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Introduction
Out with the old ...

We’ve long known how to answer the question:
Does this picture contain a cat?

E.g., convolutional layers feeding connected layers feeding
softmax

2 / 74



CSCE
496/896

Lecture 11:
Structured

Prediction and
Probabilistic

Graphical
Models

Stephen Scott
and Vinod
Variyam

Introduction

Definitions

Applications

Graphical
Models

Training

Introduction
... and in with the new.

What we want to know now is: Where are the cats?

No longer a classification problem; need more sophisticated
(structured) output
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Outline

Definitions
Applications
Graphical modeling of probability distributions
Training models
Inference
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Definitions
Structured Outputs

Most machine learning approaches learn function
f : X → R

Inputs X are any kind of objects
Output y is a real number (classification, regression,
density estimation, etc.)

Structured output learning approaches learn function
f : X → Y

Inputs X are any kind of objects
Outputs y ∈ Y are complex (structured) objects
(images, text, audio, etc.)
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Definitions
Structured Outputs (2)

Can think of structured data as consisting of parts, where
each part contains information, as well as how they fit
together

Text: Word sequence matters
Hypertext: Links between documents matter
Chemical structures: Relative positions of molecules
matter
Images: Relative positions of pixels matter
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Applications
Image Processing

Semantic image segmentation: f :

{0,...,255}3(m×n)︷ ︸︸ ︷
{images} →

{0,1}m×n︷ ︸︸ ︷
{masks}
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Applications
Image Processing (2)

Pose estimation: f :

{0,...,255}3(m×n)︷ ︸︸ ︷
{images} →

R3K︷ ︸︸ ︷
{K positions & angles}
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Applications
Image Processing (3)

Point matching:
f : {image pairs} → {mappings between images}
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Applications
Image Processing (4)

Object localization
f : {images} → {bounding box coordinates}
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Applications
Others

Natural language processing (e.g., translation; output is
sentences)
Bioinformatics (e.g., structure prediction; output is
graphs)
Speech processing (e.g., recognition; output is
sentences)
Robotics (e.g., planning; output is action plan)
Image denoising (output is “clean” version of image)
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Probabilistic Modeling

To represent structured outputs, we will often employ
probabilistic modeling

Joint distributions (e.g., P(A,B,C))
Conditional distributions (e.g., P(A | B,C))

Can estimate joint and conditional probabilities by
counting and normalizing, but have to be careful about
representation
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Probabilistic Modeling (2)

E.g., I have a coin with unknown probability p of heads
I want to estimate the probability of flipping it ten times
and getting the sequence HHTTHHTTTT

One way of representing this joint distribution is a
single, big lookup table:

Each experiment consists of
ten coin flips
For each outcome, increment
its counter
After n experiments, divide
HHTTHHTTTT’s counter by n to
get the estimate
Will this work?

Outcome Count
TTHHTTHHTH 1
HHHTHTTTHH 0
HTTTTTHHHT 0
TTHTHTHHTT 1

...
...
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Probabilistic Modeling (3)

Problem: Number of possible outcomes grows
exponentially with number of variables (flips)
⇒ Most outcomes will have count = 0, a few with 1,

probably none with more
⇒ Lousy probability estimates

Ten flips is bad enough, but consider 100 ..
_

How would you solve this problem?
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Factoring a Distribution

Of course, we recognize that all flips are independent,
so

Pr[HHTTHHTTTT] = p4 (1− p)6

So we can count n coin flips to estimate p and use the
formula above
I.e., we factor the joint distribution into independent
components and multiply the results:

Pr[HHTTHHTTTT] = Pr[f1 = H] Pr[f2 = H] Pr[f3 = T] · · ·Pr[f10 = T]

We greatly reduce the number of parameters to
estimate
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Factoring a Distribution (2)

Another example: Relay racing team
Alice, then Bob, then Carol
Let tA = Alice’s finish time (in seconds), tB = Bob’s,
tC = Carol’s
Want to model the joint distribution Pr[tA, tB, tC]

Let tC, tB, tA ∈ {1, . . . , 1000}
How large would the table be for Pr[tA, tB, tC]?
How many races must they run to populate the table?
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Factoring a Distribution (3)

But we can factor this distribution by observing that tA is
independent of tB and tC
⇒ Can estimate tA on its own

Also, tB directly depends on tA, but is independent of tC
tC directly depends on tB, and indirectly on tA
Can display this graphically:
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Factoring a Distribution (4)

This directed graphical model (often called a
Bayesian network or Bayes net) represents
conditional dependencies among variables
Makes factoring easy:

Pr[tA, tB, tC] = Pr[tA] Pr[tB | tA] Pr[tC | tB]
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Factoring a Distribution (5)

Pr[tA, tB, tC] = Pr[tA] Pr[tB | tA] Pr[tC | tB]

Table for Pr[tA] requires1 1000 entries, while Pr[tB | tA]
requires 106, as does Pr[tC | tB]

⇒ Total 2.001× 106, versus 109

Idea easily extends to continuous distributions by
changing discrete probability Pr[·] to pdf p(·)

1Technically, we only need 999 entries, since the value of the last one
is implied since probabilities must sum to one. However, then the
analysis requires the use of a lot of “9”s, and that’s not something I’m
willing to take on at this point in my life.19 / 74



CSCE
496/896

Lecture 11:
Structured

Prediction and
Probabilistic

Graphical
Models

Stephen Scott
and Vinod
Variyam

Introduction

Definitions

Applications

Graphical
Models
Directed

Undirected

Energy

Separation

Training

Directed Models
Conditional Independence

Definition: X is conditionally independent of Y given Z if
the probability distribution governing X is independent of the
value of Y given the value of Z; that is, if

(∀xi, yj, zk) Pr[X = xi | Y = yj,Z = zk] = Pr[X = xi | Z = zk]

more compactly, we write

Pr[X | Y,Z] = Pr[X | Z]

Example: Thunder is conditionally independent of Rain,
given Lightning

Pr[Thunder | Rain,Lightning] = Pr[Thunder | Lightning]
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Directed Models
Definition

Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4

0.6

0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

Network (directed acyclic graph) represents a set of
conditional independence assertions:

Each node is asserted to be conditionally
independent of its nondescendants, given its
immediate predecessors
E.g., Given Storm and BusTourGroup, Campfire is CI of
Lightning and Thunder
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Causality

Can think of edges in a Bayes net as representing a causal
relationship between nodes

E.g., rain causes wet grass

Probability of wet grass depends on whether there is rain
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Directed Models
Generative Models

Represents joint probability dis-
tribution over 〈Y1, . . . ,Yn〉, e.g.,
Pr[Storm,BusTourGroup, . . . ,ForestFire]

Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4

0.6

0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

In general, for yi = value of Yi

Pr[y1, . . . , yn] =

n∏
i=1

Pr[yi | Parents(Yi)]

(Parents(Yi) denotes immediate predecessors of Yi)
E.g., Pr[S,B,C,¬L,¬T,¬F] =

Pr[S]·Pr[B]·Pr[C | B, S]︸ ︷︷ ︸
0.4

·Pr[¬L | S]·Pr[¬T | ¬L]·Pr[¬F | S,¬L,¬C]

If variables continuous, use pdf p(·) instead of Pr[·]
23 / 74
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Directed Models
Predicting Most Likely Label

We sometimes call graphical models generative (vs
discriminative) models since they can be used to generate
instances 〈Y1, . . . ,Yn〉 according to joint distribution

Can use for classification

Label r to predict is one of the variables, represented
by a node
If we can determine the most likely value of r given the
rest of the nodes, can predict label
One idea: Go through all possible values of r, and
compute joint distribution (previous slide) with that
value and other attribute values, then return one that
maximizes
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Directed Models
Predicting Most Likely Label (cont’d)

Storm
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Thunder ForestFire
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E.g., if Storm (S) is the label to predict, and we are given
values of B, C, ¬L, ¬T, and ¬F, can use formula to compute
Pr[S,B,C,¬L,¬T,¬F] and Pr[¬S,B,C,¬L,¬T,¬F], then
predict more likely one

Easily handles unspecified attribute values

Issue: Takes time exponential in number of values of
unspecified attributes

More efficient approach: Pearl’s message passing
algorithm for chains and trees and polytrees (at most one
path between any pair of nodes)
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Since directed edges imply causal relationships, might
want to use undirected edges if causality not modeled
E.g., let hy = 1 if you are healthy, 0 if sick

hr same but for your roommate, hc for coworker

hy and hr directly influence each other, but causality
unknown and irrelevant
hy and hc also directly influence each other
hr and hc only indirect influence, via hy

Can model Pr[hr, hy, hc] with undirected model, aka
Markov random field (MRF), aka Markov network
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Undirected Models
Factors

In directed models, factors defined by a node’s parents:
conditionally indep. of nondescendants given parents
In undirected models, factors defined by maximal
cliques (complete subgraphs): conditionally indep. of
all other variables given neighbors
In graph above, cliques are {{hr, hy}, {hy, hc}}
In graph below, cliques are
{{a, d}, {a, b}, {b, c}, {b, e}, {e, f}}
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Undirected Models
Factors (2)

Given clique C ∈ G and yC = values on nodes in C,
factor φC(yC) describes how likely they will co-exist
Not quite a probability; need to normalize it first
First go through all cliques C, compute factor on C using
values from y:

P̃(y) =
∏
C∈G

φC(yC)

Can convert this to a probability of y by normalizing:

Pr[y] = P̃(y)/Z ,

where Z =
∑

y∈Y P̃(y) comes from summing (or
integrating) over all possible values across all nodes
Z doesn’t change if model doesn’t
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Undirected Models
Factors (3)

Model:
φ(Cry) hy = 0 hy = 1
hr = 0 2 1
hr = 1 1 10

φ(Cyc) hy = 0 hy = 1
hc = 0 5 1
hc = 1 2 15

Distribution:

hr hy hc φ(Cry) φ(Cyc) P̃(y) Pr[y]
0 0 0 2 5 10 0.051
0 0 1 2 2 4 0.020
0 1 0 1 1 1 0.005
0 1 1 1 15 15 0.076
1 0 0 1 5 5 0.025
1 0 1 1 2 2 0.010
1 1 0 10 1 10 0.051
1 1 1 10 15 150 0.762

Z = 197 1.0

What is time complexity of brute-force approach?
29 / 74



CSCE
496/896

Lecture 11:
Structured

Prediction and
Probabilistic

Graphical
Models

Stephen Scott
and Vinod
Variyam

Introduction

Definitions

Applications

Graphical
Models
Directed

Undirected

Energy

Separation

Training

Undirected Models
Factor Graphs

How do we interpret this MRF?
Could be one factor: φ({a, b, c})
Or, is it three:
φ({a, b}), φ({a, c}), φ({b, c})

A factor graph makes explicit the scope of each factor φ
φ({a, b, c}) φ({a, b}), φ({a, c}), φ({b, c})

Bipartite graph, so no circles or squares connected
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Undirected Models
Factor Graphs (2)

Formally, a factor graph is a bipartite graph (V,F , E),
where V = variable nodes, F = factor nodes and
edges E ⊆ V ×F with one endpoint V and one in F
The scope N : F → 2V of factor f ∈ F is the set of
neighboring variables:

N(f ) = {i ∈ V : (i, f ) ∈ E}

Now compute distribution similar to before:

Pr[y] =
1
Z

∏
f∈F

φf (yN(f ))
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Undirected Models
Conditional Random Fields

A conditional random
field (CRF) is a factor
graph used to directly
model a conditional
distribution
Pr[Y = y | X = x]

E.g., probability that a
specific pixel y is part of
a cat given the
observation (input
image) x

Pr[Yi = yi, Yj = yj | Xi = xi,Xj = xj] =

1
Z(xi, xj)

φi(yi; xi)φj(yj; xj)φi,j(yi, yj)

Pr[Y = y | X = x] =
1

Z(x)

∏
f∈F

φf (yf ; xf )

Z now depends on x
32 / 74
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Undirected Models
Energy-Based Functions

We now know how to factor the distribution graphically,
but what form will φ(·) take?
Want to learn them to infer a distribution
Need p̃(x) > 0 for all x in order to get a distribution
Define an energy function Ef : YN(f ) → R for factor f

Then define φf = exp(−Ef (yf )) > 0 and get

p(Y = y) =
1
Z

∏
f∈F

φf (yf ) =
1
Z

∏
f∈F

exp
(
−Ef (yf )

)

=
1
Z

exp

−∑
f∈F

Ef (yf )


33 / 74
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Undirected Models
Energy-Based Functions (2)

Using this form of φ allows us to factor our energy function
as well!

E(a, b, c, d, e, f ) = Ea,b(a, b)+Eb,c(b, c)+Ea,d(a, d)+Eb,e(b, e)+Ee,f (e, f )
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Undirected Models
Energy-Based Functions (3)

Still need a form for E(·) to parameterize and learn
Define Ef (yf ; w) to depend on weight vector w ∈ Rd:

Ef : YN(f ) × Rd → R

E.g., say we are doing binary image segmentation
Want adjacent pixes to try to take same value, so define
Ef : {0, 1} × {0, 1} × R2 → R as

Ef (0, 0; w) = Ef (1, 1; w) = w1

Ef (0, 1; w) = Ef (0, 1; w) = w2

We learn w1 and w2 from training data, expecting
w1 > w2
More on this later
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Separation and D-Separation

An edge between two nodes indicates a direct
interaction between the variables
Paths between nodes indicate indirect interactions
Observing (instantiating) some variables change the
interactions between others
Useful to know which subsets of variables are
conditionally independent from each other, given values
of other variables
Say that set of variables A is separated (if undirected
model) or d-separated (if directed) from set B given set
S if the graph implies that A and B are conditionally
independent given S
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Separation and D-Separation
Example

Recall example on health of you, roommate, and coworker

hr Pr[hc = 0 | hr]
0 (10 + 1)/(10 + 4 + 1 + 15) = 11/30
1 (5 + 10)/(5 + 2 + 10 + 150) = 15/167

⇒ Pr[hc = 0] influenced by hr

hr hy hc P̃(y)
0 0 0 10
0 0 1 4
0 1 0 1
0 1 1 15
1 0 0 5
1 0 1 2
1 1 0 10
1 1 1 150

What if we know that you are healthy (hy = 1)?

hr Pr[hc = 0 | hy = 1, hr]
0 1/(1 + 15) = 1/16
1 10/(10 + 150) = 10/160 = 1/16

⇒ Given hy, hc is CI from hr

hr hy hc P̃(y)
0 0 0 10
0 0 1 4
0 1 0 1
0 1 1 15
1 0 0 5
1 0 1 2
1 1 0 10
1 1 1 150
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Separation and D-Separation
Separation in Undirected Models

If a variable is observed,
it blocks all paths
through it
In an undirected model,
two nodes are separated
if all paths between them
are blocked

E.g., a and c are blocked, as are d and c, but not a and
d (even though one of their paths is blocked)
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Separation and D-Separation
D-Separation in Directed Models

In directed models, d-separation is more complicated
Depends on the direction of the edges involved

When considering nodes
a and b connected via c,
can classify connection
as tail-to-tail,
head-to-tail, and
head-to-head

For each case, assuming no other path exists (ignoring
edge direction) between a and b, we will determine if a
and b are independent, or conditionally independent
given c
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Separation and D-Separation
D-Separation in Directed Models: Tail-to-Tail

E.g., a = car won’t start, b =

lights work, c = battery low

Pr[c = 1] = 1/2
c Pr[a = 1 | c]

0 1/3
1 1/2
c Pr[b = 1 | c]

0 4/5
1 1/10

Factorization:

Pr[a, b, c] = Pr[a | c] Pr[b | c] Pr[c]

When c unknown, get Pr[a, b] by marginalizing:

Pr[a, b] =
∑

c

Pr[a | c] Pr[b | c] Pr[c] ,

which generally does not equal Pr[a] Pr[b]
⇒ a and b not independent
E.g., Pr[a = 1, b = 1] = 0.292 6= 0.321 = (0.583)(0.550) = Pr[a = 1] Pr[b = 1]
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Separation and D-Separation
D-Separation in Directed Models: Tail-to-Tail (2)

E.g., c = 1 (battery low)

When conditioning on c:

Pr[a, b | c] =
Pr[a, b, c]

Pr[c]
=

Pr[c] Pr[a | c] Pr[b | c]

Pr[c]
= Pr[a | c] Pr[b | c]

Thus a and b conditionally independent given c (car not
starting independent of lights working)
Say that connection between a and b is blocked by c
when it is observed and unblocked when unobserved
Always true for uncoupled tail-to-tail connections
(where there’s no edge between a and b)
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D-Separation in Directed Models: Head-to-Tail

E.g., a = leave on time, b =

on time for work, c = catch the

ferry

Pr[a = 1] = 1/2
a Pr[c = 1 | a]

0 1/3
1 1/2
c Pr[b = 1 | c]

0 1/5
1 9/10

Factorization:

Pr[a, b, c] = Pr[a] Pr[c | a] Pr[b | c]

When c unknown, get Pr[a, b] by marginalizing:

Pr[a, b] = Pr[a]
∑

c

Pr[c | a] Pr[b | c] = Pr[a] Pr[b | a] ,

which generally does not equal Pr[a] Pr[b]
⇒ a and b not independent
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Separation and D-Separation
D-Separation in Directed Models: Head-to-Tail (2)

E.g., c = 1 (catch ferry)

When conditioning on c:

Pr[a, b | c] =
Pr[a, b, c]

Pr[c]
=

Pr[a] Pr[c | a] Pr[b | c]

Pr[c]
= Pr[a | c] Pr[b | c]

Thus a and b conditionally independent given c (on time
for work independent of leaving on time)
Say that connection between a and b is blocked by c
when it is observed and unblocked when unobserved
Always true for uncoupled head-to-tail connections
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D-Separation in Directed Models: Head-to-Head

E.g., a = rain, b = sprinkler,

c = wet grass

Pr[a = 1] = 1/4, Pr[b = 1] = 1/3
a b Pr[c = 1 | a, b]

0 0 1/10
0 1 6/10
1 0 4/5
1 1 10/11

Factorization:

P(a, b, c) = P(a)P(b)P(c | a, b)

When c unknown, get P(a, b) by marginalizing:

P(a, b) = P(a)P(b)
∑

c

P(c | a, b) = P(a)P(b)

⇒ a and b are independent
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D-Separation in Directed Models: Head-to-Head (2)

E.g., c = 1 (grass wet)

When conditioning on c:

Pr[a, b | c] =
Pr[a, b, c]

Pr[c]
=

Pr[a] Pr[b] Pr[c | a, b]

Pr[c]
,

which generally does not equal Pr[a | c] Pr[b | c]

a-b connection blocked by c when c
unobserved and unblocked when
observed (also unblocks if one of c’s
descendants observed)
E.g., if grass wet and not raining,
Pr[b = 1] increases
Always true for uncoupled
head-to-head connections45 / 74
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D-Separation in Directed Models: Example

W and T:
[W,Y,R,T] blocked by Y or R

[W,Y,X,Z,R,T] blocked by X or
Z or R

[W,Y,X,Z, S,R,T] blocked by X
or Z or R but not by S since
observing S unblocks the chain

Y and T:
[Y,R,T] blocked by R

[Y,X,Z,R,T] blocked by X or Z
or R

[Y,X,Z, S,R,T] blocked by X or Z
or R
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Separation and D-Separation
D-Separation in Directed Models: Example (2)

W and S:
[W,Y,R, S] blocked by Y or R

[W,Y,X,Z,R, S] blocked by X or
Z or R

[W,Y,X,Z, S] blocked by X or Z

[W,Y,R,Z, S] blocked by Y or Z

Y and S:
[Y,R, S] blocked by R

[Y,R,Z, S] blocked by Z

[Y,X,Z,R, S] blocked by X or Z or
R

[Y,X,Z, S] blocked by X or Z
Thus {W,Y} and {S,T} are CI given {R,Z}
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Separation and D-Separation
D-Separation in Directed Models: Example (2)

W and X:
Chain [W,Y,X] blocked by Y
when not observed
Chain [W,Y,R,Z,X] blocked by R
when not observed
Chain [W,Y,R, S,Z,X] blocked
by S when not observed

Thus W and X are independent
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Markov Blankets

Let V be a set of random
variables (nodes), and X ∈ V. A
Markov blanketMX of X is any
set of variables such that X is CI
of all other variables givenMX

If no proper subset ofMX is a
Markov blanket, thenMX is a
Markov boundary

Theorem: The set of X’s parents, children, and
co-parents (other parents of X’s children) form a
Markov blanket of X

Node X has Markov blanket {T,Y,Z}
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Conditional Random Fields

Learning a CRF with input x, parameterized by weight
vector w:

Pr[y | x,w] =
1

Z(x,w)
exp (−E(y, x,w))

where Z(x,w) =
∑

y∈Y exp (−E(y, x,w))

Let energy function E(y, x,w) = 〈w, ϕ(x, y)〉
I.e., a weighted sum of features produced by feature
function ϕ(x, y)
ϕ(x, y) could be a deep network, possibly trained earlier
w is trained to get PrP[y | x,w] “close” to the true
distribution PrD[y | x]
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Conditional Random Fields (2)

Want w such that PrP[y | x,w] is close to the true
distribution PrD[y | x]

Measure distance via Kullback-Leibler (KL)
divergence: for any x ∈ X we have

KL(P‖D) =
∑
y∈Y

PrD[y | x] log
PrD[y | x]

PrP[y | x,w]

By marginalizing over all x ∈ X we get

KLtot(P‖D) =
∑
x∈X

PrD[x]
∑
y∈Y

PrD[y | x] log
PrD[y | x]

PrP[y | x,w]
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Conditional Random Fields (3)

Goal is to find weights yielding close distribution, so

w∗ = argmin
w∈Rd

KLtot(P‖D)

= argmax
w∈Rd

∑
x∈X

PrD[x]
∑
y∈Y

PrD[y | x] log PrP[y | x,w]

= argmax
w∈Rd

∑
x∈X

∑
y∈Y

PrD[x]PrD[y | x] log PrP[y | x,w]

= argmax
w∈Rd

∑
x∈X

∑
y∈Y

PrD[x, y] log PrP[y | x,w]

= argmax
w∈Rd

E(x,y)∼D [log PrP[y | x,w]]

≈ argmax
w∈Rd

∑
(xn,yn)∈D

log PrP[y | x,w]

for training data D
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Conditional Random Fields: RMCL

I.e., we choose a model (w∗) that maximizes the
conditional log likelihood of the data

If all (x, y) instances are drawn iid, then w∗ maximizes
the probability of seeing all the ys given all the xs

Throw in a regularizer for good measure
Definition: Let Pr[y | x,w] = 1

Z(x,w) exp (−〈w, ϕ(x, y)〉)
be a probability distribution parameterized by w ∈ Rd

and let D = {(xn, yn)}n=1,...,N be a set of training
examples. For any λ > 0, regularized maximum
conditional likelihood (RMCL) training chooses

w∗ = argmin
w∈Rd

λ‖w‖2 +

N∑
n=1

〈w, ϕ(xn, yn)〉+

N∑
n=1

log Z(xn,w)
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Conditional Random Fields: RMCL (2)

Goal: find w minimizing

L(w) = λ‖w‖2 +

N∑
n=1

〈w, ϕ(xn, yn)〉+

N∑
n=1

log Z(xn,w)

Compute the gradient:

∇wL(w) = 2λw +

N∑
n=1

ϕ(xn, yn)−
∑
y∈Y

(
exp(−〈w, ϕ(xn, y)〉)∑

y′∈Y exp(−〈w, ϕ(xn, y′)〉)

)
ϕ(xn, y)


= 2λw +

N∑
n=1

ϕ(xn, yn)−
∑
y∈Y

PrP [y | xn,w]ϕ(xn, y)


= 2λw +

N∑
n=1

[
ϕ(xn, yn)− Ey∼P(y|xn,w) [ϕ(xn, y)]

]
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Conditional Random Fields: RMCL (3)

The gradient has a nice, compact form, and is convex
⇒ Any local optimum is a global one

Problem: Computing expectation requires summing
over exponentially many combinations of values of y
We can factor energy function, and therefore its
derivative, and therefore the expectation of its derivative
Let’s focus on an individual factor f :

Eyf∼P(yf |xn,w)
[
ϕf (xn, yf )

]
=
∑

yf∈Yf

PrP(yf | x,w)ϕf (xn, yf )

Summation still has exponentially many terms, but
instead of K|V| now it’s K|N(f )| (more manageable)
Still need to compute each factor’s marginal probability
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Inference

Efficient inference of marginal probabilities and Z in a
graphical model is itself a major research area
Depends on the structural model we’re using
Start with belief propagation in acyclic models
Then approximate loopy belief propagation for cyclic
models
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Learning Graphical Models
Inference: Sum-Product Algorithm

Belief propagation is a general approach to inference
in directed and undirected graphical models
Generally, some node i sends a message to another
node j regarding i’s belief about variable y

i informs j its belief about marginal probability Pr[y]
E.g., message value high⇒ belief is Pr[y] also high
Each node messages each of its neighbors about its
belief for each value of the random variable

Sum-Product Algorithm uses belief propagation to
find marginal probabilities and Z in tree-structured
factor graphs (connected and acyclic)
Each edge (i, f ) ∈ E ⊆ V ×F has

1 qYi→f ∈ R|Yi| is a variable-to-factor message
2 rf→Yi ∈ R|Yi| is a factor-to-variable message

Note they are vector quantities, one component per
value of Yi
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Inference: Sum-Product Algorithm (2)

Variable-to-Factor Message
For variable i ∈ V, let

M(i) = {f ∈ F : (i, f ) ∈ E}

be the set of factors
adjacent to i

For each value yi of variable i, variable-to-factor
message is

qYi→f (yi) =
∑

f ′∈M(i)\{f}

rf ′→Yi(yi)

Variable node i sums up all factor-to-variable messages
from all factors except f and transmits result to f
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Inference: Sum-Product Algorithm (3)

Factor-to-Variable Message
For factor f ∈ F , recall

N(f ) = {i ∈ V : (i, f ) ∈ E}

is the set of variables
adjacent to f

For each value yi of variable i, factor-to-variable
message is

rf→Yi(yi) = log
∑

y′f∈Yf ,

y′i=yi

exp

−Ef (y′f ) +
∑

j∈N(f )\{i}

qYj→f ′(y′i)


Factor node f sums up all variable-to-factor messages
from all variables except i and transmits result to i
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Inference: Sum-Product Algorithm (4)

Since we have a tree structure, there is always at least
one variable adjacent to only one factor or one factor
adjacent to one variable
These messages depend on nothing, so start there
Then order the other message computations via
precedence graph
Designate an arbitrary variable node to be the root
Two phases of algorithm:

1 Leaf-to-root phase: start at leaves and compute
messages toward root

2 Root-to-leaf phase: start at root and compute
messages toward leaves
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Inference: Sum-Product Algorithm (5)

After two phases, all messages computed
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Inference: Sum-Product Algorithm (6)

To compute Z, sum over factor-to-variable messages
directed to root Yr:

log Z = log
∑

yr∈Yr

exp

 ∑
f∈M(r)

rf→Yr (yr)


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Inference: Sum-Product Algorithm (7)

To compute factor marginals:

µf (yf ) = Pr[Yf = yf ] = exp

−Ef (yf ) +
∑

i∈N(f )

qYi→f (yi)− log Z


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Inference: Sum-Product Algorithm (8)

To compute variable marginals:

Pr[Yi = yi] = exp

 ∑
f∈M(i)

rf→Yi(yi)− log Z


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Inference: Sum-Product Algorithm: Pictorial Structures Example

E.g., E
f (1)
top

(ytop; x) is energy

function for factor ftop
representing top of person
x is observed image and Ytop is
tuple (a, b, s, θ) where (a, b) are
coordinates, s is scale, and θ is
rotation
E

f (2)
top,head

(ytop, yhead) relates

adjecnt pairs of variables
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Inference: Loopy Belief Propagation

When graph has a cycle, can
still perform message passing
to approximate Z and
marginal probabilities
Initialize messages to fixed
value
Perform updates in random
order until convergence
Factor-to-variable messages
rf→Yi computed as before
Variable-to-factor messages
computed differently
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Inference: Loopy Belief Propagation (2)

Variable-to-factor messages:

q̄Yi→f (yi) =
∑

f ′∈M(i)\{f}

rf ′→Yi(yi)

δ = log
∑
yi∈Yi

exp
(
q̄Yi→f (yi)

)
qYi→f (yi) = q̄Yi→f (yi)− δ
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Inference: Loopy Belief Propagation (3)

To compute factor marginals:

µ̄f (yf ) = −Ef (yf ) +
∑

j∈N(f )

qYj→f (yj)

zf = log
∑

yf∈Yf

exp(µ̄f (yf ))

µf (yf ) = exp
(
µ̄f (yf )− zf

)

68 / 74



CSCE
496/896

Lecture 11:
Structured

Prediction and
Probabilistic

Graphical
Models

Stephen Scott
and Vinod
Variyam

Introduction

Definitions

Applications

Graphical
Models

Training

Learning Graphical Models
Inference: Loopy Belief Propagation (4)

To compute variable marginals:

µ̄i(yi) =
∑

f ′∈M(i)

rf ′→Yi(yi)

zi = log
∑
yi∈Yi

exp(µ̄i(yi))

µi(yi) = exp (µ̄i(yi)− zi)
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Inference: Loopy Belief Propagation (5)

To compute Z:

log Z =
∑
i∈V

(|M(i)− 1|)

∑
yi∈Yi

µi(yi) logµi(yi)


−
∑
f∈F

∑
yf∈Yf

µf (yf )(Ef (yf ) + log µf (yf ))
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Conditional Random Fields: Case Study

Chen et al. (2015): Semantic Image Segmentation with
Deep Convolutional Nets and Fully Connected CRFs

Adapted DCNN ResNet-101 (trained for image
classification) to the task of semantic segmentation
Replaced connected layer with a “de-convolution” layer
to upscale to original resolution for segmented image
Result effective, but segment edges blurred
Used CRF to sharpen

71 / 74



CSCE
496/896

Lecture 11:
Structured

Prediction and
Probabilistic

Graphical
Models

Stephen Scott
and Vinod
Variyam

Introduction

Definitions

Applications

Graphical
Models

Training

Learning Graphical Models
Conditional Random Fields: Case Study (2): Overview

Score map generated as output of DCNN interpolated
to input resolution
Right area, but boundary of high-scoring region is fuzzy
CRF sharpens to final output
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Conditional Random Fields: Case Study (2): CRF

Energy function:

E(y) =
∑

i

θi(yi) +
∑

i,j

θij(yi, yj)

where yi ∈ {0, 1} is label assignment for pixel i
Use θi(yi) = − log P(yi) and

θij(yi, yj) = µ(yi, yj)

w1 exp

−‖pi − pj‖2

2σ2
α

−
‖Ii − Ij‖2

2σ2
β

 + w2 exp

(
−
‖pi − pj‖2

2σ2
γ

)
where

µ(yi, yj) = 1 iff yi 6= yj (different labels)
pi = position of pixel i
Ii = RGB color of pixel i
σ = parameters

Inference via specialized algorithms for
Gaussian-based functions
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Conditional Random Fields: Case Study (3): CRF Training Example
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