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Introduction

e A Bayesian classifier classifies instance in the
most probable class

e Given M classes wy,... ,w)s and feat. vector x,
find conditional probabilities

P(w;j|x) Vi=1,...,M,

called a posteriori (posterior) probabilities, and
predict with largest

e Will use training data to estimate probability
density function (pdf) that yields P(w; | x) and
classify to w; that maximizes

Bayesian Decision Theory
Use w1 and wp only

Need a priori (prior) probabilities of classes:
P(wy) and P(wy)

Estimate from training data:
P(wl) ~ NZ‘/N, Ni = no. of class Wi, N = N1 + N2

(will be accurate for sufficiently large N)

Also need likelihood of x given class = w;:
p(x | w;) (is a pdf if x € RY)

Now apply Bayes Rule:

p(x | wi) P(w;)
p(x)
and classify to w; that maximizes

Pw; | x) =

Bayesian Decision Theory
(Cont'd)

e But p(x) is same for all w;, so since we want
max:

If p(x | w1)P(wy) > p(x | wp)P(ws), classif. x as wy

If p(x | w1)P(w1) < p(x | wo)P(ws), classif. x as wy

e If prior probs. equal (P(w1) = P(wp) = 1/2) then
decide based on:

p(x |w1) 2 p(x | w2)

e Since can estimate P(w;), now only need
p(x | w;)




Bayesian Decision Theory
Example

Piziw)

e ¢ = 1 feature, P(wj) = P(ws), so predict at
dotted line

e Total error probability = shaded area:

T “+o0
Pe= [ pla|wodo+ [ pla | w1)da
)

—00
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Bayesian Decision Theory
Probability of Error

e In general, error is
P.=P(x € Ry,w1) + P(x € Ry,wp)
= P(x € Ry |w1)P(w1) + P(x € Ry | wp)P(w2)

= P(en) [, pCxlwndx+ P(2) [ p(x | wa)dx

= [, Pe1 10p()dx + [ Plwz | )p(dx

e Since Ry and Ry cover entire space,

S, PGt 12000 + [ Plon | 0p()dx =

e Thus
Pe=[P(w1)]|- /Rl (Pw1 | %) = P(ws | %)) p(x)dx,
which is minimized if
Ry={xeR: P(w1|x) > P(wz | ¥)},

which is what the Bayesian classifier does!
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Bayesian Decision Theory
£>2

e If number of classes ¢ > 2, then classify
according to

argmax P(w; | x)
wj

e Proof of optimality still holds

Bayesian Decision Theory
Minimizing Risk

e What if different errors have different penal-

ties, e.g. cancer diagnosis?

— False negative worse than false positive

e Define \; as loss (penalty, risk) if we pre-

dict w; when correct answer is wy, (forms L =
loss matrix)

e Can minimize average loss:

prob. of error ki

M M ,
r= 3 P Y M [ p(x | wp)dx
k=1 i=1
M M
=3 [ | X ManCx | wp)Plwy) | dx
=171 \k=1
by minimizing each integral:

M
R; = {x € R Y Mip(x | wi) P(wy)
k=1

Mz

< A (X | wp) Pwy) Vi # l}

k

1
8




Bayesian Decision Theory
Minimizing Risk
Example
_ _ _ _ (0 A
o letl{ =2 P(w) =Plw)=1/2, L= ,
)\21 0
and Ap1 > Ao

e Then
Ry = {x € R? : do1 p(x | w2) > A2 p(x | w1)]
A
= {x e :px o) > ptx )2}
21

which slides threshold left of zg on slide 5
since A\1p/Xp1 <1

Discriminant Functions

Rather than using probabilities (or risk func-
tions) directly, sometimes easier to work with
a function of them, e.g.

9i(x) = f(P(w; [ x))
f () is monotonically increasing function, g;(x)
is called discriminant function

Then R; = {x e Rl gi(x) > gj(x) Vj # z}

Common choice of f(-) is natural logarithm
(multiplications become sums)

Still requires good estimate of pdf

— Will look at a tractable case next

— In general, cannot necessarily easily esti-
mate pdf, so use other cost functions (Chap-
ters 3 & 4)
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Normal Distributions

e Assume the pdf of likelihood functions follow a
normal (Gaussian) distribution for 1 <i < M:

_ 1 1 Ts—1
p(x|w;) = W@(D (_E(X — ) X (x = ﬂi))
- p; = E[x] = mean value of w; class

- |X;| = determinant of X;, w;'s covariance matrix:

=B [(x— p)(x — )]

— Assume we know p,; and X; Vi

e Using the following discriminant function:
gi(x) = In(p(x | w;) P(w;))

we get:

Gi(0) = ~5(x — )T~ )+ IN(P()
—£/21n(27) — (1/2) In|5,]
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Normal Distributions
Minimum Distance Classifiers

If P(w;)’s equal and ;'s equal, can use:

500 = ~50x— )T 0x = )

If features statistically independent with same
variance, then ~ = ¢27 and can instead use

1!
9i(x) = —= 3 ( — pij)?
2 &

Finding w; maximizing this implies finding p;
that minimizes Euclidian distance to x

— Constant distance = circle centered at pu,

If > not diagonal, then maximizing g;(x) is
same as minimizing Mahalanobis distance:

V= )T 1 (x — )

— Constant distance = ellipse centered at p;
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Estimating Unknown pdf’s
Maximum Likelihood Parameter Estimation

e If we know cov. matrix but not mean for a
class w, can parameterize w's pdf on mean u:

p(xp; 1) = Wexp (—%(Xk =" (x;, - u))

and use data x1,...,xy from w to estimate p

e The maximum likelihood (ML) method esti-
mates p such that the following likelihood func-
tion is maximized:

N

p(X;p) =p(x1, ..., xnip) = ] p(xp;w)
k=1

e Taking logarithm and setting gradient = 0:
N

(JQV In ((2m)‘|=]) - % > g — ) (g — u)) =0
k=1
L

o
op
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Estimating Unknown pdf’s
ML Param Est (cont'd)

e Assuming statistical indep. of zj;'s, ;' =0
for i # j, so

) 1N ¢ N2 -1
or |8 | (—§ Zie T (o — )" =5 )
on |ov| ’ 2

oL B 1N ‘ , 1
e, By <_§ Zk:l Zj:l (xkj - N]) ij )

N
=Y = 1x,—np) =0,
k=1

yielding

Ly
by = X,
Ny=h

e Solve above for each class independently

e Can generalize technique for other
distributions and parameters

e Has many nice properties (p. 30) as N — oo
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Estimating Unknown pdf’s
Maximum A Posteriori Parameter Estimation

o If p is norm. distrib., ¥ = 021, mean = po:

1 (M—NO)T(N—M0)>
(n) = —75—exp (—
PAH (27‘(‘)6/2 a'ﬁ 20’5

e Maximizing p(p | X) is same as maximizing

N
p()p(X | p) = [] p(xk | w)p(w)

k=1
e Again, take log and set gradient = 0: | (X = 021)
N
1 1
Z 7(Xk—ﬂ)—j(ﬂ_ﬂo) =0
=10 o
SO
. pot(af /o) SRl X
Harap =

1—{—(03/02)]\/'
o parap = pyg, if p(p) almost uniform or N — oo

e Again, can generalize technique
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Estimating Unknown pdf’s
(Nonparametric Approach)
Parzen Windows

e Historgram-based technique to approximate pdf:
Partition space into “bins” and count number
of training vectors per bin

p(x) ~
X
o Let o(x) = 1 if |xj\ <1/2
0 otherwise

e Now approximate pdf p(x) with

EORE (% gjl¢ (X’;X))
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Estimating Unknown pdf’s
Parzen Windows
(cont'd)

00 = [ £ (%)

e L.e. given x, to compute p(x):

— Count number of training vectors in size-h
(per side) hypercube H centered at x

— Divide by N to est. probability of getting a
point in H

— Divide by volume of H

e Problem: Approximating continuous function
p(x) with discontinuous p(x)

e Solution: Substitute a smooth function for

3(-), 9. p(x) = (1/(2m)/2) exp (—xTx/2)
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Estimating Unknown pdf’s
Parzen Windows
Numeric Example
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k-Nearest Neighbor Techniques

e Classify unlabeled feature vector x according
to a majority vote of its k nearest neighbors

Euclidean distance /O ot +
O =ClassA . Oi 4% )
+ =ClassB \\\7_,//
* = unclassified +
(predict B)

e As N — oo,
— 1-NN error is at most twice Bayes opt. (Pg)
— k-NN error is < Pg + 1/Vke

e Can also weight votes by relative distance

e Complexity issues: Research into more effi-
cient algorithms, approximation algorithms
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