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Introduction

• A Bayesian classifier classifies instance in the

most probable class

• Given M classes ω1, . . . , ωM and feat. vector x,

find conditional probabilities

P (ωi | x) ∀i = 1, . . . , M,

called a posteriori (posterior) probabilities, and

predict with largest

• Will use training data to estimate probability

density function (pdf) that yields P(ωi | x) and

classify to ωi that maximizes

2

Bayesian Decision Theory

• Use ω1 and ω2 only

• Need a priori (prior) probabilities of classes:

P(ω1) and P(ω2)

• Estimate from training data:

P(ωi) ≈ Ni/N, Ni = no. of class ωi, N = N1 + N2

(will be accurate for sufficiently large N)

• Also need likelihood of x given class = ωi:

p(x | ωi) (is a pdf if x ∈ <`)

• Now apply Bayes Rule:

P(ωi | x) =
p(x | ωi)P(ωi)

p(x)

and classify to ωi that maximizes
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Bayesian Decision Theory

(Cont’d)

• But p(x) is same for all ωi, so since we want

max:

If p(x | ω1)P(ω1) > p(x | ω2)P(ω2), classif. x as ω1

If p(x | ω1)P(ω1) < p(x | ω2)P(ω2), classif. x as ω2

• If prior probs. equal (P(ω1) = P(ω2) = 1/2) then

decide based on:

p(x | ω1) ≷ p(x | ω2)

• Since can estimate P(ωi), now only need

p(x | ωi)
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Bayesian Decision Theory

Example

• ` = 1 feature, P(ω1) = P(ω2), so predict at

dotted line

• Total error probability = shaded area:

Pe =
∫ x0

−∞

p(x | ω2)dx +
∫ +∞

x0

p(x | ω1)dx
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Bayesian Decision Theory

Probability of Error

• In general, error is

Pe = P(x ∈ R2, ω1) + P(x ∈ R1, ω2)

= P(x ∈ R2 | ω1)P(ω1) + P(x ∈ R1 | ω2)P(ω2)

= P(ω1)

∫

R2

p(x | ω1)dx + P(ω2)

∫

R1

p(x | ω2)dx

=

∫

R2

P(ω1 | x)p(x)dx +

∫

R1

P(ω2 | x)p(x)dx

• Since R1 and R2 cover entire space,
∫

R1

P(ω1 | x)p(x)dx +

∫

R2

P(ω1 | x)p(x)dx = P(ω1)

• Thus

Pe = P(ω1) −
∫

R1

(P(ω1 | x)− P(ω2 | x)) p(x)dx,

which is minimized if

R1 =
{

x ∈ <` : P(ω1 | x) > P(ω2 | x)
}

,

which is what the Bayesian classifier does!
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Bayesian Decision Theory

` > 2

• If number of classes ` > 2, then classify

according to

argmax
ωi

P(ωi | x)

• Proof of optimality still holds
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Bayesian Decision Theory

Minimizing Risk

• What if different errors have different penal-

ties, e.g. cancer diagnosis?

– False negative worse than false positive

• Define λki as loss (penalty, risk) if we pre-

dict ωi when correct answer is ωk (forms L =

loss matrix)

• Can minimize average loss:

r =
M∑

k=1

P(ωk)
M∑

i=1

λki

prob. of error ki
︷ ︸︸ ︷∫

Ri

p(x | ωk)dx

=
M∑

i=1

∫

Ri





M∑

k=1

λki p(x | ωk)P(ωk)



 dx

by minimizing each integral:

Ri =






x ∈ <` :

M∑

k=1

λki p(x | ωk)P(ωk)

<
M∑

k=1

λkj p(x | ωk)P(ωk) ∀j 6= i






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Bayesian Decision Theory

Minimizing Risk

Example

• Let ` = 2, P(ω1) = P(ω2) = 1/2, L =

(

0 λ12

λ21 0

)

,

and λ21 > λ12

• Then

R2 =
{

x ∈ <2 : λ21 p(x | ω2) > λ12 p(x | ω1)
}

=

{

x ∈ <2 : p(x | ω2) > p(x | ω1)
λ12

λ21

}

,

which slides threshold left of x0 on slide 5

since λ12/λ21 < 1
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Discriminant Functions

• Rather than using probabilities (or risk func-

tions) directly, sometimes easier to work with

a function of them, e.g.

gi(x) = f(P(ωi | x))

f(·) is monotonically increasing function, gi(x)

is called discriminant function

• Then Ri =
{

x ∈ <` : gi(x) > gj(x) ∀j 6= i
}

• Common choice of f(·) is natural logarithm

(multiplications become sums)

• Still requires good estimate of pdf

– Will look at a tractable case next

– In general, cannot necessarily easily esti-

mate pdf, so use other cost functions (Chap-

ters 3 & 4)
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Normal Distributions

• Assume the pdf of likelihood functions follow a

normal (Gaussian) distribution for 1 ≤ i ≤ M :

p(x | ωi) =
1

(2π)`/2|Σi|1/2
exp

(

−1

2
(x− µi)

TΣ−1
i (x− µi)

)

· µi = E[x] = mean value of ωi class

· |Σi| = determinant of Σi, ωi’s covariance matrix:

Σi = E
[

(x− µi)(x− µi)
T
]

– Assume we know µi and Σi ∀i

• Using the following discriminant function:

gi(x) = ln(p(x | ωi)P(ωi))

we get:

gi(x) = −1

2
(x− µi)

TΣ−1
i (x− µi) + ln(P(ωi))

−`/2 ln(2π)− (1/2) ln |Σi|
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Normal Distributions

Minimum Distance Classifiers

• If P(ωi)’s equal and Σi’s equal, can use:

gi(x) = −1

2
(x− µi)

TΣ−1(x− µi)

• If features statistically independent with same

variance, then Σ = σ2I and can instead use

gi(x) = −1

2

∑̀

j=1

(xj − µij)
2

• Finding ωi maximizing this implies finding µi

that minimizes Euclidian distance to x

– Constant distance = circle centered at µi

• If Σ not diagonal, then maximizing gi(x) is

same as minimizing Mahalanobis distance:
√

(x− µi)
TΣ−1(x− µi)

– Constant distance = ellipse centered at µi
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Estimating Unknown pdf’s

Maximum Likelihood Parameter Estimation

• If we know cov. matrix but not mean for a

class ω, can parameterize ω’s pdf on mean µ:

p(xk;µ) =
1

(2π)`/2|Σ|1/2
exp

(

−1

2
(xk − µ)TΣ−1(xk − µ)

)

and use data x1, . . . ,xN from ω to estimate µ

• The maximum likelihood (ML) method esti-

mates µ such that the following likelihood func-

tion is maximized:

p(X;µ) = p(x1, . . . ,xN ;µ) =
N∏

k=1

p(xk;µ)

• Taking logarithm and setting gradient = 0:

∂

∂µ



−N

2
ln
(

(2π)`|Σ|
)

− 1

2

N∑

k=1

(xk − µ)TΣ−1(xk − µ)





︸ ︷︷ ︸

L

= 0
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Estimating Unknown pdf’s

ML Param Est (cont’d)

• Assuming statistical indep. of xki’s, Σ−1
ij = 0

for i 6= j, so

∂L

∂µ
=







∂L
∂µ1...
∂L
∂µ`







=









∂
∂µ1

(

−1
2

∑N
k=1

∑`
j=1

(

xkj − µj

)2
Σ−1

jj

)

...

∂
∂µ`

(

−1
2

∑N
k=1

∑`
j=1

(

xkj − µj

)2
Σ−1

jj

)









=
N∑

k=1

Σ−1(xk − µ) = 0,

yielding

µ̂ML =
1

N

N∑

k=1

xk

• Solve above for each class independently

• Can generalize technique for other

distributions and parameters

• Has many nice properties (p. 30) as N →∞
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Estimating Unknown pdf’s

Maximum A Posteriori Parameter Estimation

• If µ is norm. distrib., Σ = σ2
µI, mean = µ0:

p(µ) =
1

(2π)`/2 σ`
µ

exp

(

− (µ− µ0)
T (µ− µ0)

2σ2
µ

)

• Maximizing p(µ | X) is same as maximizing

p(µ)p(X | µ) =
N∏

k=1

p(xk | µ)p(µ)

• Again, take log and set gradient = 0: (Σ = σ2I)

N∑

k=1

1

σ2
(xk − µ)− 1

σ2
µ
(µ− µ0) = 0

so

µ̂MAP =
µ0 + (σ2

µ/σ2)
∑N

k=1
xk

1 + (σ2
µ/σ2)N

• µMAP ≈ µML if p(µ) almost uniform or N →∞

• Again, can generalize technique
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Estimating Unknown pdf’s

(Nonparametric Approach)

Parzen Windows

• Historgram-based technique to approximate pdf:

Partition space into “bins” and count number

of training vectors per bin

p(x)

x

• Let φ(x) =







1 if |xj| ≤ 1/2

0 otherwise

• Now approximate pdf p(x) with

p̂(x) =
1

h`




1

N

N∑

i=1

φ

(
xi − x

h

)



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Estimating Unknown pdf’s

Parzen Windows

(cont’d)

p̂(x) =
1

h`




1

N

N∑

i=1

φ

(
xi − x

h

)




• I.e. given x, to compute p̂(x):

– Count number of training vectors in size-h

(per side) hypercube H centered at x

– Divide by N to est. probability of getting a

point in H

– Divide by volume of H

• Problem: Approximating continuous function

p(x) with discontinuous p̂(x)

• Solution: Substitute a smooth function for

φ(·), e.g. φ(x) =
(

1/(2π)`/2
)

exp
(

−xTx/2
)
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Estimating Unknown pdf’s

Parzen Windows

Numeric Example

18

k-Nearest Neighbor Techniques

• Classify unlabeled feature vector x according

to a majority vote of its k nearest neighbors

= Class B

= Class A

= unclassified

Euclidean distance

k = 3

(predict B)

• As N →∞,

– 1-NN error is at most twice Bayes opt. (PB)

– k-NN error is ≤ PB + 1/
√

ke

• Can also weight votes by relative distance

• Complexity issues: Research into more effi-

cient algorithms, approximation algorithms
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