|                                                                                                                          | Introduction                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                          | <ul> <li>Sometimes probabilistic information unavailable<br/>or mathematically intractable</li> </ul>                                                                                                                               |
| CSCE 970 Lecture 3:<br>Linear Classifiers                                                                                | • Many alternatives to Bayesian classification,<br>but optimality guarantee may be compromised!                                                                                                                                     |
|                                                                                                                          | <ul> <li><u>Linear classifiers</u> use a <u>decision hyperplane</u> to<br/>perform classification</li> </ul>                                                                                                                        |
| Stephen D. Scott                                                                                                         | • Simple and efficient to train and use                                                                                                                                                                                             |
|                                                                                                                          | <ul> <li>Optimality requires <u>linear separability</u> of classes</li> </ul>                                                                                                                                                       |
| January 22, 2001                                                                                                         | $\bigcirc = \text{Class A} + = \text{Class B} \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                                                      |
| 1                                                                                                                        | 2                                                                                                                                                                                                                                   |
|                                                                                                                          | The Perceptron Algorithm                                                                                                                                                                                                            |
| Linear Discriminant Functions                                                                                            | • Assume linear separability, i.e. $\exists w^*$ s.t.                                                                                                                                                                               |
| • Let $\mathbf{w} = [w_1, \dots, w_\ell]^T$ be a <u>weight vector</u> and $w_0$ (a.k.a. $\theta$ ) be a <u>threshold</u> | $ \begin{split} \mathbf{w}^{*T} \cdot \mathbf{x} &> 0  \forall  \mathbf{x} \in \omega_1 \\ \mathbf{w}^{*T} \cdot \mathbf{x} &\leq 0  \forall  \mathbf{x} \in \omega_2 \\ (w_0^* \text{ is included in } \mathbf{w}^*) \end{split} $ |
| • Decision surface is a hyperplane:<br>$\mathbf{w}^T \cdot \mathbf{x} + w_0 = 0$                                         | <ul> <li>So ∃ deterministic function clasifying vectors<br/>(contrary to Ch. 2 assumptions)</li> </ul>                                                                                                                              |
| • E.g. predict $\omega_2$ if $\sum_{i=1}^\ell w_i x_i > w_0,$ otherwise predict $\omega_1$                               | $x_{1} \xrightarrow{w_{1}} \hat{y}(t) = 0 \text{ otherwise}$ $(\omega_{1})$ $(\omega_{1})$ $\hat{y}(t) = 1 \text{ if sum} > w_{0}$ $\hat{y}(t) = 0 \text{ otherwise}$                                                               |
| • Focus of this lecture: How to find $w_i$ 's                                                                            | ( $\omega_2$ )<br>May also use +1 and -1                                                                                                                                                                                            |
| <ul> <li>Perceptron algorithm</li> </ul>                                                                                 | • Given actual label $y(t)$ for <u>trial</u> $t$ , update weights:                                                                                                                                                                  |
| – Winnow                                                                                                                 | $\mathbf{w}(t+1) = \mathbf{w}(t) + \rho(\mathbf{y}(t) - \hat{\mathbf{y}}(t))\mathbf{x}(t)$                                                                                                                                          |
| <ul> <li>Least squares methods (if classes not lin-<br/>early separable)</li> </ul>                                      | • $\rho > 0$ is learning rate<br>• $(y(t) - \hat{y}(t))$ moves weights toward correct<br>prediction for x                                                                                                                           |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Winnow/Exponentiated Gradient<br>Intuition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Winnow/Exponentiated Gradient<br>$ \begin{array}{c}  & \begin{array}{c}  & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & $ | • Measure distance in cost function with<br><u>unnormalized relative entropy</u> :<br>$U(\mathbf{w}) = \sum_{i=1}^{\ell} \left( w_i(t) - w_i(t+1) + w_i(t+1) \ln \frac{w_i(t+1)}{w_i(t)} \right)$ $+ \widehat{\eta} (y - \mathbf{w}(t+1) + \mathbf{w}(t+1) \ln \frac{w_i(t+1)}{w_i(t)} + \widehat{\eta} (y - \mathbf{w}(t+1) + \mathbf{w}(t+1))^2$ • Take gradient w.r.t. $\mathbf{w}(t+1)$ and set to 0:<br>$0 = \ln \frac{w_i(t+1)}{w_i(t)} - 2\eta \left( y(t) - \sum_{i=1}^{\ell} w_i(t+1)x_i(t) \right) x_i(t)$ • Approximate with<br>$0 = \ln \frac{w_i(t+1)}{w_i(t+1)} - 2\eta \left( y(t) - \sum_{i=1}^{\ell} w_i(t)x_i(t) \right) x_i(t)$                                                                                                                                                                      |
| $w_i(t)$ if $\hat{y}(t) = y(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $w_{i}(t) = 2\eta \left( y(t) - \sum_{i=1}^{n} w_{i}(t) x_{i}(t) \right) x_{i}(t),$ which yields $w_{i}(t+1) = w_{i}(t) \exp\left(-2\eta \left(\hat{y}(t) - y(t)\right) x_{i}(t)\right)$ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Winnow/Exponentiated Gradient<br>Negative Weights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Winnow/Exponentiated Gradient<br>Miscellany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>Winnow/Exponentiated Gradient<br/>Negative Weights</li> <li>Winnow and EG update wts by mult by a pos<br/>const, impossible to change sign</li> <li>Woight vectors restricted to one guadrant</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Winnow/Exponentiated Gradient<br/>Miscellany</li> <li>Winnow and EG are <u>muliplicative weight update</u><br/>schemes versus <u>additive weight update</u> schemes,<br/>e.g. Perceptron</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Winnow/Exponentiated Gradient<br/>Negative Weights</li> <li>Winnow and EG update wts by mult by a pos<br/>const, impossible to change sign <ul> <li>Weight vectors restricted to one quadrant</li> </ul> </li> <li>Solution: Maintain wt vectors w<sup>+</sup>(t) and w<sup>-</sup>(t)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Winnow/Exponentiated Gradient<br/>Miscellany</li> <li>Winnow and EG are <u>muliplicative weight update</u><br/>schemes versus <u>additive weight update</u> schemes,<br/>e.g. Perceptron</li> <li>Winnow and EG work well when most attributes<br/>(features) are <u>irrelevant</u>, i.e. optimal weight<br/>vector w* is sparse (many 0 entries)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Winnow/Exponentiated Gradient<br>Negative Weights<br>• Winnow and EG update wts by mult by a pos<br>const, impossible to change sign<br>– Weight vectors restricted to one quadrant<br>• Solution: Maintain wt vectors $\mathbf{w}^+(t)$ and $\mathbf{w}^-(t)$<br>– Predict $\hat{y}(t) = (\mathbf{w}^+(t) - \mathbf{w}^-(t)) \cdot \mathbf{x}(t)$<br>– Update:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Winnow/Exponentiated Gradient<br/>Miscellany</li> <li>Winnow and EG are muliplicative weight update<br/>schemes versus additive weight update schemes,<br/>e.g. Perceptron</li> <li>Winnow and EG work well when most attributes<br/>(features) are irrelevant, i.e. optimal weight<br/>vector w* is sparse (many 0 entries)</li> <li>E.g. x<sub>i</sub> ∈ {0, 1}, x's are labelled by a monotone<br/>k-disjunction over l attributes, k ≪ l</li> </ul>                                                                                                                                                                                                                                                                                                                                                        |
| Winnow/Exponentiated Gradient<br>Negative Weights<br>• Winnow and EG update wts by mult by a pos<br>const, impossible to change sign<br>– Weight vectors restricted to one quadrant<br>• Solution: Maintain wt vectors $\mathbf{w}^+(t)$ and $\mathbf{w}^-(t)$<br>– Predict $\hat{y}(t) = (\mathbf{w}^+(t) - \mathbf{w}^-(t)) \cdot \mathbf{x}(t)$<br>– Update:<br>$r_i^+(t) = \exp(-2\eta (\hat{y}(t) - y(t)) x_i(t)U)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Winnow/Exponentiated Gradient<br/>Miscellany</li> <li>Winnow and EG are muliplicative weight update<br/>schemes versus additive weight update schemes,<br/>e.g. Perceptron</li> <li>Winnow and EG work well when most attributes<br/>(features) are irrelevant, i.e. optimal weight<br/>vector w* is sparse (many 0 entries)</li> <li>E.g. x<sub>i</sub> ∈ {0, 1}, x's are labelled by a monotone<br/>k-disjunction over l attributes, k ≪ l</li> <li>Remaining l – k are irrelevant</li> </ul>                                                                                                                                                                                                                                                                                                                |
| Winnow/Exponentiated Gradient<br>Negative Weights<br>• Winnow and EG update wts by mult by a pos-<br>const, impossible to change sign<br>– Weight vectors restricted to one quadrant<br>• Solution: Maintain wt vectors $\mathbf{w}^+(t)$ and $\mathbf{w}^-(t)$<br>– Predict $\hat{y}(t) = (\mathbf{w}^+(t) - \mathbf{w}^-(t)) \cdot \mathbf{x}(t)$<br>– Update:<br>$r_i^+(t) = \exp(-2\eta (\hat{y}(t) - y(t)) x_i(t) U)$<br>$r_i^-(t) = 1/r_i^+(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Winnow/Exponentiated Gradient<br/>Miscellany</li> <li>Winnow and EG are muliplicative weight update<br/>schemes versus additive weight update schemes,<br/>e.g. Perceptron</li> <li>Winnow and EG work well when most attributes<br/>(features) are irrelevant, i.e. optimal weight<br/>vector w* is sparse (many 0 entries)</li> <li>E.g. x<sub>i</sub> ∈ {0, 1}, x's are labelled by a monotone<br/>k-disjunction over ℓ attributes, k ≪ ℓ</li> <li>Remaining ℓ - k are irrelevant</li> <li>E.g. x<sub>5</sub> ∨ x<sub>9</sub> ∨ x<sub>12</sub>, ℓ = 150, k = 3</li> </ul>                                                                                                                                                                                                                                   |
| Winnow/Exponentiated Gradient<br>Negative Weights<br>• Winnow and EG update wts by mult by a pos<br>const, impossible to change sign<br>– Weight vectors restricted to one quadrant<br>• Solution: Maintain wt vectors $\mathbf{w}^+(t)$ and $\mathbf{w}^-(t)$<br>– Predict $\hat{y}(t) = (\mathbf{w}^+(t) - \mathbf{w}^-(t)) \cdot \mathbf{x}(t)$<br>– Update:<br>$r_i^+(t) = \exp(-2\eta (\hat{y}(t) - y(t)) x_i(t)U)$<br>$r_i^-(t) = 1/r_i^+(t)$<br>$w_i^+(t+1) = U \cdot \frac{w_i^+(t)r_i^+(t)}{\sum_{j=1}^{\ell} (w_i^+(t)r_i^+(t) + w_i^-(t)r_i^-(t))}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Winnow/Exponentiated Gradient<br>Miscellany• Winnow and EG are muliplicative weight update<br>schemes versus additive weight update schemes,<br>e.g. Perceptron• Winnow and EG work well when most attributes<br>(features) are irrelevant, i.e. optimal weight<br>vector w* is sparse (many 0 entries)• E.g. $x_i \in \{0, 1\}$ , x's are labelled by a monotone<br>$k$ -disjunction over $\ell$ attributes, $k \ll \ell$ - Remaining $\ell - k$ are irrelevant- E.g. $x_5 \lor x_9 \lor x_{12}$ , $\ell = 150$ , $k = 3$ - For disjunctions, number of on-line<br>prediction mistakes is $O(k \log \ell)$ for Winnow<br>and worst-case $\Omega(k\ell)$ for Perceptron                                                                                                                                                 |
| Winnow/Exponentiated Gradient<br>Negative Weights<br>• Winnow and EG update wts by mult by a pos-<br>const, impossible to change sign<br>– Weight vectors restricted to one quadrant<br>• Solution: Maintain wt vectors $\mathbf{w}^+(t)$ and $\mathbf{w}^-(t)$<br>– Predict $\hat{y}(t) = (\mathbf{w}^+(t) - \mathbf{w}^-(t)) \cdot \mathbf{x}(t)$<br>– Update:<br>$r_i^+(t) = \exp(-2\eta(\hat{y}(t) - y(t)) x_i(t)U)$<br>$r_i^-(t) = 1/r_i^+(t)$<br>$w_i^+(t+1) = U \cdot \frac{w_i^+(t)r_i^+(t)}{\sum_{j=1}^{\ell}(w_i^+(t)r_i^+(t) + w_i^-(t)r_i^-(t))}$<br>U and denominator normalize wts for proof of error bound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Winnow/Exponentiated Gradient<br>Miscellany• Winnow and EG are muliplicative weight update<br>schemes versus additive weight update schemes,<br>e.g. Perceptron• Winnow and EG work well when most attributes<br>(features) are irrelevant, i.e. optimal weight<br>vector w* is sparse (many 0 entries)• E.g. $x_i \in \{0, 1\}$ , x's are labelled by a monotone<br>k-disjunction over $\ell$ attributes, $k \ll \ell$ - Remaining $\ell - k$ are irrelevant- E.g. $x_5 \lor x_9 \lor x_{12}$ , $\ell = 150$ , $k = 3$ - For disjunctions, number of on-line<br>prediction mistakes is $O(k \log \ell)$ for Winnow<br>and worst-case $\Omega(k\ell)$ for Perceptron- So in worst case, need exponentially fewer<br>updates for training in Win. than Percep.                                                           |
| Winnow/Exponentiated Gradient<br>Negative Weights<br>• Winnow and EG update wts by mult by a pos<br>const, impossible to change sign<br>– Weight vectors restricted to one quadrant<br>• Solution: Maintain wt vectors $\mathbf{w}^+(t)$ and $\mathbf{w}^-(t)$<br>– Predict $\hat{y}(t) = (\mathbf{w}^+(t) - \mathbf{w}^-(t)) \cdot \mathbf{x}(t)$<br>– Update:<br>$r_i^+(t) = \exp(-2\eta(\hat{y}(t) - y(t)) x_i(t)U)$<br>$r_i^-(t) = 1/r_i^+(t)$<br>$w_i^+(t+1) = U \cdot \frac{w_i^+(t)r_i^+(t)}{\sum_{j=1}^{\ell} (w_i^+(t)r_i^+(t) + w_i^-(t)r_i^-(t))}$<br><i>U</i> and denominator normalize wts for proof of error<br>bound<br>Kivinen & Warmuth, "Additive Versus Exponen-<br>tiated Gradient Updates for Linear Prediction."<br><i>Information and Computation</i> , 132(1):1–64, Jan.<br>1997. [see web page]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Winnow/Exponentiated Gradient<br>Miscellany• Winnow and EG are muliplicative weight update<br>schemes versus additive weight update schemes,<br>e.g. Perceptron• Winnow and EG work well when most attributes<br>(features) are irrelevant, i.e. optimal weight<br>vector w* is sparse (many 0 entries)• E.g. $x_i \in \{0, 1\}$ , x's are labelled by a monotone<br>k-disjunction over $\ell$ attributes, $k \ll \ell$ - Remaining $\ell - k$ are irrelevant- E.g. $x_5 \lor x_9 \lor x_{12}$ , $\ell = 150$ , $k = 3$ - For disjunctions, number of on-line<br>prediction mistakes is $O(k \log \ell)$ for Winnow<br>and worst-case $\Omega(k\ell)$ for Perceptron- So in worst case, need exponentially fewer<br>updates for training in Win. than Percep.• Other bounds exist for real-valued inputs and<br>outputs |

## Non-Linearly Separable Classes

- What if no hyperplane completely separates the classes?
- Add extra inputs that are nonlinear combinations of original inputs (Section 4.14)
  - E.g. attribs.  $x_1$  and  $x_2$ , so try  $\mathbf{x} = \begin{bmatrix} x_1, x_2, x_1x_2, x_1^2, x_2^2, x_1^2x_2, x_1x_2^2 \end{bmatrix}^T$
  - Perhaps classes linearly separable in new feature space
  - Useful esp. with Winnow/EG logarithmic bounds
  - Kernel functions/SVMs
- Pocket algorithm (p. 63) guarantees convergence to best hyperplane
- Winnow's & EG's agnostic results
- Least squares methods (Sec. 3.4)
- Networks of classifiers (Ch. 4)

13

## Non-Linearly Separable Classes Least Squares Methods

• Recall from Slide 7:

$$w_i(t+1) = w_i(t) + \eta \left( y(t) - \sum_{i=1}^{\ell} w_i(t) x_i(t) \right) x_i(t)$$
$$= w_i(t) + \eta \left( y(t) - \mathbf{w}(t)^T \cdot \mathbf{x}(t) \right) x_i(t)$$

• If we <u>don't</u> threshold dot product during training and allow  $\eta$  to vary each trial (i.e. substitute  $\eta_t$ ), get\* Eq. 3.38, p. 69:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \eta_t \mathbf{x}(t) \left( y(t) - \mathbf{w}(t)^T \cdot \mathbf{x}(t) \right)$$

- This is Least Mean Squares (LMS) Algorithm
- If e.g.  $\eta_t = 1/t$ , then

$$\lim_{t \to \infty} P\left(\mathbf{w}(t) = \mathbf{w}^*\right) = \mathbf{1},$$

where

$$\mathbf{w}^{*} = \mathop{\mathrm{argmin}}_{\mathbf{w} \in \Re^{\ell}} \left\{ \mathsf{E} \left[ \left| \boldsymbol{y} - \mathbf{w}^{T} \cdot \mathbf{x} \right|^{2} \right] \right\}$$

is vector minimizing mean square error (MSE)

\*Note that here w(t) is weight <u>before</u> trial t. In book it is weight <u>after</u> trial t.

15

## Non-Linearly Separable Classes

Winnow's Agnostic Results

• Winnow's total number of prediction mistakes loss (in <u>on-line setting</u>) provably not much worse than best linear classifier



- Loss bound related to performance of best classifier and total distance under  $\|\cdot\|_1$  that feature vectors must be moved to make best classifier perfect [Littlestone, COLT '91]
- Similar bounds for EG [Kivinen & Warmuth]

14



| $\mathbf{w} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \mathbf{w}_3 \\ \mathbf{w} = \begin{bmatrix} \overline{w}_{11}, \overline{w}_{12}, \overline{w}_{10}, \overline{w}_{21}, \overline{w}_{22}, \overline{w}_{20}, \overline{w}_{31}, \overline{w}_{32}, \overline{w}_{30} \end{bmatrix}^T$ • Now if $\mathbf{w}^{*T} \cdot \mathbf{x}_1 > 0$ and $\mathbf{w}^{*T} \cdot \mathbf{x}_2 > 0$ , then $\begin{pmatrix} \text{Class} & \text{Binary Encoding} \\ \text{Classifier 1} & \text{Classifier 2} \\ \hline{\omega_1} & 0 & 0 \\ \overline{\omega_2} & 0 & 1 \\ \overline{\omega_3} & 1 & 0 \\ \overline{\omega_4} & 1 & 1 \\ \end{pmatrix}$ $\begin{pmatrix} \ell+1 \\ \omega_3 \\ \omega_4 \\ \ell \\ 1 \\ \ell \\ \ell$ | Multiclass learning<br>Kessler's Construction (cont'd)<br>• So map x to<br>$x_1 = \begin{bmatrix} 0 & \text{neg} & \text{pad} \\ 2, 2, 1, -2, -2, -1, 0, 0, 0 \end{bmatrix}^T$ $x_2 = \begin{bmatrix} 2, 2, 1, 0, 0, 0, -2, -2, -1 \end{bmatrix}^T$ and let                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Multiclass learning<br/>Error-Correcting Output Codes (ECOC)</li> <li>Since Win. &amp; Percep. learn binary functions,<br/>learn individual bits of <u>binary encoding</u> of classes</li> <li>E.g. M = 4, so use two linear classifiers:</li> </ul>                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>In general, map (ℓ+1)×1 feature vector x to x<sub>1</sub>,x<sub>M-1</sub>, each of size (ℓ+1)M×1</li> <li>x ∈ ω<sub>i</sub> ⇒ x in <i>i</i>th block and -x in <i>j</i>th block, (rest are 0s). Repeat for all <i>j</i> ≠ <i>i</i></li> <li>Now train to find weights for new vector space</li> <li>17</li> <li>Problem: Sensitive to individual classifier energy of encodings per class to improve robustness</li> <li>Similar to principle of error-correcting output codes used in communication networks [Dietterich &amp; Bakiri, 1995]</li> <li>General-purpose, independent of learner</li> </ul>                                                                                                                                                                      | and let<br>$\mathbf{w} = \begin{bmatrix} \mathbf{w}_{11}, \mathbf{w}_{12}, \mathbf{w}_{10}, \mathbf{w}_{21}, \mathbf{w}_{22}, \mathbf{w}_{20}, \mathbf{w}_{31}, \mathbf{w}_{32}, \mathbf{w}_{30} \end{bmatrix}^{T}$ • Now if $\mathbf{w}^{*T} \cdot \mathbf{x}_{1} > 0$ and $\mathbf{w}^{*T} \cdot \mathbf{x}_{2} > 0$ , then<br>$\begin{pmatrix} \ell+1 \\ \sum_{i=1}^{l} w_{1i}^{*} x_{i} > \sum_{i=1}^{\ell+1} w_{2i}^{*} x_{i}  \text{AND}  \sum_{i=1}^{\ell+1} w_{1i}^{*} x_{i} > \sum_{i=1}^{\ell+1} w_{3i}^{*} x_{i}$ • In general, map $(\ell + 1) \times 1$ feature vector $\mathbf{x}$ to<br>$\mathbf{x}_{1}, \dots, \mathbf{x}_{M-1}$ , each of size $(\ell + 1)M \times 1$<br>• $\mathbf{x} \in \omega_{i} \Rightarrow \mathbf{x}$ in <i>i</i> th block and $-\mathbf{x}$ in <i>j</i> th block, (rest are 0s). Repeat for all $j \neq i$<br>• Now train to find weights for new vector space | ClassBinary Encoding<br>Classifier 1 $u_1$ 0 $u_2$ 0 $u_3$ 1 $u_4$ 1and train simultaneously• Problem: Sensitive to individual classifier errors, so use a set of encodings per class to improve robustness• Similar to principle of error-correcting output codes used in communication networks [Dietterich & Bakiri, 1995]• General-purpose, independent of learner |