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Introduction

e Sometimes probabilistic information unavailable
or mathematically intractable

Many alternatives to Bayesian classification,
but optimality guarantee may be compromised!

Linear classifiers use a decision hyperplane to
perform classification

Simple and efficient to train and use

Optimality requires linear separability of classes
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Linear Discriminant Functions

Let w = [wy,... ,w/]” be a weight vector and
wqg (a.k.a. ) be a threshold

Decision surface is a hyperplane:

WT~X+w0:O

E.g. predict wp if Yf_ wiz; > wo, otherwise
predict wq

Focus of this lecture: How to find w;'s

— Perceptron algorithm
— Winnow

— Least squares methods (if classes not lin-
early separable)

The Perceptron Algorithm

e Assume linear separability, i.e. Iw* s.t.

wT. x>0 Vxew
wl.x<0 Vxews
(w§ is included in w*)

e SO d deterministic function clasifying vectors
(contrary to Ch. 2 assumptions)

(o1)
Y(H)=1if sum>wy

J(t)=0 otherwise
(0,)

May asouse+1and -1

e Given actual label y(t) for trial t, update weights:
w(t+1) = w(t) + py(t) — y(t))x(t)
- p> 0 is learning rate

- (y(t) — y(t)) moves weights toward correct
prediction for x




The Perceptron Algorithm
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The Perceptron Algorithm
Intuition

o Compromise between correctiveness and
conservativeness

— Correctiveness: Tendency to improve on x(t)
if prediction error made

— Conservativeness: Tendency to keep
w(t+ 1) close to w(t)

e Use cost function that measures both:

conserv. corrective
coef.

Uw) = |wt+1) —w®3+ 7 (y— wt+1)-x(t)?

0
=3 (wit +1) —wi(t))* +
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? 2
n (y(t) - > wit+ 1)wi(t))
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The Perceptron Algorithm
Intuition
(cont'd)

e Take gradient w.r.t. w(t 4+ 1) and set to O:

0 =2 (wi(t+ 1) —w;(t)) —
¢
2n (y(t) = wi(t+ 1)%’(0) z;(t)

i=1
e Approximate with

0 =2(w;(t+1) —w(t)) —
l
2n (y(t) -> wi(t)mi(t)> z;(t),

i=1
which yields
wi(t+ 1) = w;(t) +

/
n (y(t) - wi(t)mi(t)) z;(t)

i=1

e Applying threshold to summation yields
wi(t + 1) = wi(t) +n(y(t) — 5(t))=;(t)
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The Perceptron Algorithm
Miscellany

e If classes linearly separable, then by cycling
through vectors,
guaranteed to converge in finite number of steps

e For real-valued output, can replace threshold
function on sum with

— Identity function: f(z) =«
— Sigmoid function: e.g. f(z) = m

— Hyperbolic tangent: e.g. f(z) = c tanh(ax)




Winnow/Exponentiated Gradient

(o)
JO=1if sum >wy

y(t)=0 otherwise
(w,)

May alsouse+1land -1
e Same as Perceptron, but update weights:
wi(t 4+ 1) = w;(t) exp (—2n(y(¢) — y(¥))zi(t))

o If y(t),5(t) € {0,1}Vt, then set n = (Ina)/2
(a> 1) and get Winnow:

w;()/a®® if §(t) =1, y(t) =0
wi(t+1) = Sw;(®a®®  if ) =0, y(t) =1
w;(t) it §(t) = y(t)

Winnow/Exponentiated Gradient
Intuition

e Measure distance in cost function with
unnormalized relative entropy:

conserv.

J4
Uw)=> (wl—(t) —wi(t+ 1) +w;(t+1)In
i=1

w;(t + 1)>
w;(t)

corrective
coef.

+ 7 (y—w(t+1)-x(1)?

e Take gradient w.r.t. w(t+ 1) and set to O:

. l
o=@l T 5 (ya) S wili+ 1)xi(t)) ()

w;(t) i=1

e Approximate with

) l
0= UED o ()= 3 wi (@) | a0,

which yields
wi(t + 1) = w;(t) exp (—2n (F(t) —y(t)) zi(t))
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Winnow/Exponentiated Gradient
Negative Weights

e Winnow and EG update wts by mult by a pos
const, impossible to change sign

— Weight vectors restricted to one quadrant

e Solution: Maintain wt vectors wt(t) and w—(t)
— Predict §(t) = (wF () — w= (1)) - x(t)
— Update:
rif (#) = exp (=21 (§(1) — y(1) z(H)V)
() =1/r} ()

wit O )
Shoy (wit Ort @) 4+ w; (Or; @)

wit+1)=0U-

U and denominator normalize wts for proof of error
bound

Kivinen & Warmuth, “Additive Versus Exponen-
tiated Gradient Updates for Linear Prediction.”
Information and Computation, 132(1):1-64, Jan.
1997. [see web page]
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Winnow/Exponentiated Gradient
Miscellany

e Winnow and EG are muliplicative weight update
schemes versus additive weight update schemes,
e.g. Perceptron

e Winnow and EG work well when most attributes
(features) are irrelevant, i.e. optimal weight
vector w* is sparse (many 0 entries)

e E.g. z; € {0,1}, x's are labelled by a monotone
k-disjunction over ¢ attributes, k£ <« /¢

— Remaining ¢ — k are irrelevant
— E.g. 25 Vaxg V10, £ =150, k=3

— For disjunctions, number of on-line
prediction mistakes is O(k log £) for Winnow
and worst-case Q(k¢) for Perceptron

— So in worst case, need exponentially fewer
updates for training in Win. than Percep.

e Other bounds exist for real-valued inputs and
outputs
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Non-Linearly Separable Classes

e What if no hyperplane completely separates
the classes?

e Add extra inputs that are nonlinear combina-
tions of original inputs (Section 4.14)

E.g. attribs. 1 and x5, so try

T
X = |:£l7]_, T2, T1L2, x%7 x%v $%$2, $1$%]
— Perhaps classes linearly separable in new fea-
ture space

Useful esp. with Winnow/EG logarithmic
bounds

Kernel functions/SVMs

e Pocket algorithm (p. 63) guarantees conver-
gence to best hyperplane

e Winnow's & EG’'s agnostic results
e Least squares methods (Sec. 3.4)

e Networks of classifiers (Ch. 4)
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Non-Linearly Separable Classes
Winnow's Agnostic Results

e Winnow's total number of prediction mistakes
loss (in on-line setting) provably not much worse
than best linear classifier

() =ClassA O O opti/r:nal decision line
=ClassB O /’
" oo~ 4
o/ +
o o+
S+
- +
’ A +
e O]

e Loss bound related to performance of best
classifier and total distance under || - |1 that
feature vectors must be moved to make best
classifier perfect [Littlestone, COLT '91]

e Similar bounds for EG [Kivinen & Warmuth]
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Non-Linearly Separable Classes
Least Squares Methods

e Recall from Slide 7:

¢
wi(t + 1) = w;(t) +n (y(t) -y wi(t)l’z‘(t)) x;(t)

i=1

= w;(t) + 7 (y(&) = w(t) - x(1)) z;(t)

e If we don’t threshold dot product during train-
ing and allow n to vary each trial (i.e. substi-
tute n), get* Eqg. 3.38, p. 69:

w(t+1) = w(t) +n x(8) (&) - w(®) - x(®))

e This is Least Mean Squares (LMS) Algorithm

o If e.9g. qy = 1/t, then
lim P (w(t) = w*) =1,
t—o0
where

2

w* = argmin {E Uy — wT.x‘ ”
weRl

is vector minimizing mean square error (MSE)

*Note that here w(t) is weight before trial t. In book it is
weight after trial ¢.
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Multiclass learning
Kessler's Construction

u)l'slineiii /w3 sline
C22)
K ; O

X ¥ /N0 O
77777777777777 ;. wsline

=Class wy ,’l
+ =Classw, /
X =Class g / +

e For* x = [2,2,1]7 of class wi, want

{+1 {+1 {+1 {+1
Z wq4%5 > Z wo;x; AND Z WX > Z w3;T;
=1 =1 =1 =1

*The extra 1 is added so threshold can be placed in w.
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Multiclass learning
Kessler's Construction (cont'd)

e SO map x to

orig. neg pad
x1=[2,2,1,-2,-2,-1,0,0,0]"
xo = [2,2,1,0,0,0,—2,—2,—1]T
and let
w1 wWo w3
W = [w117w12,w107w21aw227w207w31aw32aw30]T

e Now if w*T'.x; >0 and w*T'. x5 > 0, then

+1 +1 41 41
> owimp> Y whxz;, AND Y wim > Y wh
i=1 i=1 i=1 i=1

e In general, map (/4 1) x 1 feature vector x to
X1,...Xp7—1, €ach of size (4+ 1)M x 1

e X € w; = x in ¢th block and —x in jth block,
(rest are 0s). Repeat for all j # 4

e Now train to find weights for new vector space
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Multiclass learning
Error-Correcting Output Codes (ECOCQC)

e Since Win. & Percep. learn binary functions,
learn individual bits of binary encoding of classes

e E.g. M = 4, so use two linear classifiers:

Class Binary Encoding
Classifier 1 Classifier 2
w1 0 0
wo 0 1
w3 1 0
w4 1 1

and train simultaneously

e Problem: Sensitive to individual classifier er-
rors, so use a set of encodings per class to
improve robustness

e Similar to principle of error-correcting output
codes used in communication networks
[Dietterich & Bakiri, 1995]

e General-purpose, independent of learner
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