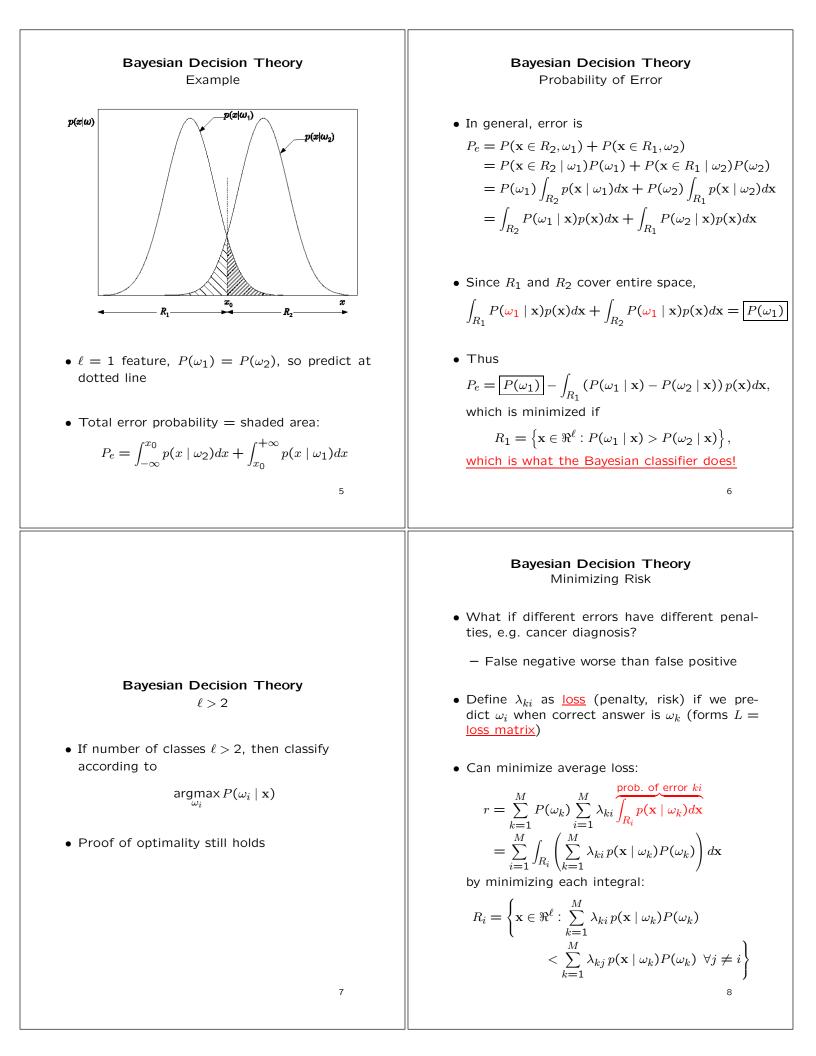
	Introduction
CSCE 970 Lecture 2: Bayesian-Based Classifiers	• A Bayesian classifier classifies instance in the most probable class
	• Given M classes $\omega_1, \ldots, \omega_M$ and feat. vector \mathbf{x} , find conditional probabilities
Stephen D. Scott	$P(\omega_i \mid \mathbf{x}) \forall i = 1, \dots, M,$
	called <u>a posteriori</u> (posterior) probabilities, and predict with largest
January 10, 2001	• Will use training data to estimate probability density function (pdf) that yields $P(\omega_i \mid \mathbf{x})$ and classify to ω_i that maximizes
1	2
Bayesian Decision Theory	
• Use ω_1 and ω_2 only	Bayesian Decision Theory (Cont'd)
• Need <u>a priori</u> (prior) probabilities of classes: $P(\omega_1)$ and $P(\omega_2)$	• But $p(\mathbf{x})$ is same for all ω_i , so since we want max:
• Estimate from training data:	If $p(\mathbf{x} \mid \omega_1)P(\omega_1) > p(\mathbf{x} \mid \omega_2)P(\omega_2)$, classif. \mathbf{x} as ω_1
$P(\omega_i) \approx N_i/N, \ N_i = {\rm no. \ of \ class} \ \omega_i, \ N = N_1 + N_2$	If $p(\mathbf{x} \mid \omega_1)P(\omega_1) < p(\mathbf{x} \mid \omega_2)P(\omega_2)$, classif. \mathbf{x} as ω_2
(will be accurate for sufficiently large N)	• If prior probs. equal $(P(\omega_1) = P(\omega_2) = 1/2)$ then decide based on:
• Also need <u>likelihood</u> of x given class = ω_i : $p(\mathbf{x} \mid \omega_i)$ (is a pdf if $\mathbf{x} \in \Re^{\ell}$)	$p(\mathbf{x} \mid \omega_1) \gtrless p(\mathbf{x} \mid \omega_2)$
• Now apply <u>Bayes Rule</u> : $P(\omega_i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_i)P(\omega_i)}{p(\mathbf{x})}$ and classify to us that maximizes	• Since can estimate $P(\omega_i)$, now only need $p(\mathbf{x} \mid \omega_i)$
and classify to ω_i that maximizes	
3	4



Discriminant Functions

Bayesian Decision Theory Minimizing Risk Example

• Let
$$\ell = 2$$
, $P(\omega_1) = P(\omega_2) = 1/2$, $L = \begin{pmatrix} 0 & \lambda_{12} \\ \lambda_{21} & 0 \end{pmatrix}$,
and $\lambda_{21} > \lambda_{12}$

• Then

$$R_{2} = \left\{ \mathbf{x} \in \Re^{2} : \lambda_{21} \, p(\mathbf{x} \mid \omega_{2}) > \lambda_{12} \, p(\mathbf{x} \mid \omega_{1}) \right\}$$
$$= \left\{ \mathbf{x} \in \Re^{2} : p(\mathbf{x} \mid \omega_{2}) > p(\mathbf{x} \mid \omega_{1}) \frac{\lambda_{12}}{\lambda_{21}} \right\},$$

which slides threshold left of x_0 on slide 5 since $\lambda_{12}/\lambda_{21} < 1$

Normal Distributions

 Assume the pdf of likelihood functions follow a normal (Gaussian) distribution for 1 < i < M:

$$p(\mathbf{x} \mid \omega_i) = \frac{1}{(2\pi)^{\ell/2} |\boldsymbol{\Sigma}_i|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)\right)$$

- $\cdot \ \mu_i = E[\mathbf{x}] =$ mean value of ω_i class
- · $|\Sigma_i|$ = determinant of Σ_i , ω_i 's <u>covariance matrix</u>:

$$\Sigma_i = E \left[(\mathbf{x} - \boldsymbol{\mu}_i) (\mathbf{x} - \boldsymbol{\mu}_i)^T \right]$$

- Assume we know μ_i and Σ_i orall i
- Using the following discriminant function:

$$g_i(\mathbf{x}) = \ln(p(\mathbf{x} \mid \omega_i)P(\omega_i))$$

we get:

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) + \ln(P(\omega_i)) \\ -\ell/2 \ln(2\pi) - (1/2) \ln|\Sigma_i|$$

• Rather than using probabilities (or risk functions) directly, sometimes easier to work with a function of them, e.g.

$$g_i(\mathbf{x}) = f(P(\omega_i \mid \mathbf{x}))$$

 $f(\cdot)$ is monotonically increasing function, $g_i(\mathbf{x})$ is called <u>discriminant function</u>

- Then $R_i = \left\{ \mathbf{x} \in \Re^{\ell} : g_i(\mathbf{x}) > g_j(\mathbf{x}) \ \forall j \neq i \right\}$
- Common choice of $f(\cdot)$ is natural logarithm (multiplications become sums)
- Still requires good estimate of pdf
 - Will look at a tractable case next
 - In general, cannot necessarily easily estimate pdf, so use other cost functions (Chapters 3 & 4)

10

Normal Distributions Minimum Distance Classifiers

• If $P(\omega_i)$'s equal and Σ_i 's equal, can use:

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)$$

• If features statistically independent with same variance, then $\Sigma = \sigma^2 I$ and can instead use

$$g_i(\mathbf{x}) = -\frac{1}{2} \sum_{j=1}^{\ell} (x_j - \mu_{ij})^2$$

- Finding ω_i maximizing this implies finding μ_i that minimizes <u>Euclidian distance</u> to x
 - Constant distance = circle centered at μ_i
- If Σ not diagonal, then maximizing $g_i(\mathbf{x})$ is same as minimizing Mahalanobis distance:

$$\sqrt{(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)}$$

- Constant distance = ellipse centered at μ_i

9

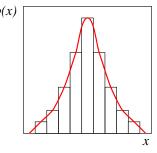
Estimating Unknown pdf's Estimating Unknown pdf's ML Param Est (cont'd) Maximum Likelihood Parameter Estimation • Assuming statistical indep. of x_{ki} 's, $\Sigma_{ij}^{-1} = 0$ for $i \neq j$, so • If we know cov. matrix but not mean for a class ω , can parameterize ω 's pdf on mean μ : $\frac{\partial L}{\partial \boldsymbol{\mu}} = \begin{bmatrix} \frac{\partial L}{\partial \mu_1} \\ \vdots \\ \frac{\partial L}{\partial \mu_\ell} \end{bmatrix} = \begin{vmatrix} \frac{\partial}{\partial \mu_1} \left(-\frac{1}{2} \sum_{k=1}^N \sum_{j=1}^\ell \left(x_{kj} - \mu_j \right)^2 \sum_{jj}^{-1} \right) \\ \vdots \\ \frac{\partial}{\partial \mu_\ell} \left(-\frac{1}{2} \sum_{k=1}^N \sum_{j=1}^\ell \left(x_{kj} - \mu_j \right)^2 \sum_{jj}^{-1} \right) \end{vmatrix}$ $p(\mathbf{x}_k;\boldsymbol{\mu}) = \frac{1}{(2\pi)^{\ell/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}_k - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}_k - \boldsymbol{\mu})\right)$ and use data $\mathbf{x}_1, \ldots, \mathbf{x}_N$ from ω to estimate $\boldsymbol{\mu}$ $=\sum_{k=1}^{N}\Sigma^{-1}(\mathbf{x}_{k}-\boldsymbol{\mu})=\mathbf{0},$ • The maximum likelihood (ML) method estimates μ such that the following likelihood funcyielding tion is maximized: $\hat{\mu}_{ML} = \frac{1}{N} \sum_{k=1}^{N} \mathbf{x}_k$ $p(X;\boldsymbol{\mu}) = p(\mathbf{x}_1,\ldots,\mathbf{x}_N;\boldsymbol{\mu}) = \prod_{k=1}^N p(\mathbf{x}_k;\boldsymbol{\mu})$ Solve above for each class independently • Taking logarithm and setting gradient = 0: • Can generalize technique for other $\frac{\partial}{\partial \mu} \underbrace{\left(-\frac{N}{2} \ln\left((2\pi)^{\ell} |\Sigma| \right) - \frac{1}{2} \sum_{k=1}^{N} (\mathbf{x}_{k} - \mu)^{T} \Sigma^{-1} (\mathbf{x}_{k} - \mu) \right)}_{\mathbf{x}_{k} = \mathbf{0}$ distributions and parameters • Has many nice properties (p. 30) as $N \to \infty$ 14 13 Estimating Unknown pdf's Estimating Unknown pdf's Maximum A Posteriori Parameter Estimation (Nonparametric Approach) Parzen Windows • If μ is norm. distrib., $\Sigma = \sigma_{\mu}^2 I$, mean $= \mu_0$: Historgram-based technique to approximate pdf: $p(\mu) = \frac{1}{(2\pi)^{\ell/2} \sigma_{\mu}^{\ell}} \exp\left(-\frac{(\mu - \mu_0)^T (\mu - \mu_0)}{2\sigma_{\mu}^2}\right)$ Partition space into "bins" and count number of training vectors per bin • Maximizing $p(\boldsymbol{\mu} \mid X)$ is same as maximizing p(x)

- $p(\boldsymbol{\mu})p(X \mid \boldsymbol{\mu}) = \prod_{k=1}^{N} p(\mathbf{x}_k \mid \boldsymbol{\mu})p(\boldsymbol{\mu})$
- Again, take log and set gradient = 0: $(\Sigma = \sigma^2 I)$

$$\sum_{k=1}^{N} \frac{1}{\sigma^{2}} (\mathbf{x}_{k} - \boldsymbol{\mu}) - \frac{1}{\sigma_{\mu}^{2}} (\boldsymbol{\mu} - \boldsymbol{\mu}_{0}) = \mathbf{0}$$

so

- $\hat{\mu}_{MAP} = \frac{\mu_0 + (\sigma_\mu^2/\sigma^2) \sum_{k=1}^N \mathbf{x}_k}{1 + (\sigma_\mu^2/\sigma^2)N}$
- $\mu_{MAP} pprox \mu_{ML}$ if $p(\mu)$ almost uniform or $N
 ightarrow \infty$
- Again, can generalize technique



• Let
$$\phi(\mathbf{x}) = \begin{cases} 1 & \text{if } |x_j| \le 1/2 \\ 0 & \text{otherwise} \end{cases}$$

• Now approximate pdf $p(\mathbf{x})$ with

$$\hat{p}(\mathbf{x}) = \frac{1}{h^{\ell}} \left(\frac{1}{N} \sum_{i=1}^{N} \phi\left(\frac{\mathbf{x}_i - \mathbf{x}}{h} \right) \right)$$

16

Estimating Unknown pdf's Estimating Unknown pdf's Parzen Windows Parzen Windows (cont'd) Numeric Example $\hat{p}(\mathbf{x}) = \frac{1}{h^{\ell}} \left(\frac{1}{N} \sum_{i=1}^{N} \phi\left(\frac{\mathbf{x}_i - \mathbf{x}}{h} \right) \right)$ • I.e. given x, to compute $\hat{p}(\mathbf{x})$: - Count number of training vectors in size-*h* (per side) hypercube H centered at \mathbf{x} - Divide by N to est. probability of getting a point in H- Divide by volume of H• Problem: Approximating continuous function $p(\mathbf{x})$ with discontinuous $\hat{p}(\mathbf{x})$ • Solution: Substitute a smooth function for $\phi(\cdot)$, e.g. $\phi(\mathbf{x}) = \left(1/(2\pi)^{\ell/2}\right) \exp\left(-\mathbf{x}^T \mathbf{x}/2\right)$ 17 18 k-Nearest Neighbor Techniques • Classify unlabeled feature vector x according to a majority vote of its k nearest neighbors k = 3Euclidean distance \bigcirc = Class A + = Class B = unclassified (predict B) • As $N \to \infty$, -1-NN error is at most twice Bayes opt. (P_B) - k-NN error is $\leq P_B + 1/\sqrt{ke}$ • Can also weight votes by relative distance • Complexity issues: Research into more efficient algorithms, approximation algorithms 19