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@ Can build a layer of recurrent cells, where each node
gets both the vector x,) and the vector y(,_
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@ All our architectures so far work on fixed-sized inputs

@ Recurrent neural networks work on sequences of
inputs

@ E.g., text, biological sequences, video, audio

@ Can also try 1D convolutions, but lose long-term
relationships in input

@ Especially useful for NLP applications: translation,
speech-to-text, sentiment analysis

@ Can also create novel output: e.g., Shakespearean
text, music
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Basic Recurrent Cell

=8 @ A recurrent cell (or recurrent neuron) has i y
L) connections pointing backward as well as ‘
Architectures forward
SEFIEIEE @ At time step (frame) ¢, neuron receives input :
Introduction vector x(,y as usual, but also receives its own |
Basic Idea output y,_y) from previous step | x
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Stephen Scolt @ Each node in the recurrent layer has independent
weights for both x(,y and y(,_y)

@ For a single recurrent node, denote by w, and w,

@ For the entire layer, combine into matrices W, and W,

@ For activation function ¢ and bias vector b, output
vector is
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Introduction @ State could be the same as the output, or separate
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@ Input sequence (xi,...,xr) yields hidden outputs
(hi,...,hr), then mapped to context vector
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@ Decoder output y, depends on previously output
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Many ways to employ this basic architecture:

@ Sequence to sequence: Input is a sequence and
output is a sequence

@ E.g., series of stock predictions, one day in advance
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@ Vector to sequence: Input is a single vector (zeroes
for other times) and output is a sequence

@ E.g., image to caption

Y(0) Y(1) Y(2) Y(3)

NENEAE.
:
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@ Pre-trained word embeddings fed into input

@ Encoder maps word sequence to vector, decoder maps
to translation via softmax distribution

@ After training, do translation by feeding previous
translated word yzH) to decoder
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Target: Jo bois du lait  <eos>

Examples Prediction: Je bois le lait <e0s>
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Encoder - Decoder l
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@ Works through an embedded space like an
autoencoder, so can represent the entire input as an
embedded vector prior to decoding

@ Issue: Need to ensure that the context vector fed into
decoder is sufficiently large in dimension to represent
context required

@ Can address this representation problem via attention
mechanism mechanism

e Encodes input sequence into a vector sequence rather
than single vector

o As it decodes translation, decoder focuses on relevant
subset of the vectors
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E-D Architecture: Attention Mechanism (Bahdanau et al., 2015)
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probabilities
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GRUs @ Alignment score ¢;; indicates how much we should

focus on word encoding &; when generating output y;
(in decoder state s;_;)

@ Can compute ¢; via dot product thsH, bilinear function
thWsH, or nonlinear activation
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Can achieve the same thing more compactly via
static_rnn()

Introduction

Basic Idea X0 = tf.placeholder (tf.float32, [None, n_inputs])

X1 = tf.placeholder (tf.float [None, n_inputs])

basic_cell = tf.contrib.rn CRNNCell (num_units=n_neurons)

output_seqs, states = tf.co .static.rnn(basic_cell, (X0, X1],
dtype=tf.float32)

Y0, Y1 = output_seqs
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E-D Architecture: Attention Mechanism (Bahdanau et al., 2015)
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@ Bidirectional RNN reads input VRV
forward and backward
simultaneously

@ Encoder builds annotation &;
as concatenation of & ; and ij

= h; summarizes preceding
and following inputs

@ ith context vector
¢ =Y., ayhy, where

exp(ej)

X explen) .
and ¢;; is an alignment score between inputs around j and

outputs around i
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tf.placeholder (tf.float32, [None, n_inputs])
tf.placeholder (tf.float32, [None, n_inputs])
tf.variable (tf.random_normal (shape=[n_inputs, n_neurons],dtype=tf.float32))
Ioanenan Wy = tf.variable (tf.random_normal (shape=[n_neurons,n_neurons],dtype=tf.float32))
b = tf.variable(tf.zeros([1l, n_neurons], dtype=tf.float32))
Y0 = tf.tanh(tf.matmul ( + b)
Y1l = tf.tanh(tf.matmul (Y0, + tf.matmul (X1, Wx) + b)
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Examples Input.
Training

g IS # Mini-batch:
X0_batch = np.array([[0, 1, 2], [3, 4, 51, [6, 7, 81, [9, O,
X1 _batch = np.array([(9, 8, 7], [0, O, O], [6, 5, 41, [3, 2,

instance 0, instance 1, instance 2, instance 3
111) #t =0
111y #t =1
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Automatic Static Unrolling
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Can avoid specifying one placeholder per time step via
tf.stack and tf.unstack

X = tf.placeholder (tf.float32, [None, n.s , n_inputs])
X_segs = tf.unstack (tf.transpose (X, perm=[1, 0, 21))
basic_cell = tf.contrib.rnn.BasicRNNCell (num_units=n_neurons)
output_seqs, states = tf.contrib.rnn.static_rnn(basic_cell, X_segs,
dtype=tf.float32)
outputs = tf.transpose(tf.stack (output_seqs), perm=[1, 0, 2])

Stephen Scott

Introduction

Basic Idea b
X_batch = np.array ([

1/0 Mappings # t=0 t=1

(o, 1, 21, (9, 8, 711, # instance 0

Examples [(3, 4, s1, (0, 0, 0]], # instance 1

n (ee, 7, 81, (6, 5 4]1, # instance 2

Ui (19, 0, 11, [3, 2, 1)1, # instance 3
1)

Deep RNNs
LSTMs

il @ Uses static_rnn () again, but on all time steps

folded into a single tensor
@ Still forms a large, static graph (possible memory
issues)
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Example Implementation

Dynamic Unrolling

Even better: Let TensorFlow unroll dynamically via a
while_loop () indynamic_rnn ()
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])

basic_cell = tf.contrib.rnn.BasicRNNCell (num_units=n_neurons)
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)

Can also set swap_memory=True to reduce memory
problems

Training
Backpropagation Through Time (BPTT)

@ Unroll through time and use BPTT
@ Forward pass mini-batch of sequences through unrolled
network yields output sequence Y, ..., Y
@ Output sequence evaluated using cost
C (Yo +> Yman))
@ Gradients propagated backward through unrolled
network (summing over all time steps), and parameters
Cey Yy Yiay)

7

Yo Yo A\

fmax)

Training

Example: Training on MNIST as a Vector Sequence

@ Consider MNIST inputs provided as sequence of 28
inputs of 28-dimensional vectors

@ Feed in input as usual, then compute loss between
target and softmax output after 28th input

t

Softmax

Fully Connected
10 units
A

:

(26) (27)
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Example Implementation

Variable-Length Sequences

Training

Issues

Training

Example: Training on MNIST as a Vector Sequence

@ May need to handle variable-length inputs

@ Use 1D tensor sequence_length to set length of
each input (and maybe output) sequence

@ Pad smaller inputs with zeroes to fit input tensor

@ Use “end-of-sequence” symbol at end of each output

seq_length = tf.placeholder (tf.int32, [Nonel)

outputs, states = tf.nn.dynamic_rnn(basic_

sec

X, dtype=tf.float32,
length=seq_length)

X_batch = np.array(

# step 0 step 1

[0, 1, 21, (9, 8, 711, # instance 0

{13, 4, 51, [0, 0, 0]], # instance 1 (padded with a zero vector)
(6, 7, 81, (6, 5, 411, # instance 2

(s, 0, 11, (3, 2, 111, # instance 3

seq_length_batch = np.array([2, 1, 2, 2])
with tf.Session() as sess:
init.run()

outputs_val, states_val = sess.run(
[outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch})

@ When comparing two sequences, can use squence
loss: tf.contrib.seg2seq.sequence_loss
o Weighted average of cross entropy across sequence
e Weights can emphasize parts of target sequence, e.g.,
more on nouns than articles

@ BPTT means that gradient is flowing through longer
paths in graph = exploding or vanishing gradients
e Can happen with any network, but RNNs very
susceptible
o Clipping gradients to range [—1, +1] can mitigate
explosions: tf.clip_by_value
o Batch normalization useful as well

X = tf.placeholder (tf.float32, [None, n_steps, n_inputs])

y = tf.placeholder (tf.int32, [None])

basic_cell = tf.contrib.rnn.BasicRNNCell (num_units=n_neurons)

es = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)

log

oss = tf.r e_mean (xentropy)

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize (loss)

correct = tf.nn.in_top_k(logits, y, 1)

accuracy = tf.reduce_mean (tf.cast (correct, tf.float32))

init = tf.global variables_initializer ()
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@ Input is time series
@ Target is same as input, but shifted one into the future

Stephen Scott

Introduction .
@ E.g., stock prices, temperature
Basic Idea
/O Mappings A time series (generated) N A training instance
[SET
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n_steps = 20

n_inputs = 1

n_neurons = 100

n_outputs = 1

X = tf.placeholder(tf.float32,

y = tf.placeholder (tf.float32

cell = tf.contrib.rnn.Output
tf.contrib.rnn.BasicRNNCell (num_units=n_neurons, activation=tf.nn.relu),
output_size=n_outputs)

outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)

Introduction

Basic Idea

[None, n_steps, n_inputs])
[None, steps, n_outputs])

1/0 Mappings
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Example: Creating New Time Series
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@ Feed to trained model seed sequence of size
n_steps, append predicted value to sequence, feed
last n_steps back in to predict next value, etc.

Stephen Scott

Introduction

sequence = [0.] + n_steps
E——— for iteration in range (300
EEBIEED X_batch = np.array(sequence[-n.steps:]).reshape(l, n_steps, 1)
1/O|Mappings y_pred = sess.run(outputs, feed_dict={X: X_batch})
sequence .append (y-pred(0, -1, 0])
Examples
Training Seeded with zeroes Seeded with an instance
0.0 10
Deep RNNs —05 s
LSTMs -10
0
GRUs o
2 -20 -5
s
=25
-10
-3.0
-35 -1
-4.0 =20
5 10 15 20 25 3 5 10 15 20 25 3

Time Time
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Example: Training on Time Series Data

Deep RNNs

Training

Example: Training on Time Series Data

@ Use sequences of length n_steps=20 and
n_neurons=100 recurrent neurons

@ Since output size = 100 > 1 = target size, use
OutputProjectionWrapper to feed recurrent layer
output into a linear unit to get a scalar

Yo) Yy Yis) Yi19)
FC
1 unlt 1 unit
X X

BasicRNNCell

OutputProjectionWrapper

Results on same sequence after 1000 training iterations
Testing the model

8 T T T T
@® @ instance
6|7 ¥ target o.oﬁ
e e prediction (<)
4 °
(]
0®® ® ° °®
2 [ ] 00® 1
(]
0
(]
.
-2 °
. 9 n L L
12.0 12.5 13.0 13.5 14.0 14.5
Time

Y, Y, Y,

@ A deep RNN has multiple
recurrent layers stacked

n_neurons = 100
n_layers = 3
layers = [tf.contrib.rnn.BasicRNNCell (num_units=n_neurons,

@ activation=tf.nn.relu)
for layer in ranqe(n layers)]
B multi_layer_cell = tf.co n.Multi
X

11 (layers)

outputs, states = tf.nn. dynamlc ron(multi_layer_cell, X, dtype=tf.float32)
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@ Vanishing and exploding gradients can be a problem
with RNNs, like with other deep networks
o Can as usual address with, e.g., ReLU, batch
normalization, gradient clipping, etc.
@ Can still suffer from long training times with long input
sequences
o Truncated backpropagation through time addresses
this by limiting n_steps
o Lose ability to learn long-term patterns
@ In general, also have problem of first inputs of
sequence have diminishing impact as sequence grows
e E.g., first few words of long text sequence

@ Goal: Introduce long-term memory to RNNs

@ Allow a network to accumulate information about the
past, but also decide when to forget information

Stephen Scott
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Long Short-Term Memory

Hochreiter and Schmidhuber (1997)
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@ g(;) combines input
x(y with state k)

Forget gate

Stephen Scott o "Mgi/ \I :m ° f(r), L) "0 n are gate
N controllers

Introduction 1) i) Output gate a

Basic ldea © e @ fiy € [0,1]" controls
@ ition 1

1/0 Mappings LN T :M,d.:,g‘m forgettlng of C([,l)

Examples f—— o l(1> controls

Training

remembering of g,

Deep RNNs
@ o(, controls what of ¢, goes to output and &,
@ Output depends on long- and short-term memory

@ Network learns what to remember long-term based on
X(r) and h(t—l)
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GRU cell

LSTMs

o, replaced by r(,
computing 140}

= forget part of &(,_;) when

gru-cell = tf.contrib.rnn.GRUCell (num_units=n_neurons)
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@ Vector k() = short-term state, ¢, = long-term state
@ Attime ¢, some i’
memories from
C(—1) are
forgotten in the
forget gate and

Stephen Scott

[ Forgetgate

1. <,

Input gy
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Introduction

Basic Idea ®

1/0 Mappings iy ) Output gate

Element-wise

Examples i multiplication
. new ones (from |© Aaion

Training ) (- e ogisic

Deep RNNs Inpl‘It gate) | m—tanh

added x

@ Result sentout as ¢,

@ k) (and y(;)) comes from processing long-term state in
output gate

lstmcell = tf.contrib.rnn.BasicLSTMCell (num_units=n_neurons)

Long Short-Term Memory

Hochreiter and Schmidhuber (1997)
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Stephen Scott o o(f) =0 (W;‘; x(t) + W,;; h(t*l) + ba)
Introduction ) g&n = tanh W;;x(t) —+ W’;; h(tfl) + bg)
Basic Idea
1/0 Mappings Yo
[SET Forget gate
Training ° c(’) = o h

>La hy

Sy @ca—1+ip @g L g
O yy=hy= ) %%
o

put lgam
Deep RNNs
)

@ Element.wise

" ® tanh (C(,)) m_,% v:‘“::.

@ Can add peephole connection: Let c(,_) affect f{
and iy and ¢, affect o,
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