970 Lecture 3:
Linear Classifiers

Stephen D. Scott

January 22, 2001

1

Introduction

• Sometimes probabilistic information unavailable

or mathematically intractable

• Many alternatives to Bayesian classification,

but optimality guarantee may be compromised!

• Linear classifiers use a decision hyperplane to

perform classification

• Simple and efficient to train and use

• Optimality requires linear separability of classes

= Class A

= Class B

= unclassified

= decision line

2

Linear Discriminant Functions

• Let w = [w1, . . . , w`]
T be a weight vector and

w0 (a.k.a. θ) be a threshold

• Decision surface is a hyperplane:

w
T · x + w0 = 0

• E.g. predict ω2 if
∑`

i=1 wixi > w0, otherwise

predict ω1

• Focus of this lecture: How to find wi’s

– Perceptron algorithm

– Winnow

– Least squares methods (if classes not lin-

early separable)

3

The Perceptron Algorithm

• Assume linear separability, i.e. ∃w
∗ s.t.

w
∗T · x > 0 ∀x ∈ ω1

w
∗T · x ≤ 0 ∀x ∈ ω2

(w∗0 is included in w
∗)

• So ∃ deterministic function clasifying vectors

(contrary to Ch. 2 assumptions)

w1

w
i

Σ
i

w0 (ω)1

w01 if sum >

(ω)2

0 otherwise

1

i

x

x

x

l wl

y(t)=

y(t)=

May also use +1 and -1

• Given actual label y(t) for trial t, update weights:

w(t + 1) = w(t) + ρ(y(t)− ŷ(t))x(t)

· ρ > 0 is learning rate

· (y(t)− ŷ(t)) moves weights toward correct

prediction for x

4

The Perceptron Algorithm

Example

x2

x1

(ω)1

2
(ω)

w(t)

our dec. line

x(t)

w* w(t+1)

our new dec. line

opt. dec. line

0w = 0
y(t) = 1
y(t) = 0

5

The Perceptron Algorithm

Intuition

• Compromise between correctiveness and

conservativeness

– Correctiveness: Tendency to improve on x(t)

if prediction error made

– Conservativeness: Tendency to keep

w(t + 1) close to w(t)

• Use cost function that measures both:

U(w) =

conserv.
︷ ︸︸ ︷

‖w(t + 1)−w(t)‖22 +
coef.
︷︸︸︷
η

corrective
︷ ︸︸ ︷

(y −w(t + 1) · x(t))2

=
∑̀

i=1

(wi(t + 1)− wi(t))
2 +

η

y(t)−
∑̀

i=1

wi(t + 1)xi(t)

2

6

The Perceptron Algorithm

Intuition

(cont’d)

• Take gradient w.r.t. w(t + 1) and set to 0:

0 =2 (wi(t + 1)− wi(t))−

2η

y(t)−
∑̀

i=1

wi(t + 1)xi(t)

xi(t)

• Approximate with

0 =2 (wi(t + 1)− wi(t))−

2η

y(t)−
∑̀

i=1

wi(t)xi(t)

xi(t),

which yields

wi(t + 1) = wi(t) +

η

y(t)−
∑̀

i=1

wi(t)xi(t)

xi(t)

• Applying threshold to summation yields

wi(t + 1) = wi(t) + η(y(t)− ŷ(t))xi(t)

7

The Perceptron Algorithm

Miscellany

• If classes linearly separable, then by cycling

through vectors,

guaranteed to converge in finite number of steps

• For real-valued output, can replace threshold

function on sum with

– Identity function: f(x) = x

– Sigmoid function: e.g. f(x) = 1
1+exp(−ax)

– Hyperbolic tangent: e.g. f(x) = c tanh(ax)

8

Winnow/Exponentiated Gradient

w1

w
i

Σ
i

w0 (ω)1

w01 if sum >

(ω)2

0 otherwise

1

i

x

x

x

l wl

y(t)=

y(t)=

May also use +1 and -1

• Same as Perceptron, but update weights:

wi(t + 1) = wi(t) exp (−2η(ŷ(t)− y(t))xi(t))

• If y(t), ŷ(t) ∈ {0,1} ∀t, then set η = (lnα)/2

(α > 1) and get Winnow:

wi(t + 1) =

wi(t)/αxi(t) if ŷ(t) = 1, y(t) = 0

wi(t)α
xi(t) if ŷ(t) = 0, y(t) = 1

wi(t) if ŷ(t) = y(t)

9

Winnow/Exponentiated Gradient

Intuition

• Measure distance in cost function with

unnormalized relative entropy:

U(w) =

conserv.
︷ ︸︸ ︷

∑̀

i=1

(

wi(t)− wi(t + 1) + wi(t + 1) ln
wi(t + 1)

wi(t)

)

+
coef.
︷︸︸︷
η

corrective
︷ ︸︸ ︷

(y −w(t + 1) · x(t))2

• Take gradient w.r.t. w(t + 1) and set to 0:

0 = ln
wi(t + 1)

wi(t)
− 2η

y(t)−
∑̀

i=1

wi(t + 1)xi(t)

xi(t)

• Approximate with

0 = ln
wi(t + 1)

wi(t)
− 2η

y(t)−
∑̀

i=1

wi(t)xi(t)

xi(t),

which yields

wi(t + 1) = wi(t) exp (−2η (ŷ(t)− y(t)) xi(t))

10

Winnow/Exponentiated Gradient

Negative Weights

• Winnow and EG update wts by mult by a pos

const, impossible to change sign

– Weight vectors restricted to one quadrant

• Solution: Maintain wt vectors w
+(t) and w

−(t)

– Predict ŷ(t) =
(

w
+(t)−w

−(t)
)

· x(t)

– Update:

r+i (t) = exp (−2η (ŷ(t)− y(t)) xi(t)U)

r−i (t) = 1/r+i (t)

w+
i (t + 1) = U ·

w+
i (t)r+i (t)

∑`
j=1

(

w+
i (t)r+i (t) + w−i (t)r−i (t)

)

U and denominator normalize wts for proof of error

bound

Kivinen & Warmuth, “Additive Versus Exponen-

tiated Gradient Updates for Linear Prediction.”

Information and Computation, 132(1):1–64, Jan.
1997. [see web page]

11

Winnow/Exponentiated Gradient

Miscellany

• Winnow and EG are muliplicative weight update

schemes versus additive weight update schemes,

e.g. Perceptron

• Winnow and EG work well when most attributes

(features) are irrelevant, i.e. optimal weight

vector w
∗ is sparse (many 0 entries)

• E.g. xi ∈ {0,1}, x’s are labelled by a monotone

k-disjunction over ` attributes, k � `

– Remaining `− k are irrelevant

– E.g. x5 ∨ x9 ∨ x12, ` = 150, k = 3

– For disjunctions, number of on-line

prediction mistakes is O(k log `) for Winnow

and worst-case Ω(k`) for Perceptron

– So in worst case, need exponentially fewer

updates for training in Win. than Percep.

• Other bounds exist for real-valued inputs and

outputs

12

Non-Linearly Separable Classes

• What if no hyperplane completely separates

the classes?

• Add extra inputs that are nonlinear combina-

tions of original inputs (Section 4.14)

– E.g. attribs. x1 and x2, so try

x =
[

x1, x2, x1x2, x2
1, x2

2, x2
1x2, x1x2

2

]T

– Perhaps classes linearly separable in new fea-

ture space

– Useful esp. with Winnow/EG logarithmic

bounds

– Kernel functions/SVMs

• Pocket algorithm (p. 63) guarantees conver-

gence to best hyperplane

• Winnow’s & EG’s agnostic results

• Least squares methods (Sec. 3.4)

• Networks of classifiers (Ch. 4)

13

Non-Linearly Separable Classes

Winnow’s Agnostic Results

• Winnow’s total number of prediction mistakes

loss (in on-line setting) provably not much worse

than best linear classifier

= Class B

= Class A optimal decision line

• Loss bound related to performance of best

classifier and total distance under ‖ · ‖1 that

feature vectors must be moved to make best

classifier perfect [Littlestone, COLT ’91]

• Similar bounds for EG [Kivinen & Warmuth]

14

Non-Linearly Separable Classes

Least Squares Methods

• Recall from Slide 7:

wi(t + 1) = wi(t) + η

y(t)−
∑̀

i=1

wi(t)xi(t)

xi(t)

= wi(t) + η
(

y(t)−w(t)T · x(t)
)

xi(t)

• If we don’t threshold dot product during train-

ing and allow η to vary each trial (i.e. substi-

tute ηt), get∗ Eq. 3.38, p. 69:

w(t + 1) = w(t) + ηt x(t)
(

y(t)−w(t)T · x(t)
)

• This is Least Mean Squares (LMS) Algorithm

• If e.g. ηt = 1/t, then

lim
t→∞

P
(

w(t) = w
∗) = 1,

where

w
∗ = argmin

w∈<`

{

E

[∣
∣
∣y −w

T · x
∣
∣
∣
2
]}

is vector minimizing mean square error (MSE)

∗Note that here w(t) is weight before trial t. In book it is
weight after trial t.

15

Multiclass learning

Kessler’s Construction

ω1

ω2

3ω

ω1 3ω

ω2

= Class

= Class

= Class

 ’s line

 ’s line

 ’s line

[2,2]

• For∗ x = [2,2,1]T of class ω1, want

`+1
∑

i=1

w1ixi >
`+1
∑

i=1

w2ixi AND
`+1
∑

i=1

w1ixi >
`+1
∑

i=1

w3ixi

∗The extra 1 is added so threshold can be placed in w.

16

Multiclass learning

Kessler’s Construction (cont’d)

• So map x to

x1 = [

orig.
︷ ︸︸ ︷

2,2,1,

neg
︷ ︸︸ ︷

−2,−2,−1,

pad
︷ ︸︸ ︷

0,0,0]T

x2 = [2,2,1,0,0,0,−2,−2,−1]T

and let

w = [
w1

︷ ︸︸ ︷
w11, w12, w10,

w2
︷ ︸︸ ︷
w21, w22, w20,

w3
︷ ︸︸ ︷
w31, w32, w30]

T

• Now if w
∗T · x1 > 0 and w

∗T · x2 > 0, then

`+1
∑

i=1

w∗1ixi >
`+1
∑

i=1

w∗2ixi AND
`+1
∑

i=1

w∗1ixi >
`+1
∑

i=1

w∗3ixi

• In general, map (` +1)× 1 feature vector x to

x1, . . .xM−1, each of size (` + 1)M × 1

• x ∈ ωi ⇒ x in ith block and −x in jth block,

(rest are 0s). Repeat for all j 6= i

• Now train to find weights for new vector space

17

Multiclass learning

Error-Correcting Output Codes (ECOC)

• Since Win. & Percep. learn binary functions,

learn individual bits of binary encoding of classes

• E.g. M = 4, so use two linear classifiers:

Class Binary Encoding
Classifier 1 Classifier 2

ω1 0 0
ω2 0 1
ω3 1 0
ω4 1 1

and train simultaneously

• Problem: Sensitive to individual classifier er-

rors, so use a set of encodings per class to

improve robustness

• Similar to principle of error-correcting output

codes used in communication networks

[Dietterich & Bakiri, 1995]

• General-purpose, independent of learner

18

