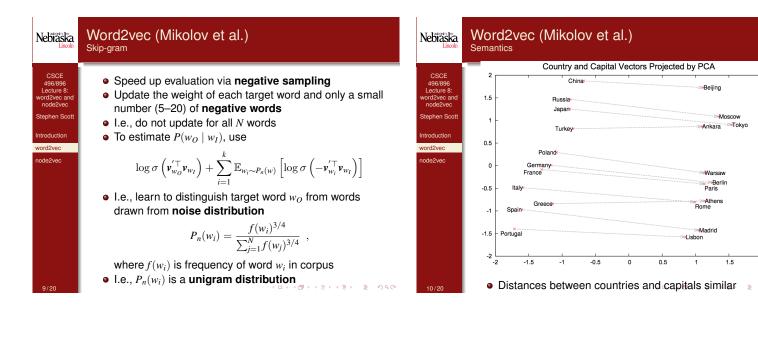


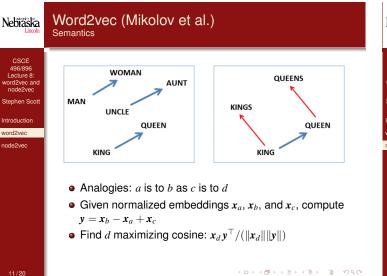
5/2

Word2vec (Mikolov et al.)

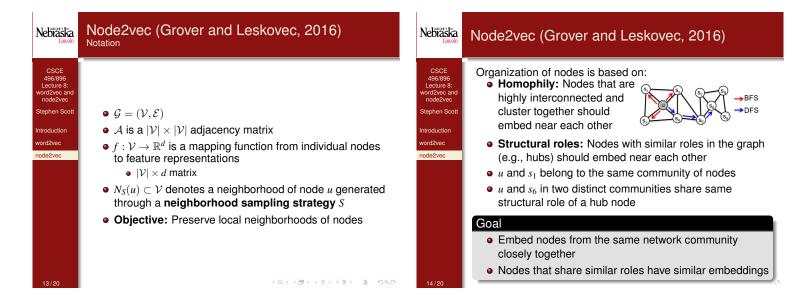
j∈{

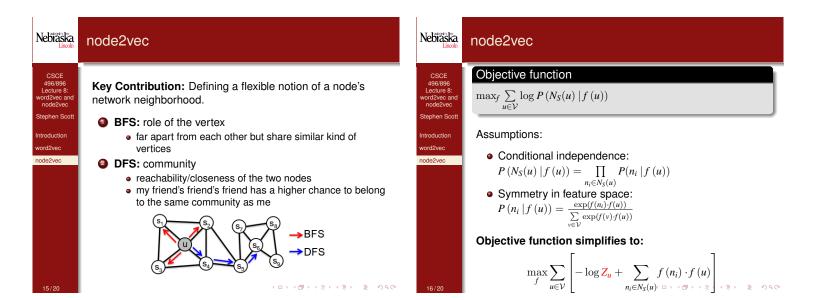
Equivalent to maximizing log probability

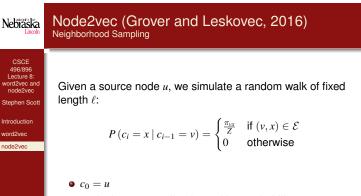

$$\sum_{-c, -(c-1), \dots, (c-1), c\}, j \neq 0} \log P(w_{t+j} \mid w_t)$$


Softmax output and linear activation imply

$$P(w_O \mid w_I) = \frac{\exp\left(\mathbf{v}_{w_O}^{\prime \top} \mathbf{v}_{w_I}\right)}{\sum_{i=1}^{N} \exp\left(\mathbf{v}_i^{\prime \top} \mathbf{v}_{w_I}\right)}$$


where v_{w_i} is w_i 's (input word) row from W and v'_i is w_i 's (output word) column from W'


- I.e., trying to maximize dot product (similarity) between words in same context
- **Problem:** N is big ($\approx 10^5 10^7$)



Nebraska Lincoln	Node2vec (Grover and Leskovec, 2016)					
CSCE 496/896 Lecture 8: word2vec and node2vec Stephen Scott Introduction word2vec node2vec	 Word2vec's approach generalizes beyond text All we need to do is represent the context of an instance to embed together instances with similar contexts E.g., biological sequences, nodes in a graph Node2vec defines its context for a node based on its local neighborhood, role in the graph, etc. 					

- π_{vx} is the unnormalized transition probability
- Z is the normalization constant.
- 2nd order Markovian

Nebraska Lincoln	Node2vec (Grover and Leskovec, 2016)				
CSCE 496/896 Lecture 8: word2vec and node2vec Stephen Scott Introduction word2vec node2vec	Search bias α : $\pi_{vx} = \alpha_{pq}(t, x) w_{vx}$ where $\alpha_{pq}(t, x) = \begin{cases} \frac{1}{p} & \text{if } d_{tx} = 0 \\ 1 & \text{if } d_{tx} = 1 \\ \frac{1}{q} & \text{if } d_{tx} = 2 \end{cases}$ Return parameter p :				
	 Controls the likelihood of immediately revisiting a node in the walk If p > max(q, 1) less likely to sample an already visited node avoids 2-hop redundancy in sampling If p < min(q, 1) backtrack a step 				

keep the walk local

Nebraska Lincoln	Node2vec (Grover and Leskovec, 2016)		Node2vec (Grover and Leskovec, 2016)	
CSCE 496/896 Lecture 8: word2vec and node2vec Stephen Scott Introduction word2vec node2vec	 In-out parameter q: If q > 1 inward exploration Local view BFS behavior If q < 1 outward exploration Global view DFS behavior 	CSCE 496/896 Lecture 8: word2vec Stephen Scott Introduction word2vec node2vec	Algorithm 1 The node2vec algorithm. LamPfeatures (Graph $G = (V, E, W)$, Dimensions d , Walks per node r , Walk length L , Context size R , Return p_i . In-out q) $\pi =$ PreprocessMotifiedWeights(G, p, q) $G^{*} = (V, E, \pi)$ Initialize walks to Empty for list = 1 to r do for for g is not served walk (G^{*} , u, h Append walk to walks) f = StochasticGradienDescent($k, d, walks$) return f Intituitable walk to $[u]$ for wale $list = 1$ to lob evr = walk [-1] $V_{evr} = walk [-1]$ $V_{evr} = walk [-1]$ V_{ev	 Implicit bias due to choice of the start node <i>u</i> Simulating <i>r</i> random walks of fixed length <i>l</i> starting from every node
19/20	< ロト (西) (注) (注) 美 の	৭.৫ 20/20	 Preprocessing to compute transition probabilities Random walks Optimization using SGD Each phase is parallelizable and executed asynchronously over 	