
CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

CSCE 496/896 Lecture 8:
word2vec and node2vec

Stephen Scott

(Adapted from Haluk Dogan)

sscott@cse.unl.edu

1 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Introduction

To apply recurrent architectures to text (e.g., NLM),
need numeric representation of words

The “Embedding lookup” block
Where does the embedding come from?

Could train it along with the rest of the network
Or, could use “off-the-shelf” embedding

E.g., word2vec or GloVe

Embeddings not limited to words: E.g., biological
sequences, graphs, ...

Graphs: node2vec

The xxxx2vec approach focuses on training
embeddings based on context

2 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Outline

word2vec
Architectures
Training
Semantics of embedding

node2vec

3 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Word2vec (Mikolov et al.)

Training is a variation of autoencoding
Rather than mapping a word to itself, learn to map
between a word and its context

Context-to-word: Continuous bag-of-words (CBOW)
Word-to-context: Skip-gram

4 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Word2vec (Mikolov et al.)
Architectures

CBOW: Predict current word w(t) based on context
Skip-gram: Predict context based on w(t)
One-hot input, hidden linear activation, softmax output

5 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Word2vec (Mikolov et al.)
CBOW

N = vocabulary size, d =

embedding dimension
N ⇥ d matrix W is shared
weights from input to hidden
d ⇥ N matrix W 0 is weights
from hidden to output
When one-hot context
vectors xt�2, xt�1, . . . , xt+2
input, corresponding rows
from W are summed to ˆ

v

Then get score vector v

0

and softmax it
Train with cross-entropy

Use ith column of W 0 as embedding
6 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Word2vec (Mikolov et al.)
Skip-gram

Symmetric to CBOW: use ith row
of W as embedding
Goal is to maximize
P(wt�2,wt�1,wt+1,wt+2 | wt)

Same as minimizing
� logP(wt�2,wt�1,wt+1,wt+2 | wt)

Assume words are independent
given wt:
P(wt�2,wt�1,wt+1,wt+2 | wt) =Q

j2{�2,�1,1,2} P(wt+j | wt)

7 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Word2vec (Mikolov et al.)
Skip-gram

Equivalent to maximizing log probability
X

j2{�c,�(c�1),...,(c�1),c}, j6=0

logP(wt+j | wt)

Softmax output and linear activation imply

P(wO | wI) =
exp

⇣
v

0>
wO

vwI

⌘

PN
i=1 exp

�
v

0>
i vwI

�

where vwI is wI ’s (input word) row from W and v

0
i is wi’s

(output word) column from W 0

I.e., trying to maximize dot product (similarity) between
words in same context
Problem: N is big (⇡ 105–107)

8 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Word2vec (Mikolov et al.)
Skip-gram

Speed up evaluation via negative sampling
Update the weight of each target word and only a small
number (5–20) of negative words
I.e., do not update for all N words
To estimate P(wO | wI), use

log �
⇣

v

0>
wO

vwI

⌘
+

kX

i=1

Ewi⇠Pn(w)

h
log �

⇣
�v

0>
wi

vwI

⌘i

I.e., learn to distinguish target word wO from words
drawn from noise distribution

Pn(wi) =
f (wi)

3/4
PN

j=1 f (wj)
3/4

,

where f (wi) is frequency of word wi in corpus
I.e., Pn(wi) is a unigram distribution

9 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Word2vec (Mikolov et al.)
Semantics

Distances between countries and capitals similar10 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Word2vec (Mikolov et al.)
Semantics

Analogies: a is to b as c is to d

Given normalized embeddings xa, xb, and xc, compute
y = xb � xa + xc

Find d maximizing cosine: xd y

>/(kxdkkyk)

11 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Node2vec (Grover and Leskovec, 2016)

Word2vec’s approach generalizes beyond text
All we need to do is represent the context of an instance
to embed together instances with similar contexts

E.g., biological sequences, nodes in a graph

Node2vec defines its context for a node based on its
local neighborhood, role in the graph, etc.

12 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Node2vec (Grover and Leskovec, 2016)
Notation

G = (V, E)
A is a |V|⇥ |V| adjacency matrix
f : V ! Rd is a mapping function from individual nodes
to feature representations

|V|⇥ d matrix

NS(u) ⇢ V denotes a neighborhood of node u generated
through a neighborhood sampling strategy S

Objective: Preserve local neighborhoods of nodes

13 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Node2vec (Grover and Leskovec, 2016)

Organization of nodes is based on:
Homophily: Nodes that are
highly interconnected and
cluster together should
embed near each other

Structural roles: Nodes with similar roles in the graph
(e.g., hubs) should embed near each other
u and s1 belong to the same community of nodes
u and s6 in two distinct communities share same
structural role of a hub node

Goal
Embed nodes from the same network community
closely together
Nodes that share similar roles have similar embeddings

14 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

node2vec

Key Contribution: Defining a flexible notion of a node’s
network neighborhood.

1 BFS: role of the vertex
far apart from each other but share similar kind of
vertices

2 DFS: community
reachability/closeness of the two nodes
my friend’s friend’s friend has a higher chance to belong
to the same community as me

15 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

node2vec

Objective function

maxf
P

u2V
log P (NS(u) | f (u))

Assumptions:

Conditional independence:
P (NS(u) | f (u)) =

Q
ni2NS(u)

P(ni | f (u))

Symmetry in feature space:
P (ni | f (u)) = exp(f (ni)·f (u))P

v2V
exp(f (v)·f (u))

Objective function simplifies to:

max

f

X

u2V

2

4� log Zu +
X

ni2NS(u)

f (ni) · f (u)

3

5

Zu is approximated with negative sampling
16 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Node2vec (Grover and Leskovec, 2016)
Neighborhood Sampling

Given a source node u, we simulate a random walk of fixed
length `:

P (ci = x | ci�1 = v) =

(
⇡vx
Z if (v, x) 2 E

0 otherwise

c0 = u

⇡vx is the unnormalized transition probability
Z is the normalization constant.
2nd order Markovian

17 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Node2vec (Grover and Leskovec, 2016)
Neighborhood Sampling

Search bias ↵: ⇡vx = ↵pq(t, x)wvx where

↵pq(t, x) =

8
><

>:

1
p if dtx = 0
1 if dtx = 1
1
q if dtx = 2

Return parameter p:

Controls the likelihood of immediately revisiting a node
in the walk
If p > max(q, 1)

less likely to sample an already visited node
avoids 2-hop redundancy in sampling

If p < min(q, 1)
backtrack a step
keep the walk local

18 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Node2vec (Grover and Leskovec, 2016)
Neighborhood Sampling

In-out parameter q:

If q > 1 inward exploration
Local view
BFS behavior

If q < 1 outward exploration
Global view
DFS behavior

19 / 20

CSCE
496/896

Lecture 8:
word2vec and

node2vec

Stephen Scott

Introduction

word2vec

node2vec

Node2vec (Grover and Leskovec, 2016)
Algorithm

Implicit bias due to choice
of the start node u

Simulating r random
walks of fixed length
` starting from every
node

Phases:

1 Preprocessing to compute transition probabilities
2 Random walks
3 Optimization using SGD

Each phase is parallelizable and executed asynchronously20 / 20

