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Introduction
Out with the old ...

We’ve long known how to answer the question:
Does this picture contain a cat?

E.g., convolutlonal layers feeding connected Iayers feedmg
softmax
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Introduction

... and in with the new.

What we want to know now is: Where are the cats?

No longer a classification problem; need more sophisticated
(structured) output
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Outline

@ Definitions
@ Applications

@ Graphical modeling of probability distributions
@ Training models

@ Inference
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Structured
Prediction and
Probabilistic

o @ Most machine learning approaches learn function
Models f X > R

Stephen S - .
e e Inputs X are any kind of objects

Variyam e Output y is a real number (classification, regression,
density estimation, etc.)

Definitions @ Structured output learning approaches learn function
Applications f : X — y

Graphical e Inputs X are any kind of objects

iesiel e Outputs y € Y are complex (structured) objects
(images, text, audio, etc.)

Introduction

Training
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EEN  Structured Outputs (2)

CSCE
496/896
Lecture 11:
Structured
Prediction and

Pobabiiete Can think of structured data as consisting of parts, where

Models each part contains information, as well as how they fit

Stephen Scott
S together

Variyam

@ Text: Word sequence matters

Introduction

@ Hypertext: Links between documents matter

Definitions

Applications @ Chemical structures: Relative positions of molecules
Graphical

Graphica matter

Training @ Images: Relative positions of pixels matter
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Bl Image Processing
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odele. {0,...25533m<m - {o,1mxn

Stephen Scott
and Vinod
Variyam

Semantic image segmentation: f : {images} — {masks}

Introduction
Definitions
Applications

Graphical
Models

= horse
H [ background

Training
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Graphical {07."7255}3(m><n) R3K

Models R

1 H /'_Aﬁ g
Stephen Scot Pose estimation: f : {images} — {K positions & angles}

Variyam

Introduction

Definitions

Applications

Graphical
Models

Training
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Lincoln |mage PrOCGSSing (3)
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496/896 Point matching:

L re 11: .0 H . .
Sl f : {image pairs} — {mappings between images}
Prediction and
Probabilistic
Graphical
Models

Stephen Scott
and Vinod
Variyam

Introduction
Definitions

Applications

Graphical
Models

Training
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Models Obiject localization

Mool : {images} — {bounding box coordinates}

Variyam

Introduction

output:
Definitions object position
Applications (left top

Graphical
Models

right, bottom)

Training
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Lincoln Others

CSCE
496/896

Lecture 11:

Structured

Prediction and

Probabilistic . . .

Graphical @ Natural language processing (e.g., translation; output is
Models

sentences)
Stepheq Scott ) ) o .
e @ Bioinformatics (e.qg., structure prediction; output is
graphs)
Introduction . .. .
Definitions @ Speech processing (e.g., recognition; output is
Applications Sen’[enCGS)
Graphical @ Robotics (e.g., planning; output is action plan)

Models
Training @ Image denoising (output is “clean” version of image)
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BRIl  Probabilistic Modeling

CSCE
496/896
Lecture 11:
Structured
Prediction and
Probabilistic
Graphical

Rlcce @ To represent structured outputs, we will often employ

Stephen Scaft probabilistic modeling

Variyam e Joint distributions (e.g., P(A, B, C))
iraduction e Conditional distributions (e.g., P(A | B, C))
Definitions @ Can estimate joint and conditional probabilities by
Applications counting and normalizing, but have to be careful about
Graphical representation

Models
Directed
Undirected
Energy
Separation

Training



e Graphical Models

Bl  Probabilistic Modeling (2)

CSCE
Loctore 11 @ E.g., | have a coin with unknown probability p of heads

Structured

Predicon and @ | want to estimate the probability of flipping it ten times
robabilistic .
e and getting the sequence HHTTHHTTTT

oaels
Stephen Scott @ One way of representing this joint distribution is a

e single, big lookup table:

Iniroduction @ Each experiment consists of
Definiions ten coin flips Outcome | Count
Applications i
T @ For each outcome, increment ~ TTHHTTHHTH 1
GEEE its counter HHHTHTTTHH 0
oy @ After n experiments, divide HTTTTTHE?; ?
T HHTTHHTTTT’S counter by n to TTHIHTH
rainin .

¢ get the estimate

@ Will this work?
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Structured
Prediction and
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Graphical

Models @ Problem: Number of possible outcomes grows

Stephen Scot exponentially with number of variables (flips)

Variyam = Most outcomes will have count = 0, a few with 1,
probably none with more
= Lousy probability estimates

Introduction

Definitions

Applications @ Ten flips is bad enough, but consider 100 ~

Graphical @ How would you solve this problem?
odels

Directed
Undirected
Energy

Separation

Training



e Graphical Models

Eall Factoring a Distribution

CSCE
496/896
Lecture 11:
Structured . . .
Prediction and @ Of course, we recognize that all flips are independent,
Graphical SO
Models 4 6
Stephen Scott PI‘[HHTTHHTTTT] = p (l _p)
and Vinod

VA @ So we can count n coin flips to estimate p and use the
Introduction fOfmUla abOVe
Definitions @ |l.e., we factor the joint distribution into independent

Applications components and multiply the results:
Graphical
Models

Directed

Wiler: @ We greatly reduce the number of parameters to

Energy

Separation est| m ate

Training

Pr[HHTTHHTTIT] = Pr[fi = H] Pr[, = H] Pr[s = T]- - - Pr[fio = T]
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Probabilistic

Graphical @ Another example: Relay racing team
Models

Stephen Soot @ Alice, then Bob, then Carol
e @ Let#, = Alice’s finish time (in seconds), 13 = Bob’s,
_ tc = Carol’s
!;:::::Zn @ Want to model the joint distribution Pr(z,, 15, t¢]
Applications @ Letic,tp,14 € {1,...,1000}
i @ How large would the table be for Pr[ts, 15, 1¢c]?
o @ How many races must they run to populate the table?

Energy
Separation

Training



e Graphical Models

Bl Factoring a Distribution (3)

CSCE
496/896
Lecture 11:

Sucured @ But we can factor this distribution by observing that ¢4 is

Prediction and

Probabilisti i
obaniete independent of 13 and ¢¢

Models = Can estimate 4, on its own

Stephen Scott . .
e e @ Also, 3 directly depends on 14, but is independent of ¢

Variyam
’ @ t¢ directly depends on g, and indirectly on 14
@ Can display this graphically:

Introduction

Definitions

Applications A]_ice B()b CarO].

Graphical
Models
Directed
Undirected

Energy
Separation

Training
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Introduction

@ This directed graphical model (often called a
Bayesian network or Bayes net) represents
conditional dependencies among variables

Definitions
Applications

Graphical
Model .
@ Makes factoring easy:
Undirected

Energy

SR Pr(ta, tg, tc] = Prita] Prits | ta] Pritc | 18]

Training



e Graphical Models

Bl Factoring a Distribution (5)

CSCE
496/896
Lecture 11:
Structured
Prediction and
Probabilistic Prita, tg, tc] = Prta] Pr(tg | ta] Prltc | 18]
Graphical
Models

Stephen Scott
and Vinod

Variyam @ Table for Pr[t4] requires’ 1000 entries, while Prtp | #4]
i 6
treduction requires 10°, as does Prtc | t5]
Bt = Total 2.001 x 10°, versus 10°
Applications @ |dea easily extends to continuous distributions by

Graphical
Models
Directed
Undirected

Energy

changing discrete probability Pr[-] to pdf p(-)

Separation

"Technically, we only need 999 entries, since the value of the last one
is implied since probabilities must sum to one. However, then the
analysis requires the use of a lot of “9”s, and that’s not something I'm
willing to take on at this point in my life.

Training
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Lecture 11:

O Definition: X is conditionally independent of Y given Z if
ety  the probability distribution governing X is independent of the
Probabilistic

Graphical value of Y given the value of Z; that is, if
Models

Stephen Scott (Vxi,ypz) PriX=x; | Y=y, Z=2] =Pr[X=x | Z = %]
and Vinod
Variyam

more compactly, we write

Introduction

Definitions

PrX | ¥,Z] = Pr[X | Z]

Applications

o Example: Thunder is conditionally independent of Rain,

Directed given Lightning

Undirected

Energy
Separation

Tining Pr[Thunder | Rain, Lightning] = Pr[Thunder | Lightning]



\areee Directed Models

BN Definition

CSCE BusTourGroup

496/896

Lecture 11:

Structured
Prediction and SB S-B =SB -5-B
Probabilistic c 04 01 08 02
Graphical Lightning

Models -C 06 09 02 0.8
Stephen Scott

and Vinod

Variyam

Network (directed acyclic graph) represents a set of
Graphical conditional independence assertions:
Models

Introduction
Definitions

Applications

Directed
Undirected

@ Each node is asserted to be conditionally
ot independent of its nondescendants, given its
immediate predecessors

@ E.g., Given Storm and BusTourGroup, Campfire is Cl of
Lightning and Thunder

Training




e Directed Models

Lincoln Causality

CSCE
496/896
Lecture 11:

ecture 11 Can think of edges in a Bayes net as representing a causal

IR relationship between nodes
Probabilistic

Graphical

Models

P(R)=0.4
Stephen Scott

and Vinod

Variyam

Introduction

Definitions PW|R)=09
Applications P(W| NR) = 02
Graphical

Wet grass
Models

Directed
Undirected
Energy

—— E.g., rain causes wet grass

Training

Probability of wet grass depends on whether there is rain
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Directed Models

Generative Models

Represents joint probability dis-
tribution over (Yi,....Y,), e.g. x‘
Pr[Storm, BusTourGroup, . . . , ForestFire]

@ In general, for y; = value of Y;

Prlyi, ...,y = HPr[y,- | Parents(Y;))

i=1

(Parents(Y;) denotes immediate predecessors of Y;)
e E.g., Pr[S,B,C,-L,~T,—F| =

Pr[S]-Pr[B]-Px[C | B,S] - Pr[L | S]-Pr[~T | ~L]-Pr[~F | S, ~L, ~C]
—_———
0.4

@ If variables continuous, use pdf p(-) instead of Pr|:]
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We sometimes call graphical models generative (vs
discriminative) models since they can be used to generate
instances (Y1, ..., Y,) according to joint distribution

Directed Models

Predicting Most Likely Label

Can use for classification

@ Label r to predict is one of the variables, represented
by a node

@ If we can determine the most likely value of r given the
rest of the nodes, can predict label

@ One idea: Go through all possible values of r, and
compute joint distribution (previous slide) with that

value and other attribute values, then return one that
maximizes
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Directed Models

Predicting Most Likely Label (cont'd)

E.g., if Storm (S) is the label to predict, and we are given
values of B, C, —L, =T, and —F, can use formula to compute
Pr[S,B, C,—L,—~T,—F] and Pr[-S,B, C,-L,—T,—F], then
predict more likely one

Easily handles unspecified attribute values

Issue: Takes time exponential in number of values of
unspecified attributes

More efficient approach: Pearl’s message passing
algorithm for chains and trees and polytrees (at most one
path between any pair of nodes)
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Undirected Models

@ Since directed edges imply causal relationships, might

want to use undirected edges if causality not modeled

@ E.g., let h, = 1if you are healthy, 0 if sick
e h, same but for your roommate, 4. for coworker

@ h, and &, directly influence each other, but causality
unknown and irrelevant

@ h, and h. also directly influence each other
@ i, and k. only indirect influence, via A,

@ Can model Pr|h,, hy, h.] with undirected model, aka
Markov random field (MRF), aka Markov network
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Lincoln Factors
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Lecture 11:

Structured
Prediction and

P{;c’riikéii'l?fC @ In directed models, factors defined by a node’s parents:
Models conditionally indep. of nondescendants given parents
ST Sl @ In undirected models, factors defined by maximal
Variyam cliques (complete subgraphs): conditionally indep. of
Introduction all other variables given neighbors
Definitions @ In graph above, cliques are {{A,,h,},{hy, h.}}
Applications @ In graph below, cliques are
G {{a.d}, {a, b}, {b.c}.{b.e}. {e.f}}

Directed

Undirected
Energy
Separation

Training
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Undirected Models

Factors (2)

@ Given clique C € G and yc = values on nodes in C,
factor ¢¢(yc) describes how likely they will co-exist

@ Not quite a probability; need to normalize it first
@ First go through all cliques C, compute factor on C using

values from y: i
P(y) =[] dctve)

ceg
@ Can convert this to a probability of y by normalizing:

Prly] = P(y)/Z ,

where Z =3 P(y) comes from summing (or
integrating) over all possible values across all nodes

@ Z doesn’t change if model doesn’t



Aize Undirected Models

Bl Factors (3)

CSCE Model:

496/896
Lecture 11: o(Cry) ‘ hy=0 hy=1 &(Cye) ‘ hy=0 hy=1
Structured B =0 > 1 he =0 5 1

Prediction and

Probabilistic hr =1 1 10 he =1 ‘ 2 15

Graphical
Models
Stephen Scott Distribution:
and Vinod
Variyam
b by he | 9(Ch)  9(Ce) | PO) | Prp]
Introduction 0 0 0 2 5 10 0.051
Definitions 0 0 1 2 2 4 0.020
Applications 0 1 0 1 1 1 0.005
0 1 1 1 15 15 0.076
'\G/lre;pr?ical 1 0 0 1 5 5 0.025
s 10 1 1 2 2 0.010
Undirected 1 1 0 10 1 10 0.051
E"e“-“‘ 1 1 1 10 15 150 0.762
- =197 | 1.0

Training

What is time complexity of brute-force approach?
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Undirected Models

Factor Graphs

° ° @ How do we interpret this MRF?
. @ Could be one factor: ¢({a, b, c})
@ Or, is it three:
° d({a,b}), ({a c}), 6({b.c})

A factor graph makes explicit the scope of each factor ¢

¢({a,b,c}) ¢({a,b}), o({a,c}), o({b, c})

cWiGietio

f

Bipartite graph, so no circles or squares connected
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Bl Factor Graphs (2)

CSCE
496/896
Lecture 11:
praered | @ Formally, a factor graph is a bipartite graph (V, 7, ),

Probabilistic

Grephitel where V = variable nodes, 7 = factor nodes and

RlcCes edges £ C V x F with one endpoint V and one in 7
Stephen Scof
ta\r?gr?;:;d : @ The scope N : F — 2" of factor f € F is the set of

neighboring variables:

Introduction

Definitions N(f)={ieV:(if) €&}
Applications

Graphical @ Now compute distribution similar to before:

Models
Directed
Undirected

el Prly] = H or(Yn ()

Training fE]'—
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Undirected Models

Conditional Random Fields

@ A conditional random
field (CRF) is a factor @ @

graph used to directly
model a conditional
distribution

PrlY =y | X =x] @ @

E.g., probability that a
specific pixel y is part of

X PrlYi =y, Y=y | Xi = x:,X; = 5] =
a cat given the

observation (input 7o) 1 < Gi (i xi) 5 (33 %7) i (Vi 1)
. Xiy Xj)
image) x
P[Y y|X—x ||¢f(yf,xf
fEJ-'

Z now depends on x
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CSCE
496/896

\Soture 11 @ We now know how to factor the distribution graphically,

Structured

oo and but what form will ¢(-) take?
odele. @ Want to learn them to infer a distribution
5‘;53?;@3"“ @ Need p(x) > 0 for all x in order to get a distribution
yaam e Define an energy function E; : Yy, — R for factor f
introduction @ Then define ¢y = exp(—Ef(yf)) > 0 and get
Definitions
Applications 1
Graphical p(Y:y) = 2 H ¢f(yf) HeXp Ef yf
Models fE]‘— f€.7'—

Directed

Training Z
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CSCE
496/896
Lecture 11:
Structured
Prediction and

Probabilistic Using this form of ¢ allows us to factor our energy function
Graphical |
Modols as well

Stephen Scott
and Vinod
Variyam
Introduction ° ‘ 0

Definitions

Applications

Graphical
E(a,b,c,d, e.f) = Eq (@, b)+Ep (b, ¢)+Eqa(a,d)+Ep (b, e)+E, s (e.f)

Directed

Undirected
Energy
Separation

Training
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Undirected Models

Energy-Based Functions (3)

@ Still need a form for E(-) to parameterize and learn
@ Define Ey(y; w) to depend on weight vector w € R?:

EftyN(f)XRd—)R

@ E.g., say we are doing binary image segmentation
e Want adjacent pixes to try to take same value, so define

E :{0,1} x {0,1} x R > R as
Ef(O, O;W) = Ef(], l;W) =W
Ef((), I;W) = Ef(O, 1;W) = Wy

e We learn w; and w, from training data, expecting
w1y > wy

@ More on this later
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Structured @ An edge between two nodes indicates a direct
Prediction and

Probabilistic interaction between the variables
Graphical

Models @ Paths between nodes indicate indirect interactions

S and Vinod @ Observing (instantiating) some variables change the

VA interactions between others
introducton @ Useful to know which subsets of variables are
pefiniions conditionally independent from each other, given values
2""":‘"‘7”8 of other variables

raphica
Models @ Say that set of variables A is separated (if undirected
Lreced model) or d-separated (if directed) from set B given set
Separton S if the graph implies that A and B are conditionally

Training independent given S
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Lecture 11:

Recall example on health of you, roommate, and coworker

Structured he  hy  he | P(y)
Prediction and ° 0 0 0 10
Probabilistic 0 0 1 4
Graphical 0 1 0 1
Models hy Pr[h( =0 | h 0 1 1 15
Stephen Scott 0 (10 l)/(10+4+1+15) =11/30 1 8 ? g
and Vinod [T [ G+10)/(5+2+ 10+ 150) = 15/167 | 11 0| 10
Variyam 1 1 1 150
= Pr[h. = 0] influenced by #,
Introduction
Definitions
Applications What if we know that you are healthy (h, = 1)?
Graphical ._'_‘ B by ke | P
Models 0 0 0 10
o OO i
Undirected 0 1 0 1
nergy hy Pr hc =0 ‘ hy =1 hr] 0 1 1 15
eparation 1 0 0 5
Training 0 /( a 15) 1/16 1 0 ! 2
[ 1 ]10/(10+ 150) = 10/160 = 1/16 | ’ T 1 0 | 10
= Given h,, h. is Cl from h, 1 1 1 ]1%0
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Separation and D-Separation

Separation in Undirected Models

@ If a variable is observed,
it blocks all paths
through it

@ In an undirected model, ‘o ‘

two nodes are separated
if all paths between them
are blocked

@ E.g., a and ¢ are blocked, as are d and ¢, but not a and
d (even though one of their paths is blocked)
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@ In directed models, d-separation is more complicated
@ Depends on the direction of the edges involved

Separation and D-Separation

D-Separation in Directed Models

When considering nodes
a and b connected via c,

can classify connection
as tail-to-tail,

head-to-tail, and

head-to-head

For each case, assuming no other path exists (ignoring
edge direction) between a and b, we will determine if a

and b are independent, or conditionally independent
given ¢



e Separation and D-Separation

Bl D-Separation in Directed Models: Tail-to-Tail

CSCE
496/896
Lecture 11:

Pr[a:l|c]‘

C
Structured
Prediction and 0 1 /3
Probabilistic
Graphical 1 1/2
Models E.g., a = car won't start, b = ‘ c|Prlb=1](]
0
1

Sierliem e lights work, ¢ = battery low 4/5

and Vinod
1/10

Variyam

Introduction

Definitions @ Factorization:
Applications PI‘[LZ, b’ C] — PI‘[(J | C] Pr[b | C] PI‘[C]

Graphical
s @ When ¢ unknown, get Pr[a, b] by marginalizing:

Undirected

Evy Prla, b] = ZPr[a | c] Pr[b | c] Pr[c] ,

Separation

Training
which generally does not equal Pr|a] Pr[b]
= a and b not independent
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Separation and D-Separation
D-Separation in Directed Models: Tail-to-Tail (2)

E.g., c = 1 (battery low)

@ When conditioning on c:

Prla,b | c] = Prla,b,c]  Prlc]Prla|c|Pr[b | ]

Prlc] Prld = Prla | c]| Pr[b |

@ Thus a and b conditionally independent given ¢ (car not
starting independent of lights working)

@ Say that connection between a and b is blocked by ¢
when it is observed and unblocked when unobserved

@ Always true for uncoupled tail-to-tail connections
(where there’s no edge between a and b)




e Separation and D-Separation

Bl D-Separation in Directed Models: Head-to-Tail

CSCE Pr[a = 1] = 1/2
496/896
Lecture 11: a PI‘[C = 1 | Cl] ‘
Structured
Prediction and 0 1 /3
Probabilistic
G’\rﬂa%hilca' E.g., a = leave on time, b = 1 1/2
odes , _ c | Prb=1]c]
Stephen Scott on time for work, ¢ = catch the
and Vinod 0 1 /5
Variyam ferry 1 9/1 O

Introduction
Definitions

Applications

Graphical

Models
Directed
Undirected
Energy
Separation

Training

@ Factorization:

Pra,b,c] = Prla] Pr[c | a] Pr[b | (]
@ When ¢ unknown, get Pr[a, b] by marginalizing:
Prla,b] = Pr[a] > Prlc | a|Pr[b | c| = Prla] Pr(b| d] ,

which generally does not equal Pr|a] Pr[b]

= a and b not independent
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Separation and D-Separation
D-Separation in Directed Models: Head-to-Tail (2)

E.g., c = 1 (catch ferry)

@ When conditioning on c:

Prla,b | c] = Prf[)a;[i], d = Prla] Pr[;l[ﬂ Prib| <] = Prla | ¢|Pr[b |

@ Thus a and b conditionally independent given ¢ (on time
for work independent of leaving on time)

@ Say that connection between a and b is blocked by ¢
when it is observed and unblocked when unobserved

@ Always true for uncoupled head-to-tail connections
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Separation and D-Separation

D-Separation in Directed Models: Head-to-Head

Prla=1]=1/4,Prlb=1]=1/3

a b‘Pr[c:l\a,b]
0 o0 110
0 1 6/10

E.g., a = rain, b = sprinkler,

a 1 1 10/11

@ Factorization:
P(a,b,c) = P(a)P(b)P(c | a,b)
@ When c unknown, get P(a, b) by marginalizing:

P(a,b) = ZPc|ab P(a)P(b)

= a and b are independent
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Separation and D-Separation
D-Separation in Directed Models: Head-to-Head (2)

@ When conditioning on c:

E.g., c = 1 (grass wet)

Pria,b | o = Pra,b,c] _ Prla] Pr(b] Pr[c | a,b]

Pr[c]

Prlc] ’

which generally does not equal Prla | ¢] Pr[b | ]

@ a-b connection blocked by ¢ when ¢
unobserved and unblocked when
observed (also unblocks if one of ¢’s
descendants observed)

@ E.g., if grass wet and not raining,
Pr[b = 1] increases

@ Always true for uncoupled
head-to-head connections

Qp

@@@
©



e Separation and D-Separation

Bl D-Separation in Directed Models: Example

CSCE

496/896 WandT:

Lecture 11:

praered | @ [W,Y,R,T] blocked by Y or R
ion @ [W,Y,X,Z R,T) blocked by X or
Models
ZOorR
Stepheq Scott
Sy @ [W,Y,X,Z S,R,T| blocked by X
_ or Z or R but not by S since
introduetion observing S unblocks the chain
Definitions
Applications Y and T:
Graphical o [Y, R, T] blocked by R
@ [Y,X,Z,R,T) blocked by X or Z
OorR
Training ® [V,X,Z,S,R,T] blocked by X or Z

orR



e Separation and D-Separation

Bl D-Separation in Directed Models: Example (2)

CSCE

496/896 W and S:
Lecture 11:

Structured (] [W’ Y’ R’ S] bIOCked by YorR

Prediction and

Probabilistic @ [W,Y,X,Z R,S] blocked by X or

Graphical

Models 7 or R
Stephen Scott
i @ [W,Y,X,Z,S] blocked by X or Z
@ [W,Y,R,Z,S] blocked by Y or Z

Y and S:

Introduction

Definitions
Applications @ [Y,R,S] blocked by R
Graphical @ [Y,R,Z,S] blocked by Z
@ [V,X,Z,R,S] blocked by X or Z or
R
Training @ [V,X,Z,S] blocked by X or Z

Thus {W,Y} and {S, T} are Cl given {R,Z}
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Separation and D-Separation
D-Separation in Directed Models: Example (2)

W and X:
@ Chain [W,Y, X] blocked by Y
when not observed
@ Chain [W,Y,R,Z, X] blocked by R
when not observed
@ Chain [W,Y,R,S,Z, X] blocked
by S when not observed
Thus W and X are independent




W\everel |\arkov Blankets

CSCE
496/896

Lecture 11: @ Let V be a set of random
Prediction and (1) variables (nodes), and X € V. A

Probabilistic

Graphical Markov blanket My of X is any
Models

set of variables such that X is Cl
S () (& (1) of all other variables given My

Variyam @ If no proper subset of My is a

Introduction e o Markov blanket, then My is a
Definitions Markov boundary

Applications
Graphical , .
Models @ Theorem: The set of X’s parents, children, and

Directed

Undreciod co-parents (other parents of X’s children) form a

Energy

Sepraton Markov blanket of X
@ Node X has Markov blanket {7,Y,Z}

Training
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Bl Conditional Random Fields

CSCE
496/896
Lecture 11:

Stiuctured @ Learning a CRF with input x, parameterized by weight

Prediction and

Probabilistic .
Graphical vector w:

Models
Stepheq Scott PI‘ x.wl =
T I Zw)
Introduction where Z(x, w) = Zyey exp (—E(y,x, W))

pefiniions @ Let energy function E(y,x,w) = (w, o(x,y))
e l.e., aweighted sum of features produced by feature

exp (—E(y,x,w))

Applications

Graphical .
Models function <p(x,y)

Training @ ¢(x,y) could be a deep network, possibly trained earlier
e wis trained to get Prpy | x, w] “close” to the true
distribution Prply | x]
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Bl Conditional Random Fields (2)

CSCE
496/896
Lecture 11:

Structured @ Want w such that Prply | x,w| is close to the true

Prediction and

Probabilisti istributi
el distribution Prply | x|

Models @ Measure distance via Kullback-Leibler (KL)
Stephen Scott .

ahd Vinod divergence: for any x € X we have

Variyam

_ Prply | x]

Introduction P D PI'D x 10
Definitions ” )%; [y ‘ & PI'P[y ‘ X, W]
Applications
Graphical @ By marginalizing over all x € X we get
Training PrD[y ‘ x]

KLur(PID) = D Prole] 3 _Proly | xllog 55 =
xeX yey
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w

@ Goal is to find weights yielding close distribution, so

*

Learning Graphical Models
Conditional Random Fields (3)

argmin KL, (P||D)
weR?

argmaxz Prplx ZPID[y | x]log Prply | x, w]
weR! ey yeY

argmax Z Z Prp[x]Prply | x]log Prply | x,w]

weRI XEX yey
argmax Z Z Prplx,y]log Prply | x, w]
weRd xeX yey

argmax E, yp [log Prp[y | x,w]]
weRd

argmax Z log Prply | x, w]
weRd (xn’yn)e'D

for training data D



ey Learning Graphical Models

gl Conditional Random Fields: RMCL

CSCE
496/896 . .
Lecture 11: @ |.e., we choose a model (w*) that maximizes the

Prodirona conditional log likelihood of the data

b e Ifall (x,y) instances are drawn iid, then w* maximizes
izsels the probability of seeing all the ys given all the xs
Stephen Scott . .
and Vinod @ Throw in a regularizer for good measure

Variyam

@ Definition: Let Pry | x,w] = Z(x ) exp (—(w, p(x,y)))
be a probability distribution parameterized by w € R¢
and let D = {(x",y")},=1,...~ be a set of training
examples. For any A > 0, regularized maximum

Introduction
Definitions

Applications

Graphical
Models conditional likelihood (RMCL) training chooses

Training

N
w* —argmln)\Hsz—i-Z w, o(x",y") +ZlogZ(x”,w)
weR? n=1 n=1



ety Learning Graphical Models

CSCE

496/896 Goal: find w minimizing

Lecture 11:
Structured
Prediction and

Models

Stephen Scott
and Vinod

Variyam Compute the gradient:

N
Definitions VwL(w) 2w + Z

Applications n=l

Introduction |:

Graphical
Models

Training

P, y"

N
2w+ [@(x”,y"
n=1

Bl Conditional Random Fields: RMCL (2)

N N
P o Lw) = Aw|?+> w0 y)) + > log Z(x",w)
n=1

n=1

oy ( exp(={w, (x",y))) )so(x",y)}

1 \Zyrey exp(=(w,o(x",y")))

J
yey

)= > Prely [x" wlp(x",y)

N
= | 2w+ [ey") — Eyoppplenw) (", 3)]]
n=1




ey Learning Graphical Models

Bl Conditional Random Fields: RMCL (3)

CSCE
R00.53C @ The gradient has a nice, compact form, and is convex

Lecture 11:

Structured i i
Prodiotion and = Any local optimum is a global one
Probabilistic

Graphical @ Problem: Computing expectation requires summing
.\ Mh°de': ) over exponentially many combinations of values of y

ephen Sco

et e @ We can factor energy function, and therefore its

Variyam

derivative, and therefore the expectation of its derivative
@ Let’s focus on an individual factor f:

Introduction
Definitions

Applications

Graphical E.YfNP()’HX",W) [QOf ’yf Z PrP(yf |x W)QOf( 7yf)
Models _Yfeyj

Training

@ Summation still has exponentially many terms, but
instead of KVl now it's KIN()| (more manageable)

@ Still need to compute each factor’s marginal probability
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Lecture 11:
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Stoohon Soot o Efficient inference of marginal probabilities and Z in a
ephen Sco . . . .
and Vinod graphical model is itself a major research area

Variyam
@ Depends on the structural model we're using
Definitions @ Start with belief propagation in acyclic models

Applications @ Then approximate loopy belief propagation for cyclic

Graphical models
Models

Introduction

Training



ety Learning Graphical Models

Bl Inference: Sum-Product Algorithm

CSCE . - . .
496/896 @ Belief propagation is a general approach to inference

Lecture 11:

Structured in directed and undirected graphical models

e @ Generally, some node i sends a message to another
Qi node j regarding i’s belief about variable y

Stephen Scott e i informs j its belief about marginal probability Pr[y]
Vo e E.g., message value high = belief is Pr[y] also high

e Each node messages each of its neighbors about its

Introduction belief for each value of the random variable

Reiiiihs @ Sum-Product Algorithm uses belief propagation to

Applcatons find marginal probabilities and Z in tree-structured

i factor graphs (connected and acyclic)

Training @ Eachedge (i,f) € £ CV x F has

@ ¢v_; € RYlis a variable-to-factor message
@ 1y, € RVl is a factor-to-variable message
@ Note they are vector quantities, one component per
value of ¥;
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Variable-to-Factor Message

Learning Graphical Models

Inference: Sum-Product Algorithm (2)

@ For variable i ¢ V, let

M@i)={feF:(if)c&}

/
be the set of factors e T F
adjacent to i '

@ For each value y; of variable i, variable-to-factor
message is

Qv = Y, rrorOn)
J'eM(\{f}

@ Variable node i sums up all factor-to-variable messages
from all factors except f and transmits result to f
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Factor-to-Variable Message

Learning Graphical Models

Inference: Sum-Product Algorithm (3)

@ For factor f € F, recall

N(f)={ieV:(f) €&

is the set of variables
adjacent to f

@ For each value y; of variable i, factor-to-variable
message is

r—y,(vi) = log Z exp | —Ex( yf Z qyi—f’ )
A JEN\{i}
yi=yi

@ Factor node f sums up all variable-to-factor messages
from all variables except i and transmits result to i
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Bl Inference: Sum-Product Algorithm (4)

CSCE
496/896
Lecture 11:

Structured @ Since we have a tree structure, there is always at least

Prediction and

Probabiiste one variable adjacent to only one factor or one factor
Models adjacent to one variable
S @ These messages depend on nothing, so start there
Variyam . .
@ Then order the other message computations via
Introduction precedence graph

Definitions

@ Designate an arbitrary variable node to be the root
@ Two phases of algorithm:

Applications

Graphical

Models @ Leaf-to-root phase: start at leaves and compute

Jraining messages toward root

@ Root-to-leaf phase: start at root and compute
messages toward leaves
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After two phases, all messages computed
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Structured
Prediction and
Probabilistic
Graphical

Models To compute Z, sum over factor-to-variable messages
Stephen Scott .
and Vinod directed to root Y,

Variyam

Introduction
Definitions logZ = log Z exp Z r—v, (yr)
Applications YreYVr eM(r)

Graphical
Models

Training
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To compute factor marginals:

Learning Graphical Models

Inference: Sum-Product Algorithm (7)

) = PriYy =yl = exp [ —E(y) + Y qrioy() —logZ
iEN(f)
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Learning Graphical Models

Inference: Sum-Product Algorithm (8)

To compute variable marginals:

vi=exp | Y ron(n) —logZ
em(i)
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Bl Inference: Sum-Product Algorithm: Pictorial Structures Example

CSCE
496/896
Lecture 11:
Structured
Prediction and

Probabilisti e .
Grapical S e Eg, Eq (ytop; x) is energy
(0]

Models e ot p
Stephen Scott el | L function for faCtorﬁop
Varyam representing top of person
ntroduction @ x is observed image and Yiqp is
Definitions tUple (a7 b, A\ 9) Where (a, b) are
Applications coordinates, s is scale, and 0 is
Graphical I’Otation
Models
Training o Ef(z) (ytop,yhead) relates
top,head

adjecnt pairs of variables



ety Learning Graphical Models

Sl Inference: Loopy Belief Propagation

CSCE
496/896
Lect 11:
Structured @ When graph has a cycle, can
Prediction and . .
Probabilistic still perform message passing

ik to approximate Z and

Stephen Scott marginal probabilities
and Vinod

varvam @ Initialize messages to fixed
Introduction value

Definitions @ Perform updates in random

GRS order until convergence

Graphical .
Models @ Factor-to-variable messages

Training rr—y, computed as before

@ Variable-to-factor messages
computed differently
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Lecture 11:
Structured
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e el Variable-to-factor messages:
odels

Stepheq Scott B
Varvam Gr-r()) = D rporn(n)
FreM@\{f}
Introduction
Definitions 6 = log Z €xXp (qYl_)f(yl))
Applications Yi€Vi
Graphica Qv (i) = vy (i) =6

Models

Training
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Bl Inference: Loopy Belief Propagation (3)

CSCE
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Lecture 11:
Structured
Prediction and
Probabilistic

] To compute factor marginals:

Stepheq Scott _
e Belyr) = —E(yr) + Z qv,—£(9))
JEN()
Introduction _
Definitions g = log Z exp :U’f (yf )
Applications yfeyf
Graphical Hf()’f) = exp (ﬂf(yf) — Zf)

Models

Training
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Bl Inference: Loopy Belief Propagation (4)

CSCE
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Lecture 11:
Structured
Prediction and
Probabilistic

Graphical To compute variable marginals:
odels

Stephen Scott

NS wi(yi) = Z ey, (Vi)
JreM()
Introduction
Definitions zi = log Z exp(fii(yi))
Applications Yi€Vi
Graphical lj,l<yl) = exp (ﬂl(yl) — Zi)

Models

Training
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CSCE
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Lecture 11:
Structured
Prediction and
Probabilistic

Shaall To compute Z:

Stephen Scott
and Vinod
Variyam

logZ = Z (IM (i) — 1)) Z pi(yi) log pi(yi)
Introduction iev Vi€V
Definitions

Applications - Z Z 1 (vr ) (Er (yr) + log iy (yr))

Graphical fE}—nyyf
Models

Training
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Lecture 11:
Structured
Prediction and

P{;c’riikéii'l?fC Chen et al. (2015): Semantic Image Segmentation with

Models Deep Convolutional Nets and Fully Connected CRFs
Stephen Scott

Varam @ Adapted DCNN ResNet-101 (trained for image
oduston classification) to the task of semantic segmentation
Definitions @ Replaced connected layer with a “de-convolution” layer
Applications to upscale to original resolution for segmented image
o @ Result effective, but segment edges blurred

Training @ Used CRF to sharpen
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Bl  Conditional Random Fields: Case Study (2): Overview

CSCE

496/896 Aeroplane
I_Setcture 11: \ Deep Coarse Score map
ructured - c ot |
Prediction and v, — onvolutional ""—
Probabilistic 3 Neural -
Graphical k Network
Models
Stephen Scott
and Vinod - .
Variyam Fully Connected CRF Bi-linear Interpolation

Introduction

Definitions

) s.A

Applications

Graphical
Models

Training @ Score map generated as output of DCNN interpolated
to input resolution

@ Right area, but boundary of high-scoring region is fuzzy
@ CRF sharpens to final output
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Bl Conditional Random Fields: Case Study (2): CRF

CSCE .
496/896 @ Energy function:
Lecture 11:
Structured

e EQ) =300+ 0300.3)

Graphical i ij

Models
Stephen Scor where y; € {0, 1} is label assignment for pixel i

an Ino

Variyam @ Use 6;(y;) = —log P(y;) and
Introduction ! lpi —pill* 11T = I llpi — pj11”
Definiions 05(i> ) = 10y 3) {m exp (7 20%!] - 20%1 ) + 1wy exp <7 2 >
Applications

) where

Graphical . .
Models o u(yi,y;) = Liffy; # y; (different labels)
Training @ p; = pOSition of pixel i

e I; = RGB color of pixel i
@ o = parameters
@ Inference via specialized algorithms for
Gaussian-based functions
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Introduction

CRF Iteration 1 CRF Iteration 2 CREF Iteration 10

DCNN output

Definitions Image/G.T.
Applications

Graphical
Models

Training
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